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Content of the course

• Visual object recognition

• Machine learning 



Practical matters

• Online course information

– Schedule, slides, papers

– http://thoth.inrialpes.fr/~verbeek/MLOR.16.17.php

• Grading: Final grades are determined as follows

– 50% written exam,

– 25% paper presentation,

– 25% quizes on the presented papers 

• Paper presentations:

– each student presents once

– each paper is presented by two students

– presentations last for 15~20 minutes, time yours in advance!



Visual recognition - Objectives

• Retrieval of particular objects and scenes
• Accuracy and scalability to large databases

…
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Visual object recognition - Objectives

• Detection of object categories 
– is there a … in this picture

• More generally: relevance of labels (action, place, ...)



Visual recognition - Objectives

• Localization of object categories 
– where are the … in this image

• Predict bounding boxes around category instances



Visual recognition - Objectives

• Semantic segmentation of (object) categories 
– Which pixels correspond to ….

• Possibly identifying different category instances



Visual recognition - Objectives

• Human pose estimation
• Self-occlusion and clutter



Visual recognition - Objectives

• Human action recognition in video
• Interaction of people and objects, temporal dynamics



Visual recognition - Objectives

• Human action action localization in time, or space-time



• Image captioning: Given an image produce a natural 
language sentence description of the image content

Visual recognition - Objectives



Difficulties: within object variations

Variability: Camera position, Illumination,Internal parameters

Within-object variations



Difficulties: within-class variations



Visual recognition pipeline

• Low-level: Robust image description 
– Appropriate descriptors for objects and categories

– Possibly unsupervised learning (PCA, clustering, ...)

• High-level: Statistical modeling and machine learning
– Map low-level descriptors to high-level interpretations
– Capture the visual variability of specific objects or scenes, but 

more importantly at the category level

• Today this distinction is less true 
– Learned low-level features
– Training of low-level and high-level models unified
– “Deep learning” framework



Robust image description

• Scale and affine-invariant keypoint detectors
• Robust keypoint descriptors



Robust image description

• Matching despite significant viewpoint changes



Why  machine learning?

• Early approaches: simple features + handcrafted models
• Can handle only few images, simple tasks 

L. G. Roberts, Machine Perception of Three Dimensional Solids, 

Ph.D. thesis, MIT Department of Electrical Engineering, 1963. 



Why machine learning?

• Early approaches: manual programming of rules
• Tedious, limited and not directly data-driven

Y. Ohta, T. Kanade, and T. Sakai, “An Analysis System for Scenes Containing objects with Substructures,” International Joint Conference on Pattern Recognition, 1978.



Why machine learning?

• Today: Lots of data, complex tasks 
• Instead of trying to encode rules directly, learn them from 

examples of inputs and desired outputs 

Internet images, 
personal photo albums

Movies, news, sports



Why machine learning?

• Today: Lots of data, complex tasks 
• Instead of trying to encode rules directly, learn them from 

examples of inputs and desired outputs 

Surveillance and security Medical and scientific images



Types of learning problems

• Supervised
– Classification
– Regression

• Unsupervised
– Clustering
– Generative models

• Semi-supervised

• Active learning

• ….



Supervised learning

• Given training examples of inputs and corresponding 
outputs, produce the “correct” outputs for new inputs

• Two important classic cases:

– Classification: outputs are discrete variables (category labels). 
Learn a decision boundary that separates one class from the 
other (separate images with and without cars in them)

– Regression: also known as “curve fitting” or “function 
approximation.” Learn a continuous input-output mapping from 
examples (estimate the human pose parameters given an image)



Image captioning

• Given an image produce a natural language sentence 
description of the image content

• Also supervised learning, but with complex output space



Unsupervised Learning

• Given only unlabeled data as input, learn some sort of structure from 
the data

– Clusters

– Low-dimensional subspace

• The objective function is typically based on a ``reconstruction'': how 
well can the original data be explained by the recovered structure?

• Most methods can be (re)formulated as a generative model: fit a 
model p(x) to ``predict'' data samples

– Density estimation



• Clustering: Discover groups of “similar” data points

Unsupervised Learning



• Dimensionality reduction, manifold learning
– Discover a lower-dimensional surface on which the data lives

Unsupervised Learning



• Density estimation
– Find a function that approximates the probability density of the 

data (i.e., value of the function is high for “typical” points and low 
for “atypical” points)

– Can be used for anomaly detection

Unsupervised Learning



Other types of learning

• Semi-supervised learning: lots of data is available, but 
only small portion is labeled (e.g. since labeling is 
expensive)
– Why is learning from labeled and unlabeled data better than 

learning from labeled data alone?

?



Other types of learning

• Active learning: the learning algorithm can choose its 
own training examples, or ask a “teacher” for an answer 
on selected inputs



Master Internships

• Internships are available in the THOTH group
• For research directions see

http://thoth.inrialpes.fr

• If you are interested send an email directly to team 
members that you are interested to work with
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