Category-level localization

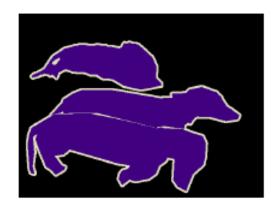
Cordelia Schmid

Recognition

- Classification
 - Object present/absent in an image
 - Often presence of a significant amount of background clutter

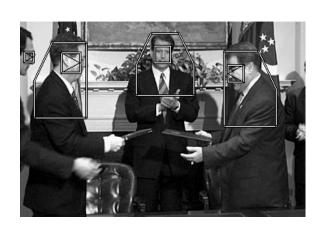
- Localization / Detection
 - Localize object within the frame
 - Bounding box or pixellevel segmentation

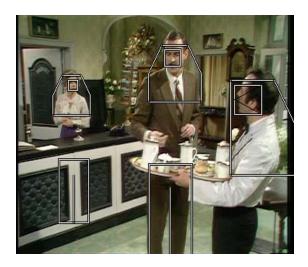
Pixel-level object classification



Difficulties

• Intra-class variations





- Scale and viewpoint change
- Multiple aspects of categories

Approaches

• Intra-class variation

=> Modeling of the variations, mainly by learning from a large dataset, for example by SVMs

- Scale + limited viewpoints changes
 => multi-scale approach
- Multiple aspects of categories

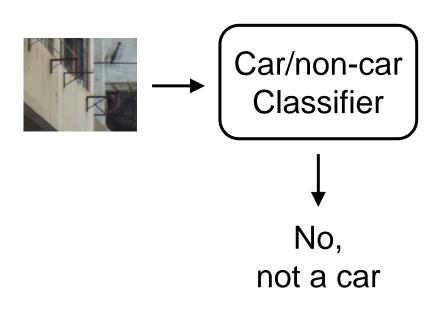
 => separate detectors for each aspect, front/profile face, build an approximate 3D "category" model
 => high capacity classifiers, i.e. Fisher vector, CNNs

Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients (HOG)
- 4. State of the art algorithms and PASCAL VOC

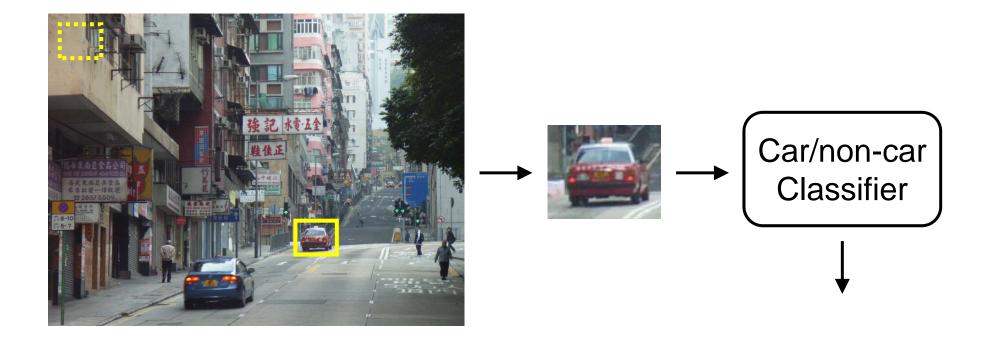
Sliding window detector

• Basic component: binary classifier



Sliding window detector

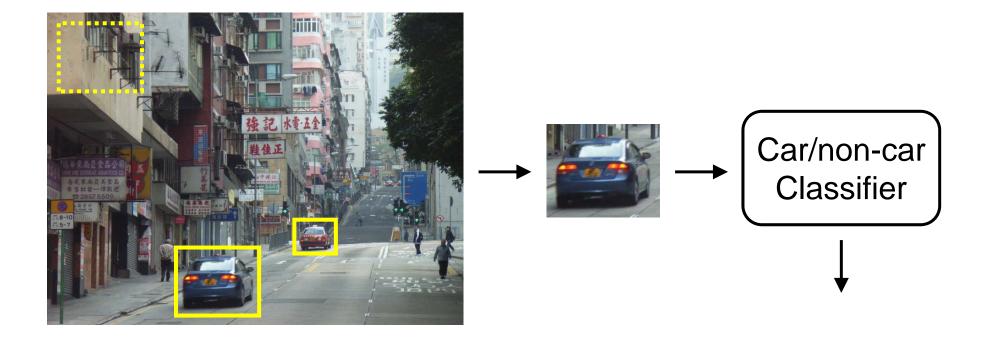
• Detect objects in clutter by search



• Sliding window: exhaustive search over position and scale

Sliding window detector

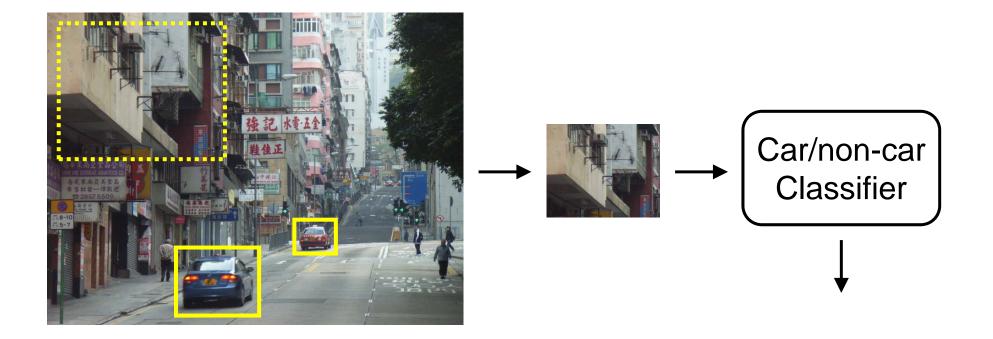
• Detect objects in clutter by search



• Sliding window: exhaustive search over position and scale

Detection by Classification

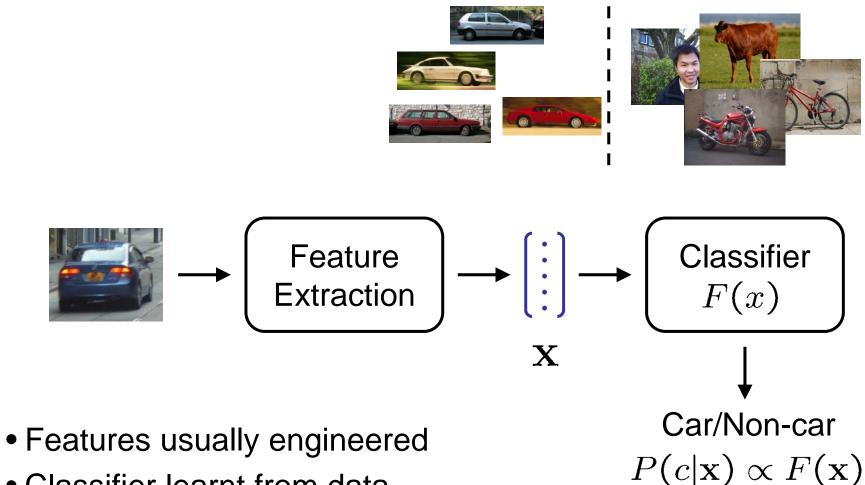
• Detect objects in clutter by **<u>search</u>**



• **Sliding window**: exhaustive search over position and scale (can use same size window over a spatial pyramid of images)

Window (Image) Classification

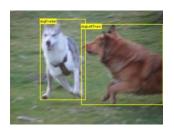
Training Data

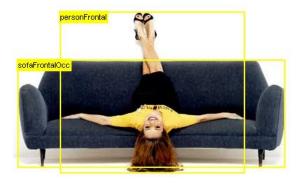


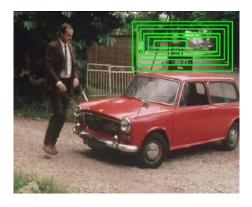
Classifier learnt from data

Problems with sliding windows ...

- aspect ratio
- granularity (finite grid)
- partial occlusion
- multiple responses







Outline

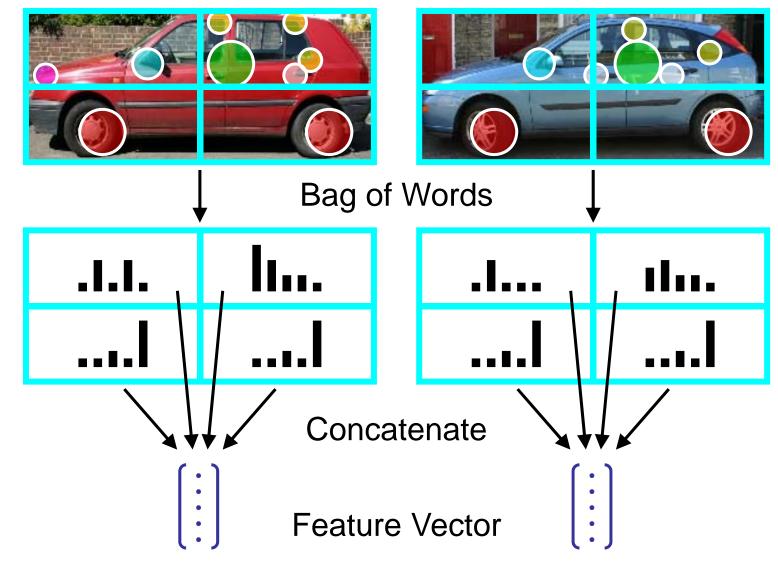
- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients (HOG)
- 4. State of the art algorithms and PASCAL VOC

BOW + Spatial pyramids

Start from BoW for region of interest (ROI)

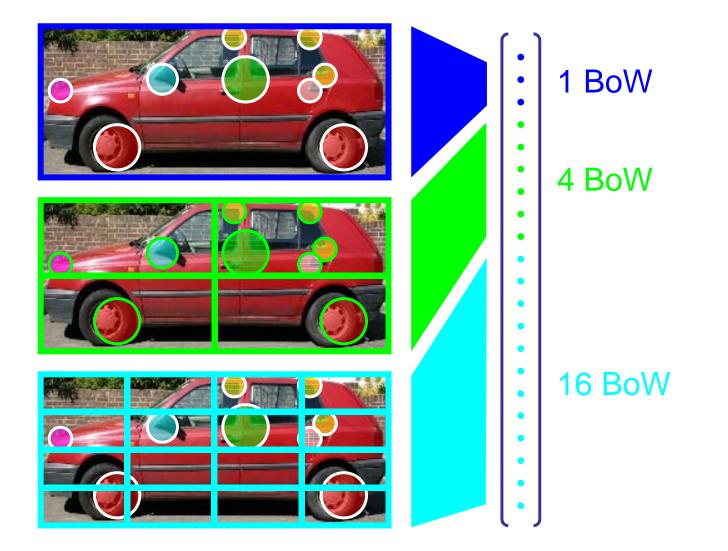
- no spatial information recorded
- sliding window detector

Adding Spatial Information to Bag of Words



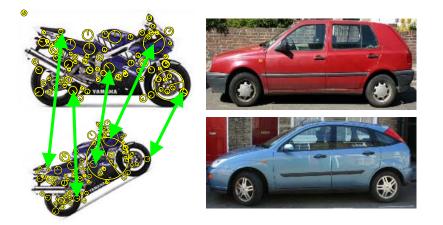
Keeps fixed length feature vector for a window

Spatial Pyramid – represent correspondence

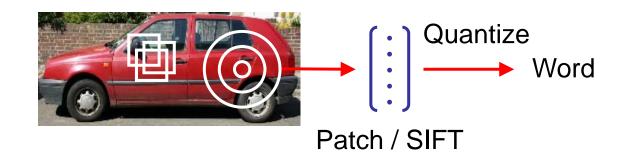


Dense Visual Words

- Why extract only **sparse** image fragments?
- Good where lots of invariance is needed, but not relevant to sliding window detection?



• Extract dense visual words on an overlapping grid



Outline

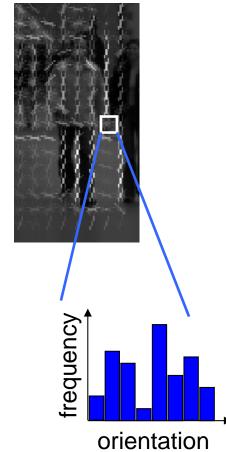
- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients + linear SVM classifier
- 4. State of the art algorithms and PASCAL VOC

Feature: Histogram of Oriented Gradients (HOG)

image

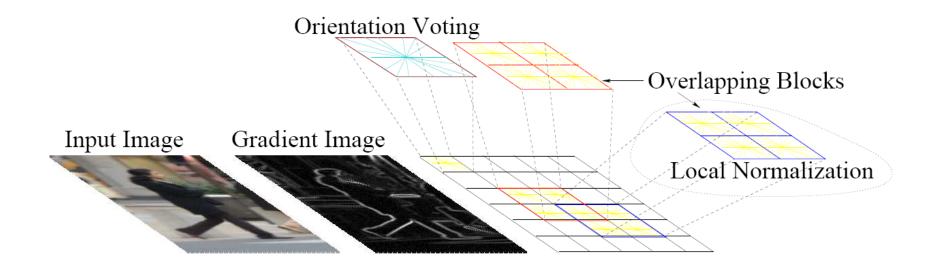
dominant direction

HOG



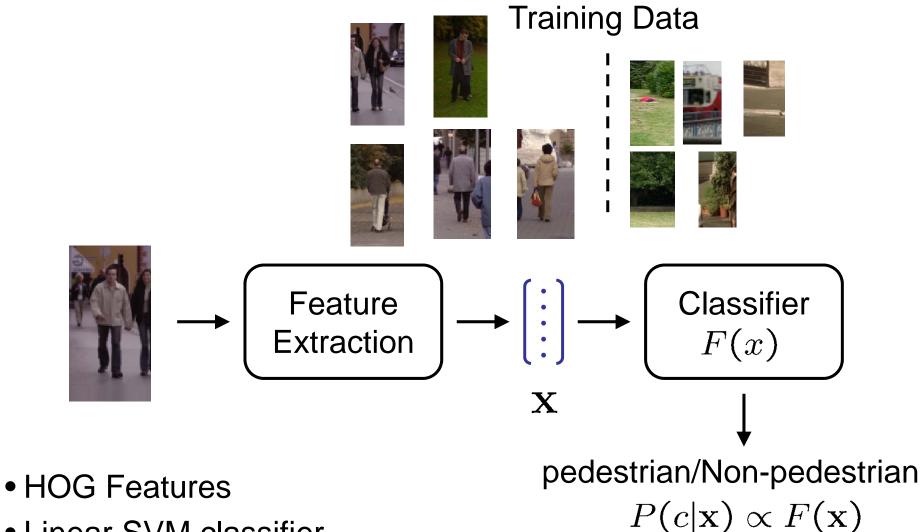
- tile 64 x 128 pixel window into 8 x 8 pixel cells
- each cell represented by histogram over 8 orientation bins (i.e. angles in range 0-180 degrees)

Histogram of Oriented Gradients (HOG) continued



- Adds a second level of overlapping spatial bins renormalizing orientation histograms over a larger spatial area
- Feature vector dimension (approx) = 16 x 8 (for tiling) x 8 (orientations) x 4 (for blocks) = 4096

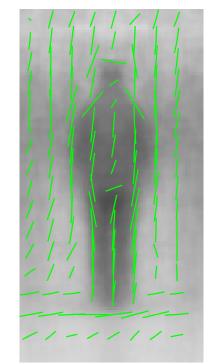
Window (Image) Classification

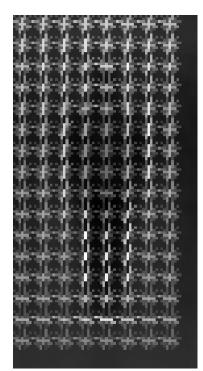


• Linear SVM classifier



Averaged examples

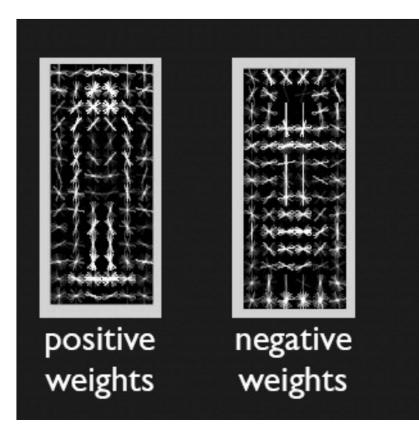


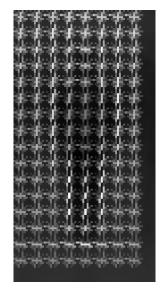


Dalal and Triggs, CVPR 2005

Learned model

 $\mathbf{f}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$





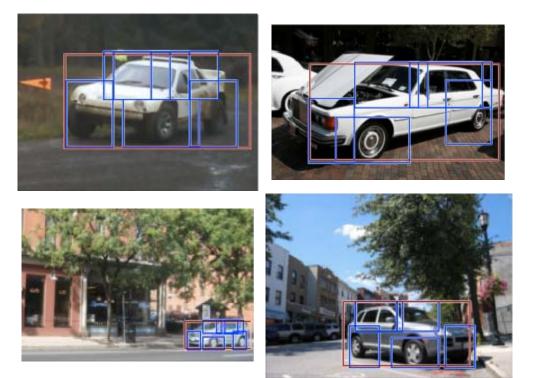
average over positive training data

Training a sliding window detector

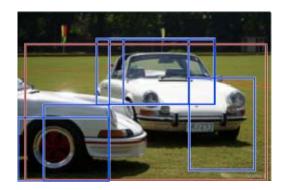
- Unlike training an image classifier, there are a (virtually) infinite number of possible negative windows
- Training (learning) generally proceeds in three distinct stages:
 - 1. Bootstrapping: learn an initial window classifier from positives and random negatives
 - 2. Hard negatives: use the initial window classifier for detection on the training images (inference) and identify false positives with a high score
 - 3. Retraining: use the hard negatives as additional training data

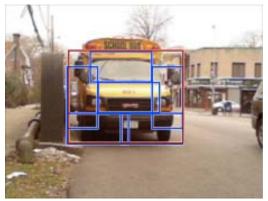
Car Detections

high scoring true positives



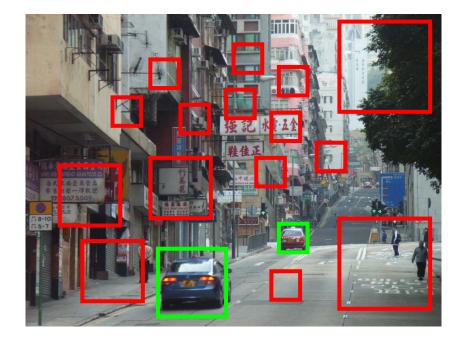
high scoring false positives





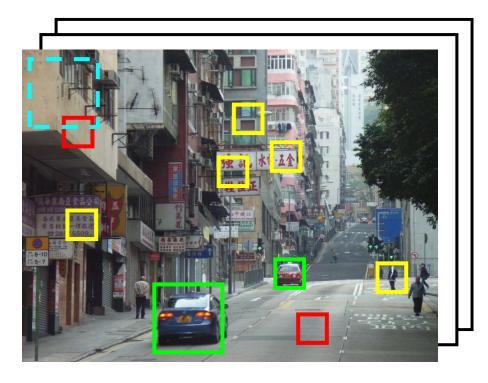
Training a sliding window detector

 Object detection is inherently asymmetric: much more "non-object" than "object" data



- Classifier needs to have very low false positive rate
- Non-object category is very complex need lots of data

Bootstrapping

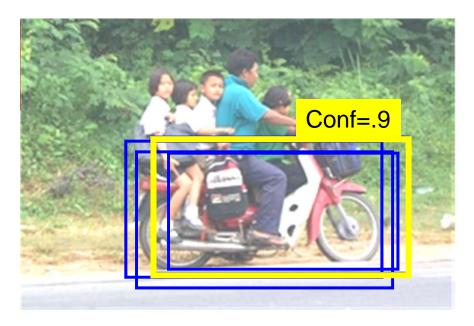


- 1. Pick negative training set at random
- 2. Train classifier
- 3. Run on training data
- 4. Add false positives to training set
- 5. Repeat from 2

- Collect a finite but diverse set of non-object windows
- Force classifier to concentrate on hard negative examples
- For some classifiers can ensure equivalence to training on entire data set

Test: Non-maximum suppression (NMS)

• Scanning-window detectors typically result in multiple responses for the same object



- To remove multiple responses, a simple greedy procedure called "Non-maximum suppression" is applied:
- NMS: 1. Sort all detections by detector confidence
 - 2. Choose most confident detection d_i ; remove all d_i s.t. $overlap(d_i, d_j) > T$
 - 3. Repeat Step 2. until convergence

Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. HOG + linear SVM classifier
- 4. PASCAL VOC and state of the art algorithms

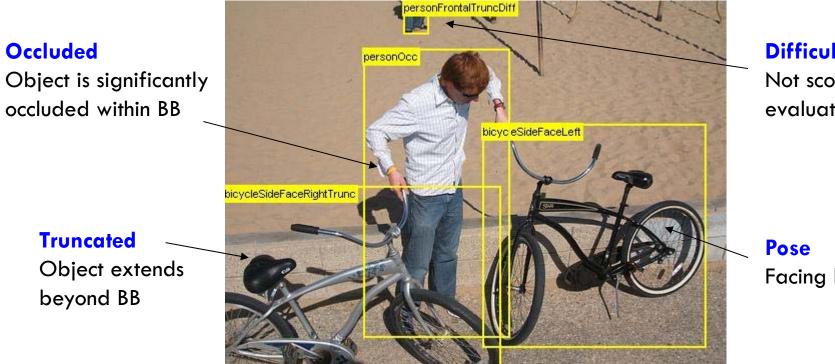
PASCAL VOC dataset - Content

- 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, train, TV
- Real images downloaded from flickr, not filtered for "quality"

• Complex scenes, scale, pose, lighting, occlusion, ...

Annotation

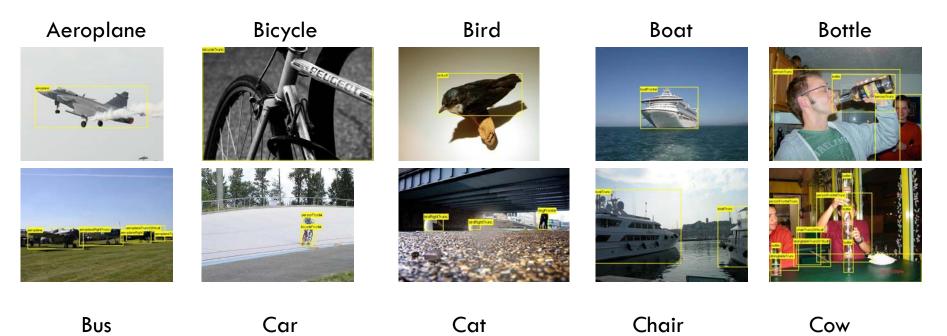
Complete annotation of all objects



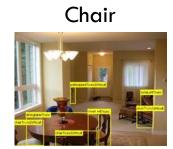
Difficult Not scored in evaluation

Facing left

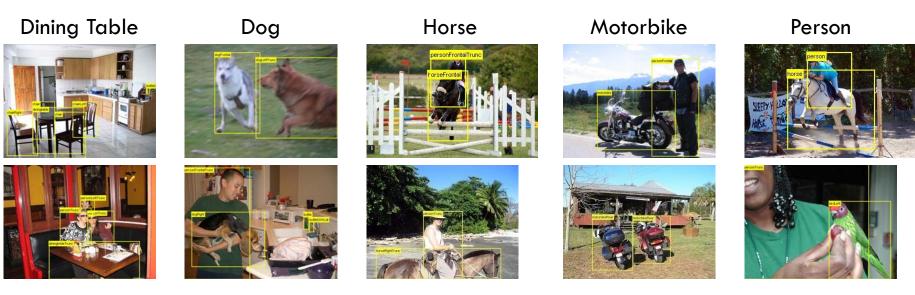
Examples



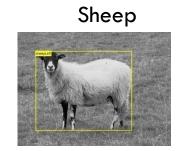
Bus

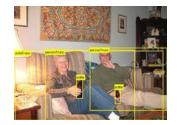


Examples



Potted Plant

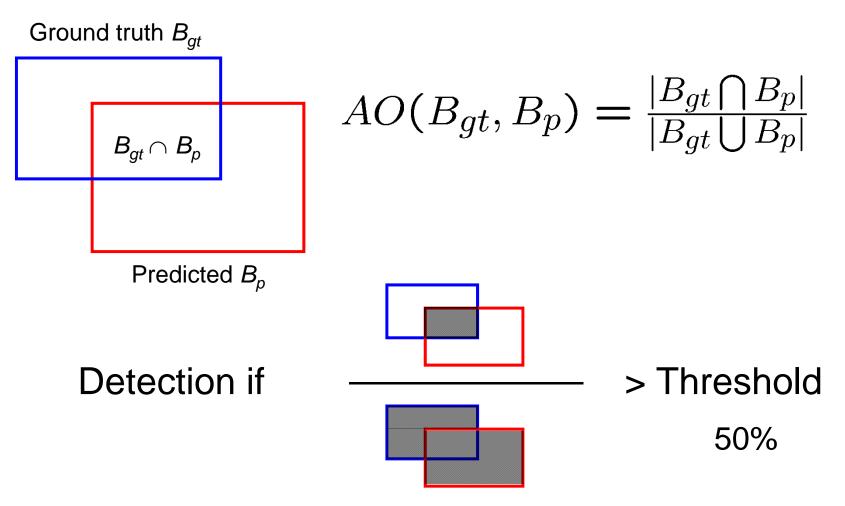




TV/Monitor

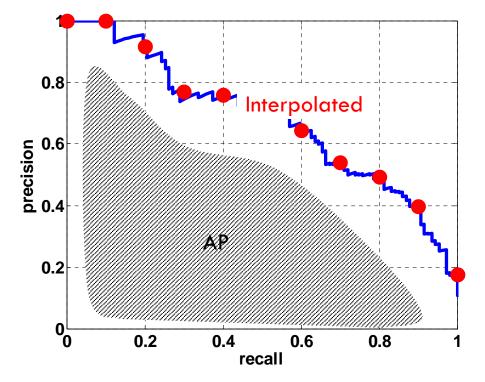
Detection: Evaluation of Bounding Boxes

• Area of Overlap (AO) Measure



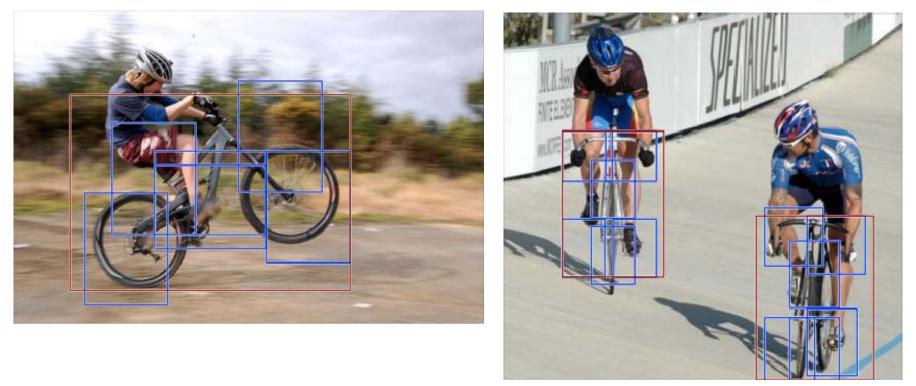
Classification/Detection Evaluation

 Average Precision [TREC] averages precision over the entire range of recall



- A good score requires both high recall and high precision
- Application-independent
- Penalizes methods giving high precision but low recall

Object detection with discriminatively trained part models [Felzenszwalb et al., PAMI'10]

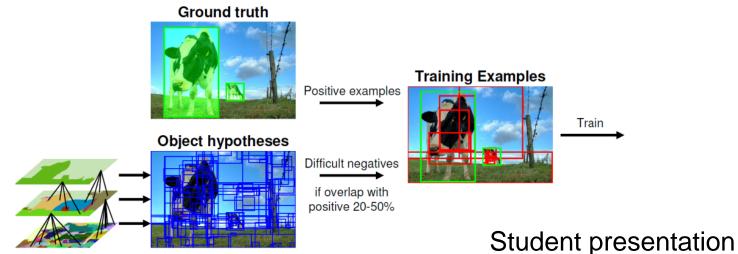


- Mixture of deformable part-based models
 - One component per "aspect" e.g. front/side view
- Each component has global template + deformable parts

Selective search for object location [v.d.Sande et al. 11]

• Pre-select *class-independent* candidate image windows with segmentation

- Local features + bag-of-words
- SVM classifier with histogram intersection kernel + hard negative mining



CNN features for detection

R-CNN: Regions with CNN features Image warped region 1. Input image 2. Extract region proposals (~2k) 3. Compute CNN features 4. Classify regions

Object detection system overview. Our system (1) takes an input image, (2) extracts around 2000 bottom-up region proposals, (3) computes features for each proposal using a large convolutional neural network (CNN), and then (4) classifies each region using class-specific linear SVMs. R-CNN achieves a mean average precision (mAP) of 53.7% on PASCAL VOC 2010. For comparison, Uijlings et al. (2013) report 35.1% mAP using the same region proposals, but with a spatial pyramid and bag-of-visual-words approach. The popular deformable part models perform at 33.4%.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, <u>Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation</u>, CVPR'14

Student presentation