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Practical matters

• Online course information

– Schedule, slides, papers

– http://thoth.inrialpes.fr/~verbeek/MLOR.16.17.php

• Grading: Final grades are determined as follows

– 50% written exam, 50% quizes on the presented papers 

– If you present a paper: the grade for the presentation can substitute 
the worst grade you had for any of the quizes.

• Paper presentations:

– each student presents once

– each paper is presented by two or three students

– presentations last for 15~20 minutes, time yours in advance!



Clustering

 Finding a group structure in the data

– Data in one cluster similar to each other

– Data in different clusters dissimilar

 Maps each data point to a discrete cluster index in {1, ... , K}
► “Flat” methods do not suppose any structure among the clusters
► “Hierarchical” methods



Hierarchical Clustering

 Data set is organized into a tree structure
► Various level of granularity can be obtained by cutting-off the tree 

 Top-down construction

– Start all data in one cluster: root node

– Apply “flat” clustering into K groups

– Recursively cluster the data in each group

 Bottom-up construction

– Start with all points in separate cluster

– Recursively merge nearest clusters

– Distance between clusters A and B
• E.g. min, max, or mean distance 

between elements in A and B



Bag-of-words image representation in a nutshell

1) Sample local image patches, either using 
► Interest point detectors (most useful for retrieval)
► Dense regular sampling grid (most useful for classification)

2) Compute descriptors of these regions
► For example SIFT descriptors

3) Aggregate the local descriptor statistics into global image representation
► This is where clustering techniques come in

4) Process images based on this representation
► Classification
► Retrieval



Bag-of-words image representation in a nutshell

3) Aggregate the local descriptor statistics into bag-of-word histogram
► Map each local descriptor to one of K clusters (a.k.a. “visual words”)
► Use K-dimensional histogram of word counts to represent image

…..
Visual word index
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Example visual words found by clustering

Airplanes

Motorbikes

Faces

Wild Cats

Leafs

People

Bikes



Clustering descriptors into visual words

 Offline clustering: Find groups of similar local descriptors
► Using many descriptors from many training images

 Encoding a new image:

– Detect local regions
– Compute local descriptors
– Count descriptors in each cluster

[5, 2, 3] [3, 6, 1]



Definition of k-means clustering

 Given: data set of N points xn, n=1,…,N

 Goal: find K cluster centers mk, k=1,…,K

    that minimize the squared distance to nearest cluster centers

 Clustering = assignment of data points cluster centers

– Indicator variables rnk=1 if xn assgined to mk, rnk=0 otherwise

 Error criterion equals sum of squared distances between each data point 
and assigned cluster center, if assigned to the nearest cluster

E ({mk}k=1
K )=∑n=1

N

∑k=1

K
rnk∥xn−mk∥

2

E ({mk}k=1
K )=∑n=1

N
mink∈{1,... ,K }∥xn−mk∥

2



Examples of k-means clustering

 Data uniformly sampled in unit square

 k-means with 5, 10, 15, and 25 centers



Minimizing the error function

• Goal find centers mk to minimize the error function

• Any set of assignments, not just assignment to closest centers, 

gives an upper-bound on the error:

• The k-means algorithm iteratively minimizes this bound
1) Initialize cluster centers, eg. on randomly selected data points
2) Update assignments rnk for fixed centers mk 

3) Update centers mk for fixed data assignments rnk

4) If cluster centers changed: return to step 2
5) Return cluster centers

E ({mk }k=1
K )=∑n=1

N
mink∈{1,. .. , K }∥xn−mk∥

2

E({mk}k=1
K

)≤F ({mk}, {rnk })=∑n=1

N

∑k=1

K
r nk∥xn−mk∥

2



Minimizing the error bound

• Update assignments rnk for fixed centers mk 

• Constraint: exactly one rnk=1, rest zero

• Decouples over the data points
• Solution: assign to closest center

F ({mk },{rnk })=∑n=1

N

∑k=1

K
rnk‖xn−mk‖

2

∑k
rnk‖xn−mk‖

2



Minimizing the error bound

• Update centers mk for fixed assignments rnk 

• Decouples over the centers
• Set derivative to zero
• Put center at mean of assigned data points

mk=
∑n

r nk xn

∑n
r nk

∑n
rnk∥xn−mk∥

2

∂ F
∂mk

=2∑n
r nk(xn−mk)=0

F ({mk },{rnk })=∑n=1

N

∑k=1

K
rnk∥xn−mk∥

2



Examples of k-means clustering

 Several k-means iterations with two centers

Error function



Minimizing the error function

• Goal find centers mk to minimize the error function

– Proceeded by iteratively minimizing the error bound defined by 
assignments, and quadratic in cluster centers

• K-means iterations monotonically decrease error function since
– Both steps reduce the error bound
– Error bound matches true error after update of the assignments
– Since finite nr. of assignments, algorithm converges to local minimum

E ({mk}k=1
K )=∑n=1

N
mink∈{1,. .. ,K }∥xn−mk∥

2

F ({mk }k=1
K )=∑n=1

N

∑k=1

K
rnk∥xn−mk∥

2

Bound #1
Bound #2

True error

Placement of centers
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Problems with k-means clustering

 Result depends on initialization
► Run with different initializations
► Keep result with lowest error



Problems with k-means clustering

 Assignment of data to clusters is only based on the distance to center
– No representation of the shape of the cluster
– Implicitly assumes spherical shape of clusters



Basic identities in probability

 Suppose we have two variables: X, Y

 Joint distribution: 

 Marginal distribution: 

 Bayes' Rule:

p(x , y )

p(x)=∑y
p (x , y)

p(x∣y )=
p(x , y )

p( y )
=

p ( y∣x ) p (x )

p ( y)



Clustering with Gaussian mixture density

 Each cluster represented by Gaussian density

– Parameters: center m, covariance matrix C

– Covariance matrix encodes spread around center, 

can be interpreted as defining a non-isotropic distance around center

Two Gaussians in 1 dimension A Gaussian in 2 dimensions



Clustering with Gaussian mixture density

 Each cluster represented by Gaussian density

– Parameters: center m, covariance matrix C

– Covariance matrix encodes spread around center, 

can be interpreted as defining a non-isotropic distance around center

Determinant of
covariance matrix C Quadratic function of

point x and mean m
Mahanalobis distance

N (x∣m ,C )=(2π)
−d /2

|C|
−1 /2 exp(−1

2
(x−m)

T C−1
(x−m))

 Definition of Gaussian density in d dimensions



Mixture of Gaussian (MoG) density

 Mixture density is weighted sum of Gaussian densities

– Mixing weight: importance of each cluster

 Density has to integrate to 1, so we require

p (x )=∑k=1

K
πk N (x∣mk , C k)

πk≥0

∑k=1

K
πk=1

Mixture in 1 dimension Mixture in 2 dimensions

What is wrong with this picture ?!



Sampling data from a MoG distribution

 Let z indicate cluster index
 To sample both z and x from joint distribution

– Select z=k with probability given by mixing weight

– Sample x from the k-th Gaussian

● MoG recovered if we marginalize over the unknown cluster index

p(x )=∑k
p( z=k) p(x∣z=k )=∑k

πk N (x∣mk ,Ck)

p(z=k )=πk

p(x∣z=k )=N ( x∣mk ,Ck)

Color coded model and data of each cluster Mixture model and data from it



Soft assignment of data points to clusters

 Given data point x, infer underlying cluster index z

p(z=k∣x )=
p(z=k , x)

p(x )

=
p (z=k ) p(x∣z=k )

∑k
p(z=k ) p( x∣z=k)

=
πk N (x∣mk ,Ck)

∑k
π k N (x∣mk ,C k)

MoG model Data Color-coded
soft-assignments



Clustering with Gaussian mixture density

 Given: data set of N points xn, n=1,…,N

 Find mixture of Gaussians (MoG) that best explains data
► Maximize log-likelihood of fixed data set w.r.t. parameters of MoG
► Assume data points are drawn independently from MoG

 MoG learning very similar to k-means clustering

– Also an iterative algorithm to find parameters
– Also sensitive to initialization of parameters

L(θ)=∑n=1

N
log p(xn;θ)

θ={π k ,mk ,Ck }k=1
K



Maximum likelihood estimation of single Gaussian

 Given data points xn, n=1,…,N

 Find single Gaussian that maximizes data log-likelihood

 Set derivative of data log-likelihood w.r.t. parameters to zero

 Parameters set as data covariance and mean

L(θ)=∑n=1

N
log p(xn)=∑n=1

N
logN (xn∣m,C)=∑n=1

N

(−d
2

logπ−
1
2

log∣C∣−
1
2
(xn−m)

T C−1
(xn−m))

∂ L(θ)

∂C−1 =∑n=1

N

(1
2
C−

1
2
(xn−m)(xn−m)

T )=0

C=
1
N
∑n=1

N
(xn−m)(xn−m)

T

∂ L(θ)

∂m
=C−1∑n=1

N

(xn−m )=0

m=
1
N
∑n=1

N
xn



Maximum likelihood estimation of MoG

 No closed form equations as in the case of a single Gaussian
 Use EM algorithm

– Initialize MoG: parameters or soft-assign

– E-step: soft assign of data points to clusters (construct bound)
– M-step: update the mixture parameters (maximize bound)
– Repeat EM steps, terminate if converged 

• Convergence of parameters or assignments

 E-step: compute soft-assignments: 
 M-step: update Gaussians from weighted data points

πk=
1
N
∑n=1

N
qnk

mk=
1

N πk
∑n=1

N
qnk xn

Ck=
1

N πk
∑n=1

N
qnk (xn−mk)(xn−mk )

T

qnk=p( z=k∣xn)



Maximum likelihood estimation of MoG

 Example of several EM iterations



EM algorithm as iterative bound optimization

 Just like k-means, EM algorithm is an iterative bound optimization algorithm
– Goal: Maximize data log-likelihood, can not be done in closed form

– Solution: iteratively maximize (easier) bound on the log-likelihood

 Bound uses two information theoretic quantities
– Entropy
– Kullback-Leibler divergence

L(θ)=∑n=1

N
log p(xn)=∑n=1

N
log∑k=1

K
π k N (xn∣mk ,Ck)



Entropy of a distribution

 Entropy captures uncertainty in a distribution
– Maximum for uniform distribution
– Minimum, zero, for delta peak on single value

H (q)=−∑k=1

K
q( z=k )log q( z=k )

Low entropy distribution High entropy distribution



Entropy of a distribution

 Connection to information coding (Noiseless coding theorem, Shannon 1948)
► Frequent messages short code, rare messages long code
► optimal code length is (at least) -log p bits
► Entropy: expected (optimal) code length per message

 Suppose uniform distribution over 8 outcomes: 3 bit code words
 Suppose distribution: 1/2,1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64, entropy 2 bits!

► Code words: 0, 10, 110, 1110, 111100, 111101,111110,111111
 Codewords are “self-delimiting”: 

► Do not need a “space” symbol to separate codewords in a string
► If first zero is encountered after 4 symbols or less, then stop. Otherwise, 

code is of length 6.

H (q)=−∑k=1

K
q( z=k )log q( z=k )



Kullback-Leibler divergence

 Asymmetric dissimilarity between distributions
– Minimum, zero, if distributions are equal
– Maximum, infinity, if p has a zero where q is non-zero

 Interpretation in coding theory
► Sub-optimality when messages distributed according to q, 

but coding with codeword lengths derived from p 
► Difference of expected code lengths

– Suppose distribution q: 1/2,1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64
– Coding with p: uniform over the 8 outcomes 
– Expected code length using p: 3 bits
– Optimal expected code length, entropy H(q) = 2 bits
– KL divergence D(q|p) = 1 bit

D (q∥p)=∑k=1

K
q( z=k ) log

q( z=k )

p( z=k )

D (q∥p)=−∑k=1

K
q (z=k ) log p (z=k )−H (q )≥0

Cross-entropy



EM bound on MoG log-likelihood

 We want to bound the log-likelihood of a Gaussian mixture  

 Bound log-likelihood by subtracting KL divergence D(q(z) || p(z|x))
► Inequality follows immediately from non-negativity of KL

► p(z|x) true posterior distribution on cluster assignment 
► q(z) an arbitrary distribution over cluster assignment (similar to 

assignments used in k-means algorithm)

 Sum per-datapoint bounds to bound the log-likelihood of a data set:

p(x)=∑k=1

K

πk N (x ;mk ,Ck)

F (θ , q)=log p(x ;θ)−D (q(z)∥p(z∣x ,θ))≤log p(x ;θ)

F (θ , {qn})=∑n=1

N
log p(xn ;θ)−D (qn(z)∥p(z∣xn ,θ))≤∑n=1

N
log p(xn ;θ)



Maximizing the EM bound on log-likelihood

 E-step: 
► fix model parameters, 
► update distributions qn  to maximize the bound

► KL divergence zero if distributions are equal
► Thus set qn(zn) = p(zn|xn)

► After updating the qn the bound equals the true log-likelihood

F (θ , {qn})=∑n=1

N

[ log p (xn)−D (qn( zn)∥p (zn∣xn)) ]



Maximizing the EM bound on log-likelihood

 M-step: 
► fix the soft-assignments qn, 

► update model parameters

 Terms for each Gaussian decoupled from rest ! 

F (θ , {qn})=∑n=1

N

[ log p (xn)−D (qn( zn)∥p (zn∣xn)) ]

=∑n=1

N

[ log p ( xn)−∑k
qnk ( log qnk−log p (zn=k∣xn)) ]

=∑n=1

N

[H (qn)+ ∑k
qnk log p (zn=k , xn)]

=∑n=1

N

[H (qn)+ ∑k
qnk ( logπk+ log N (xn ;mk ,Ck)) ]

=∑k=1

K

∑n=1

N
qnk ( log πk+ log N (xn ;mk ,Ck ))+∑n=1

N
H (qn)



Maximizing the EM bound on log-likelihood

 Derive the optimal values for the mixing weights

– Maximize 

– Take into account that weights sum to one, define

– Set derivative for mixing weight j >1 to zero

π1=1−∑k=2

K
πk

∑n=1

N

∑k=1

K
qnk logπk

∂

∂π j
∑n=1

N

∑k=1

K
qnk logπk=

∑n=1

N
qnj

π j
−
∑n=1

N
qn1

π1
=0

∑n=1

N
qnj

π j
=
∑n=1

N
qn1

π1

π1∑n=1

N
qnj=π j∑n=1

N
qn1

π1∑n=1

N

∑ j=1

K
qnj=∑ j=1

K
π j∑n

qn1

π j=
1
N
∑n=1

N
qnj

π1 N=∑n=1

N
qn1



Maximizing the EM bound on log-likelihood

 Derive the optimal values for the MoG parameters

– For each Gaussian maximize

– Compute gradients and set to zero to find optimal parameters 
∑n

qnk log N (xn ;mk ,C k )

log N (x ;m ,C )=
d
2

log(2π)−
1
2

log∣C∣−
1
2
(x n−m)T C−1(x n−m)

∂
∂m

log N (x ;m ,C )=C−1
(x−m)

∂

∂C−1
log N (x ;m ,C )=

1
2
C−

1
2
(x−m)(x−m)T

mk=
∑n

qnk xn

∑n
qnk

C k=
∑n

qnk (xn−m)(xn−m)T

∑n
qnk



F (θ , {qn})=∑n=1

N

[ log p (xn)−D (qn( zn)∥p (zn∣xn)) ]

EM bound on log-likelihood

 L is bound on data log-likelihood for any distribution q

 Iterative coordinate ascent on F
– E-step optimize q, makes bound tight
– M-step optimize parameters

F (θ , {qn})
F (θ , {qn})

F (θ , {qn})

F (θ , {qn})



Clustering with k-means and MoG

 Assignment:
► K-means: hard assignment, discontinuity at cluster border
► MoG: soft assignment, 50/50 assignment at midpoint

 Cluster representation
– K-means: center only
– MoG: center, covariance matrix, mixing weight

 If mixing weights are equal and

all covariance matrices are constrained to be                 and 

then EM algorithm = k-means algorithm

 For both k-means and MoG clustering
► Number of clusters needs to be fixed in advance
► Results depend on initialization, no optimal learning algorithms
► Can be generalized to other types of distances or densities

C k=ϵ I ϵ→ 0



Reading material

 Questions to expect on exam: 
► Describe objective function for one of these methods
► Derive some of the update equations for the model parameters
► Derive k-means as special case of MoG clustering

 More details on k-means and mixture of Gaussian learning with EM
► Pattern Recognition and Machine Learning, 

Chapter 9

Chris Bishop, 2006, Springer

► R. Neal and G. Hinton

A view of the EM algorithm that justifies incremental, sparse, and other 
variants 

In “Learning in Graphical Models”, Kluwer, 1998, 355-368
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