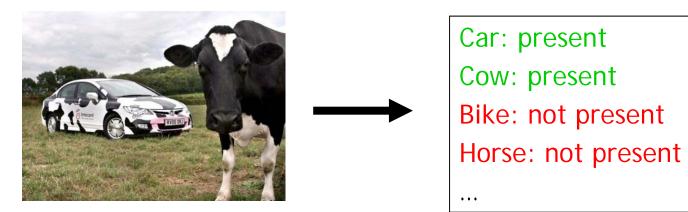
Bag-of-features for category classification

Cordelia Schmid

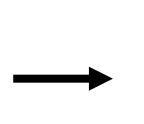
Category recognition

• Image classification: assigning a class label to the image



Category recognition

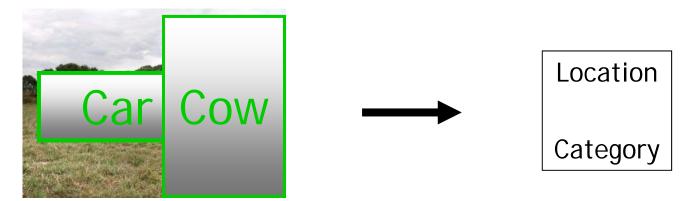
• Image classification: assigning a class label to the image



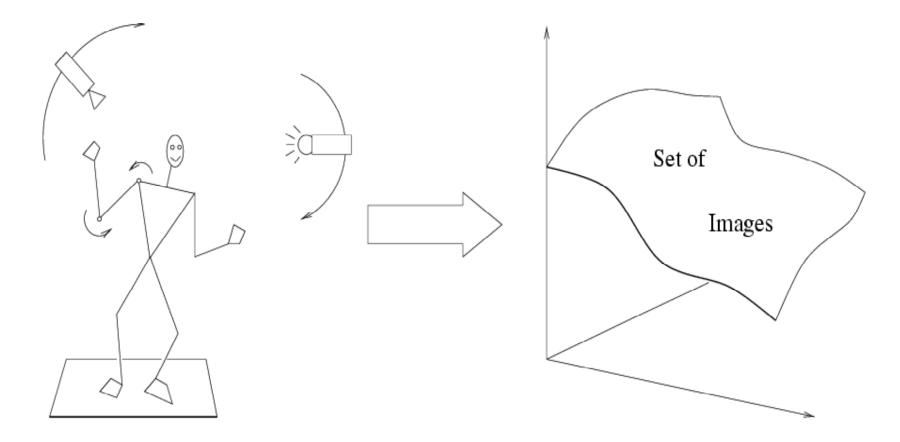
. . .

Car: present Cow: present Bike: not present Horse: not present

• Object localization: define the location and the category



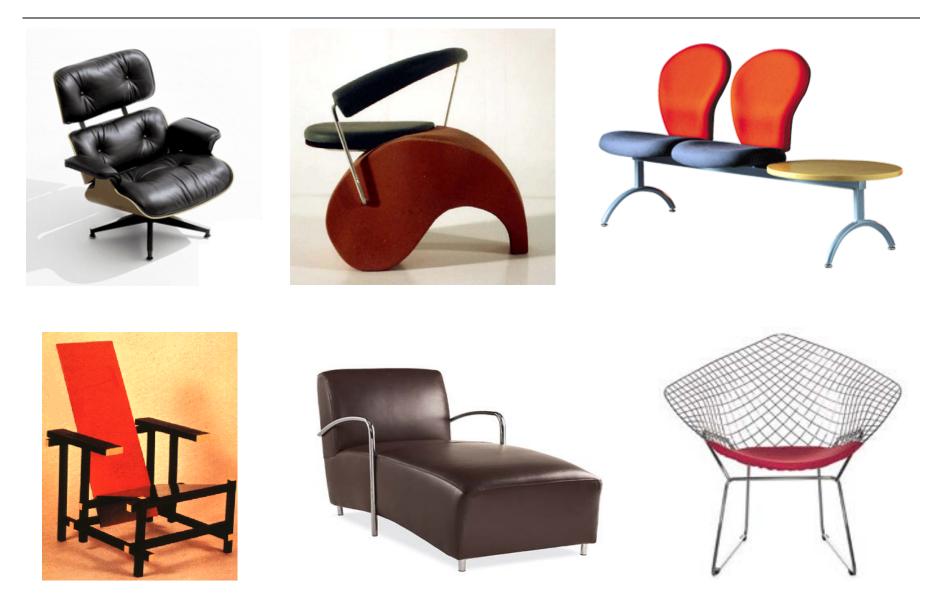
Difficulties: within object variations



Variability: Camera position, Illumination, Internal parameters

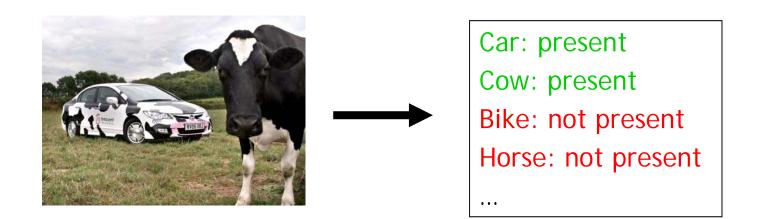
Within-object variations

Difficulties: within-class variations



Category recognition

• Image classification: assigning a class label to the image



• Supervised scenario: given a set of training images

Image classification

• Given

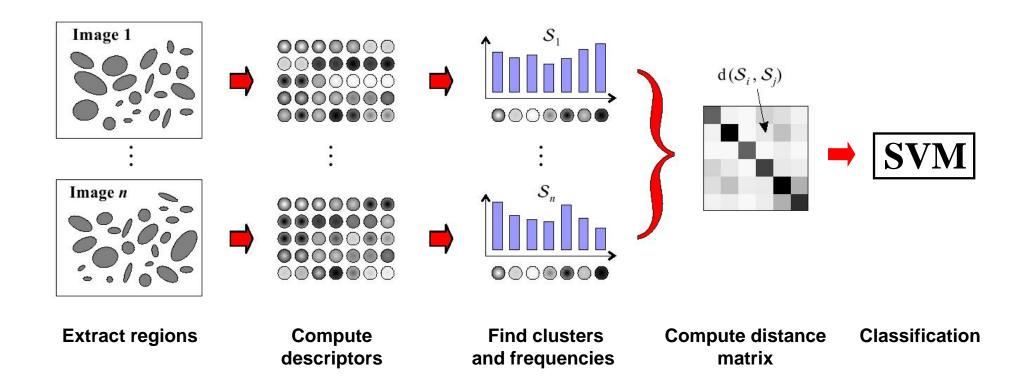
Positive training images containing an object class

Negative training images that don't

• Classify

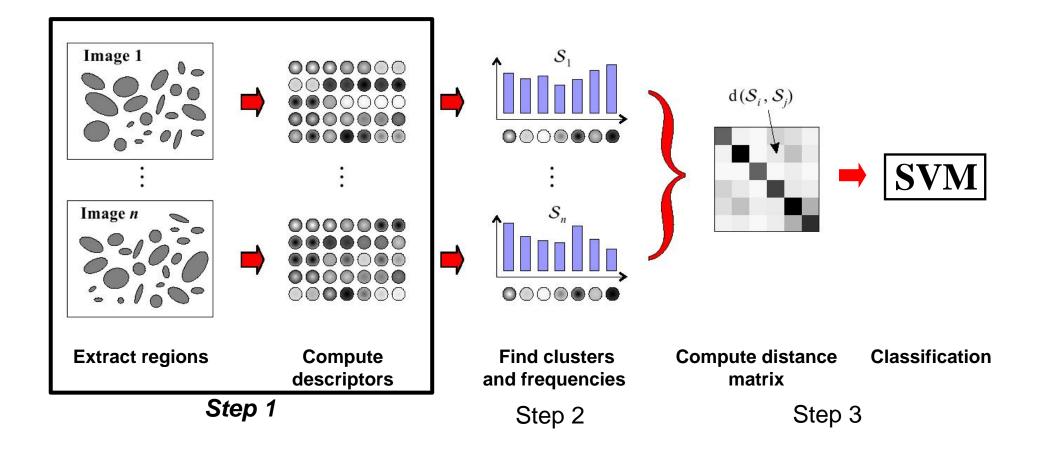
A test image as to whether it contains the object class or not

Bag-of-features for image classification



[Csurka et al. WS'2004], [Nowak et al. ECCV'06], [Zhang et al. IJCV'07]

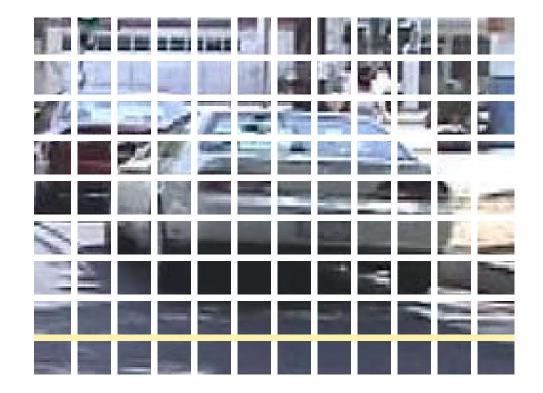
Bag-of-features for image classification



Step 1: feature extraction

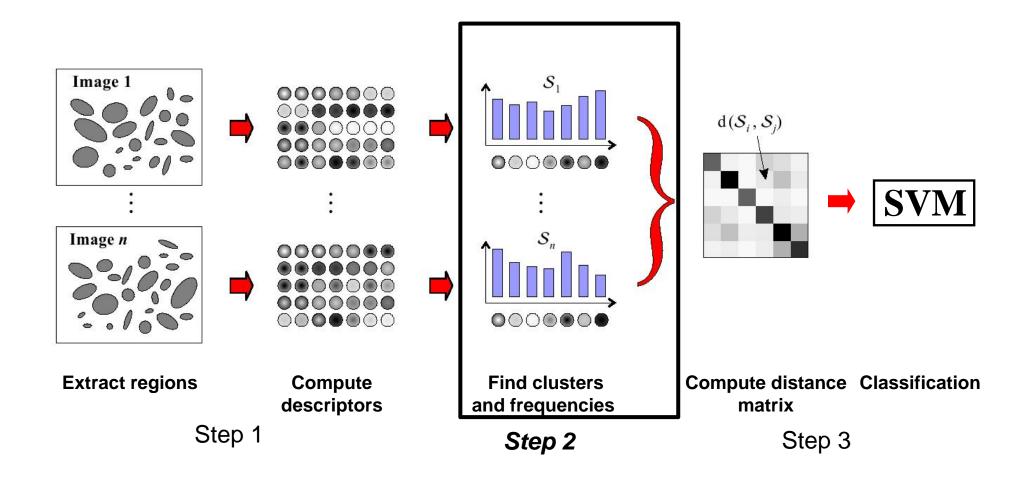
- Scale-invariant image regions + SIFT
 - Affine invariant regions give "too" much invariance
 - Rotation invariance for many realistic collections "too" much invariance
- Dense descriptors
 - Improve results in the context of categories (for most categories)
 - Interest points do not necessarily capture "all" features
- Color-based descriptors

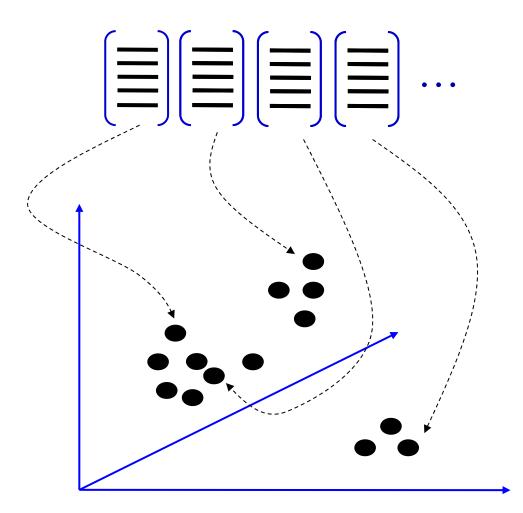
Dense features

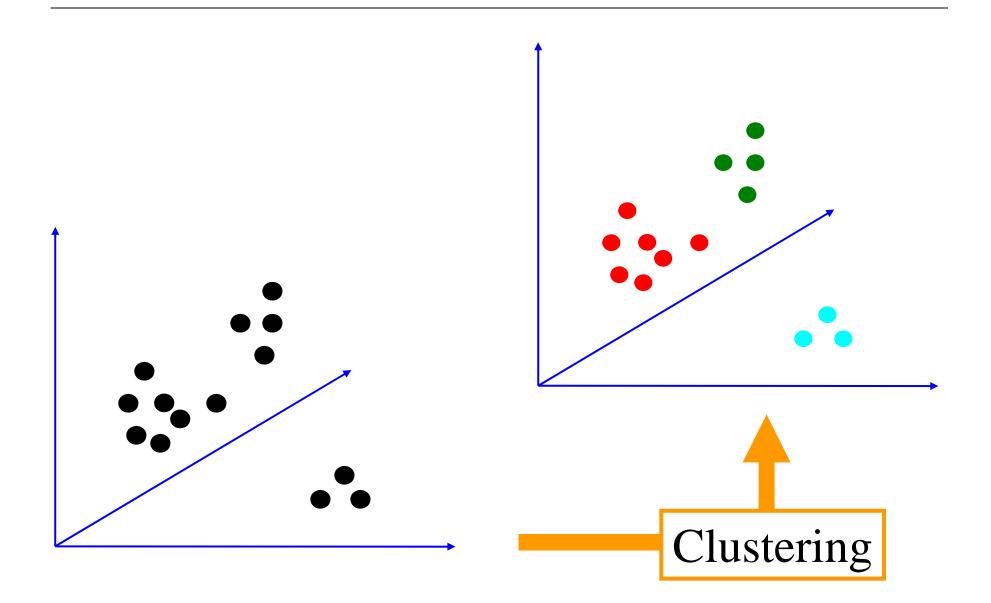


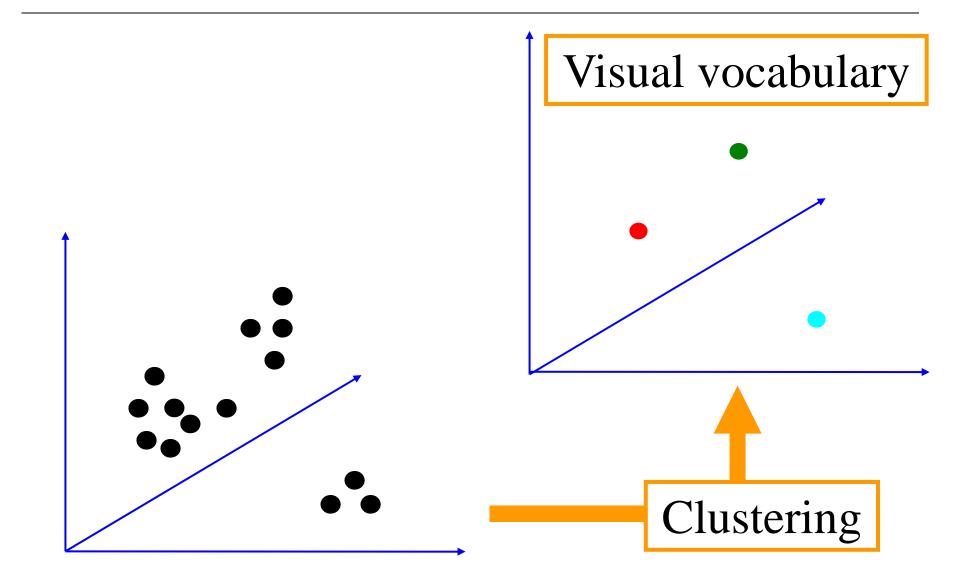
- Multi-scale dense grid: extraction of small overlapping patches at multiple scales
- Computation of the SIFT descriptor for each grid cells
- Exp.: Horizontal/vertical step size 3-6 pixel, scaling factor of 1.2 per level

Bag-of-features for image classification









Examples for visual words

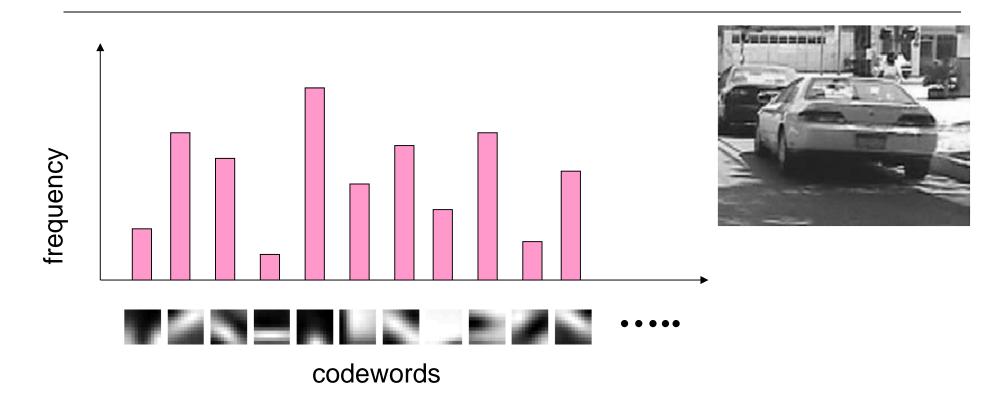
Airplanes	
Motorbikes	
Faces	
Wild Cats	
Leaves	
People	
Bikes	

- Cluster descriptors
 - K-means
 - Gaussian mixture model
- Assign each visual word to a cluster
 - Hard or soft assignment
- Build frequency histogram

Hard or soft assignment

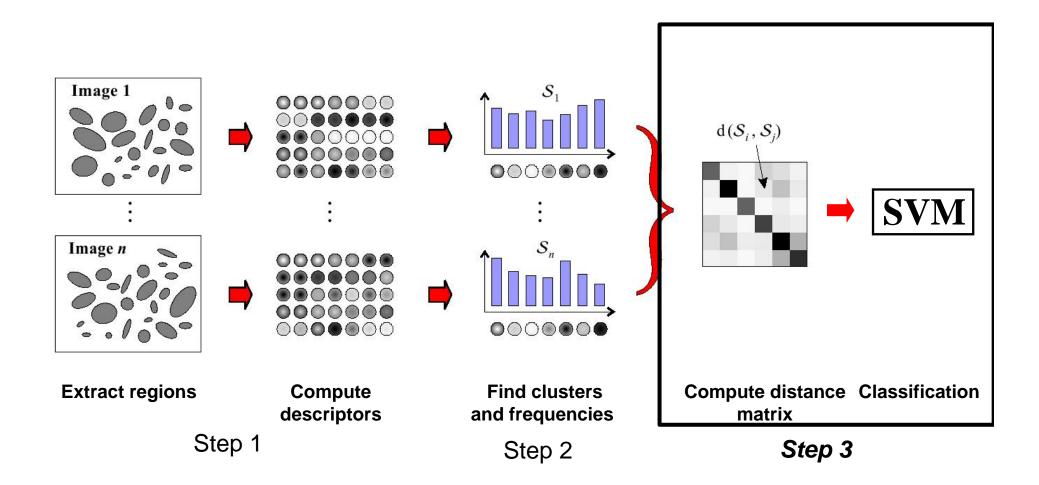
- K-means \rightarrow hard assignment
 - Assign to the closest cluster center
 - Count number of descriptors assigned to a center
- Gaussian mixture model \rightarrow soft assignment
 - Estimate distance to all centers
 - Sum over number of descriptors
- Represent image by a frequency histogram

Image representation



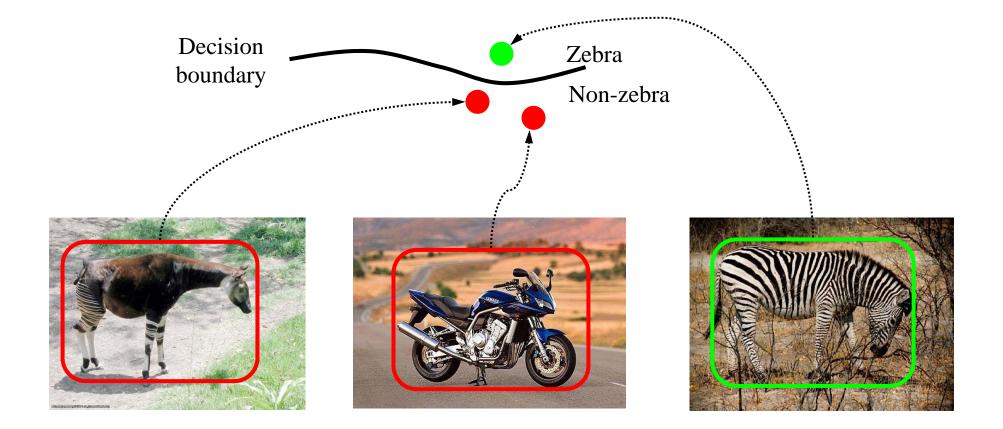
- each image is represented by a vector, typically 1000-4000 dimension, normalization with L2 norm
- fine grained represent model instances
- coarse grained represent object categories

Bag-of-features for image classification



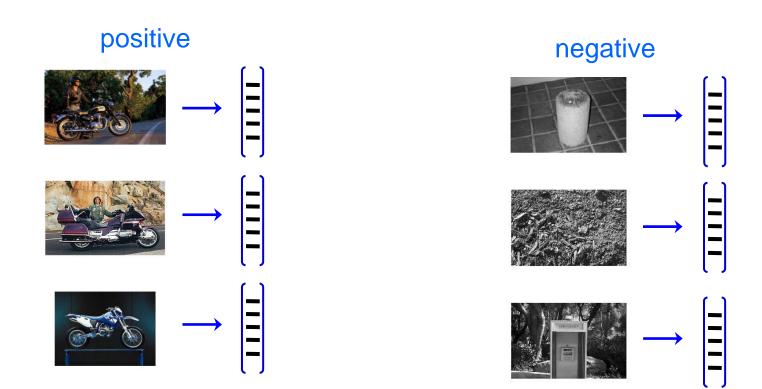
Step 3: Classification

• Learn a decision rule (classifier) assigning bag-offeatures representations of images to different classes



Training data

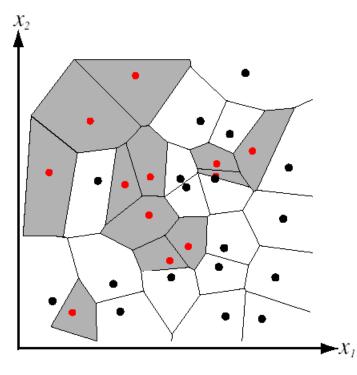
Vectors are histograms, one from each training image



Train classifier, e.g. SVM

Nearest Neighbor Classifier

• Assign label of nearest training data point to each test data point

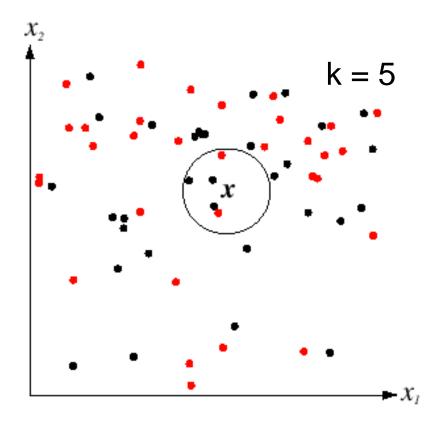


from Duda et al.

Voronoi partitioning of feature space for 2-categories and 2-D data

k-Nearest Neighbors

- For a new point, find the k closest points from the training data
- Labels of the k points "vote" to classify

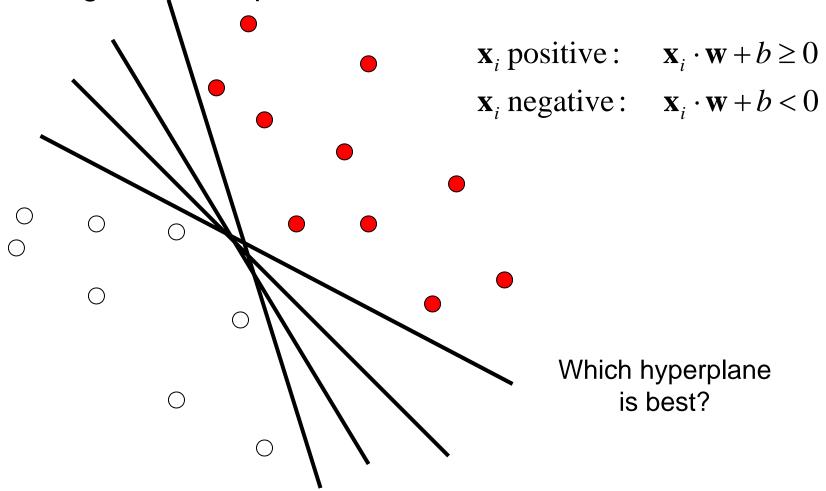


Nearest Neighbor Classifier

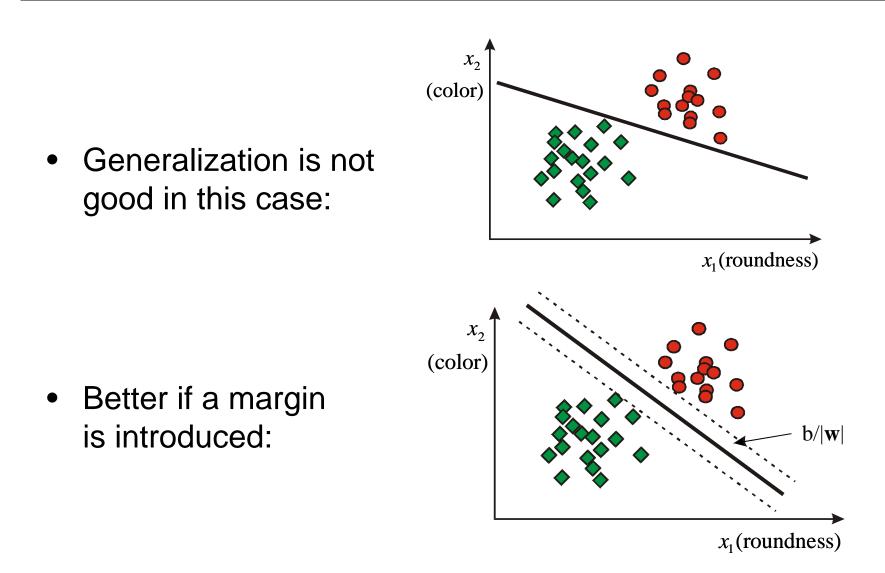
- For each test data point : assign label of nearest training data point
- K-nearest neighbors: labels of the k nearest points, vote to classify
- Works well provided there is lots of data and the distance function is good

Linear classifiers

• Find linear function (*hyperplane*) to separate positive and negative examples

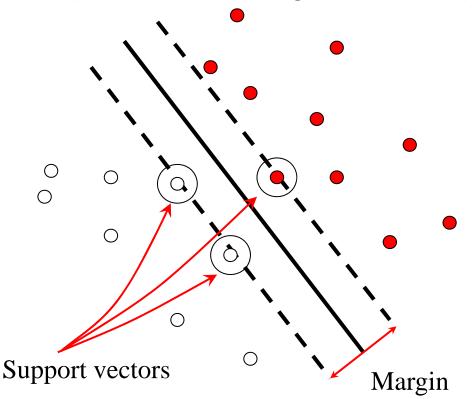


Linear classifiers - margin



Support vector machines

• Find hyperplane that maximizes the *margin* between the positive and negative examples



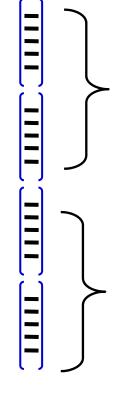
 $\mathbf{x}_{i} \text{ positive } (y_{i} = 1): \qquad \mathbf{x}_{i} \cdot \mathbf{w} + b \ge 1$ $\mathbf{x}_{i} \text{ negative } (y_{i} = -1): \qquad \mathbf{x}_{i} \cdot \mathbf{w} + b \le -1$

For support vectors: $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$

Data not perfectly separable, introduction of slack variable $y^{(i)}(w^T x^{(i)} + b) \ge 1 - \xi_i$

Why does SVM learning work?

Learns foreground and background visual words

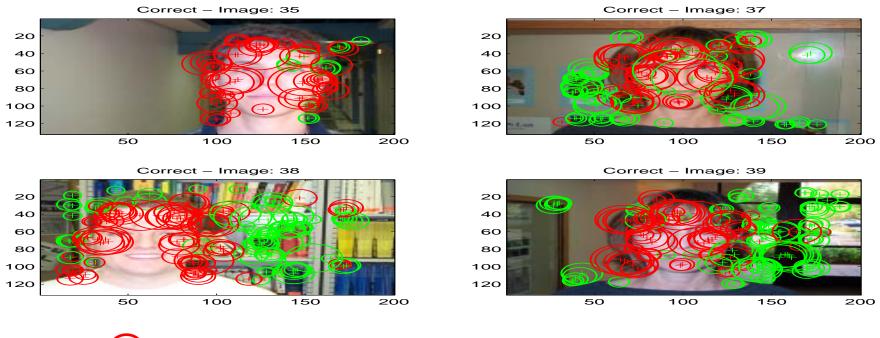


foreground words - high weight

background words - low weight

Illustration

Localization according to visual word probability



foreground word more probable

background word more probable

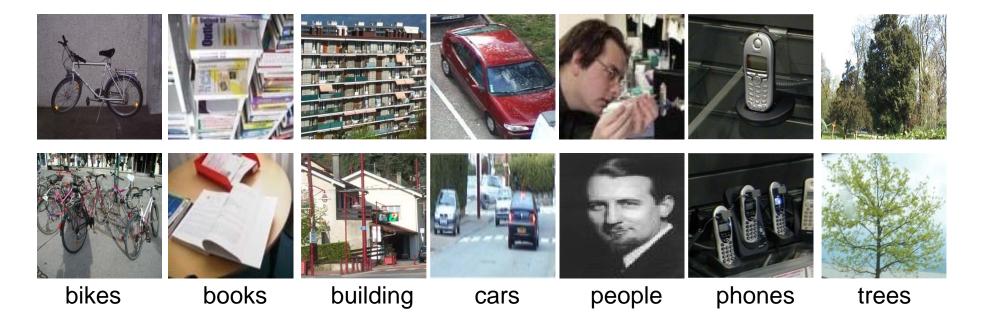
A linear SVM trained from positive and negative window descriptors

A few of the highest weighed descriptor vector dimensions (= 'PAS + tile')

+ lie on object boundary (= local shape structures common to many training exemplars)

Bag-of-features for image classification

• Excellent results in the presence of background clutter



Examples for misclassified images

Books- misclassified into faces, faces, buildings

Buildings- misclassified into faces, trees, trees

Cars- misclassified into buildings, phones, phones

Bag of visual words summary

- Advantages:
 - largely unaffected by position and orientation of object in image
 - fixed length vector irrespective of number of detections
 - very successful in classifying images according to the objects they contain

- Disadvantages:
 - no explicit use of configuration of visual word positions
 - poor at localizing objects within an image

Evaluation of image classification

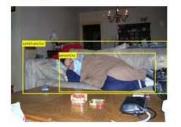
- PASCAL VOC [05-12] datasets
- PASCAL VOC 2007
 - Training and test dataset available
 - Used to report state-of-the-art results
 - Collected January 2007 from Flickr
 - 500 000 images downloaded and random subset selected
 - 20 classes manually annotated
 - Class labels per image + bounding boxes
 - 5011 training images, 4952 test images
- Evaluation measure: average precision

PASCAL 2007 dataset

Bus

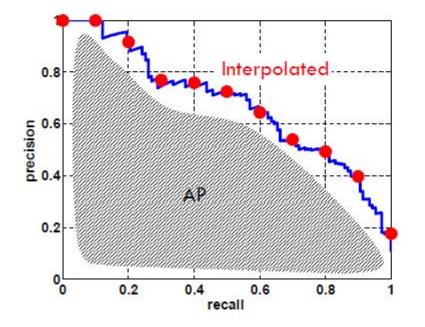
Cow

PASCAL 2007 dataset



Evaluation

- Average Precision [TREC] averages precision over the entire range of recall
 - Curve interpolated to reduce influence of "outliers"

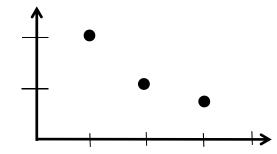


- A good score requires both high recall and high precision
- Application-independent
- Penalizes methods giving high precision but low recall

Precision/Recall

• Ranked list for category A :

A, C, B, A, B, C, C, A ; in total four images with category A

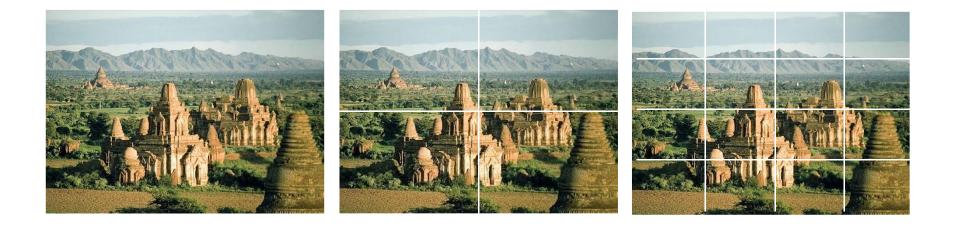


Results for PASCAL 2007

- Winner of PASCAL 2007 [Marszalek et al.] : mAP 59.4
 - Combining several channels with non-linear SVM and Gaussian kernel
- Multiple kernel learning [Yang et al. 2009] : mAP 62.2
 - Combination of several features, Group-based MKL approach
- Object localization & classification [Harzallah et al.'09] : mAP 63.5
 Use detection results to improve classification
- Adding objectness boxes [Sanchez at al.'12] : mAP 66.3
- Convolutional Neural Networks [Oquab et al.'14] : mAP 77.7

Spatial pyramid matching

- Add spatial information to the bag-of-features
- Perform matching in 2D image space



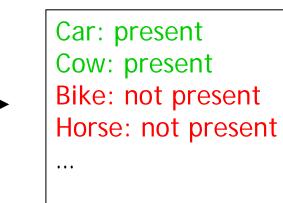
[Lazebnik, Schmid & Ponce, CVPR 2006]

Extensions to BOF

- Efficient Additive Kernels via Explicit Feature Maps,
 - A. Vedaldi and Zisserman, CVPR'10.
 - approximation by linear kernels
- Improved aggregation schemes, such as the Fisher vector, Perronnin et al., ECCV'10
 - More discriminative descriptor, power normalization, linear SVM
- Excellent results of the Fisher vector in a recent evaluation, Chatfield et al. BMVC 2011

Large-scale image classification

• Image classification: assigning a class label to the image



- What makes it large-scale?
 - number of images
 - number of classes
 - dimensionality of descriptor

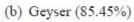
IMAGENET has 14M images from 22k classes

ImageNet

- Datasets
 - ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC)
 - 1000 classes and 1.4M images
 - ImageNet10K dataset
 - 10184 classes and ~ 9 M images

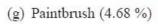
(a) Star Anise (92.45%)

(e) European gallinule (15.00%)



(f) Sea Snake (10.00 %)

(c) Pulp Magazine (83.01%)

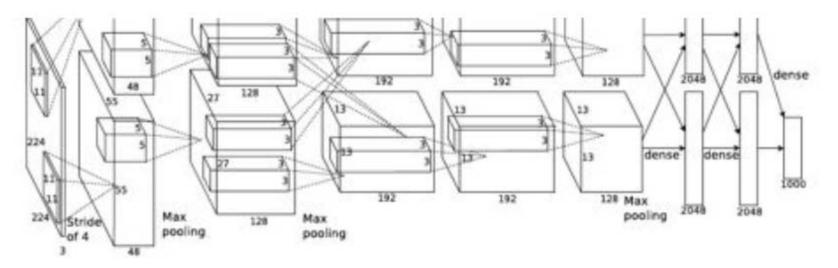


(d) Carrycot (81.48%)

(h) Mountain Tent (0.00%)

Large-scale image classification

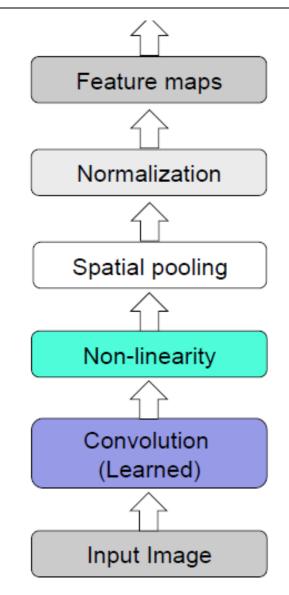
- Convolutional neural networks (CNN)
- Large model (7 hidden layers, 650k unit, 60M parameters)
- Requires large training set (ImageNet)
- GPU implementation (50x speed up over CPU)



A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

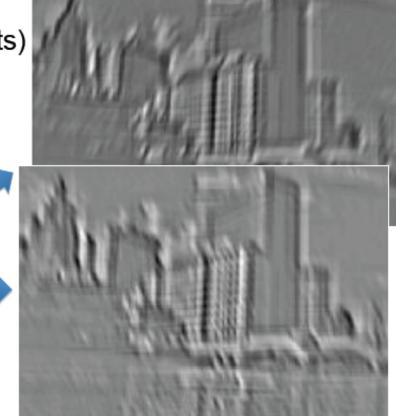
Convolutional neural networks

- Feed-forward feature extraction:
 - 1. Convolve input with learned filters
 - 2. Non-linearity
 - 3. Spatial pooling
 - 4. Normalization
- Supervised training of convolutional filters by back-propagating classification error



1. Convolution

- Dependencies are local
- Translation invariance
- Few parameters (filter weights)
- Stride can be greater than 1 (faster, less memory)

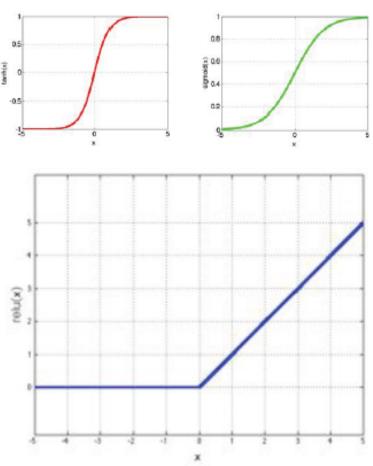


Input

Feature Map

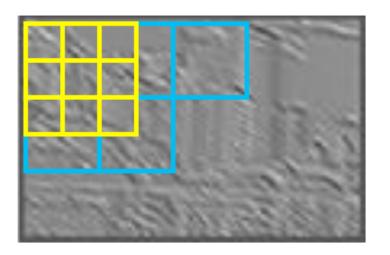
2. Non-linearity

- Per-element (independent)
- Options:
 - Tanh
 - Sigmoid: 1/(1+exp(-x))
 - Rectified linear unit (ReLU)
 - Simplifies backpropagation
 - Makes learning faster
 - Avoids saturation issues
 - \rightarrow Preferred option

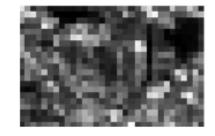


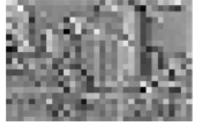
3. Spatial pooling

- Sum or max
- Non-overlapping / overlapping regions
- Role of pooling:
 - Invariance to small transformations
 - Larger receptive fields (see more of input)



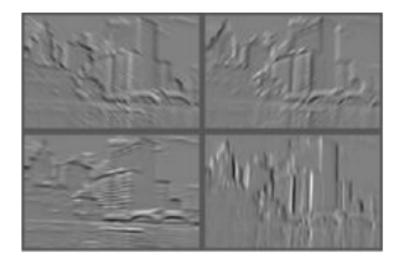
Max

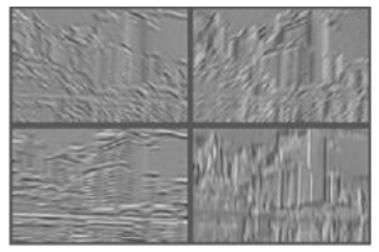




4. Normlization

- Within or across feature maps
- Before or after spatial pooling



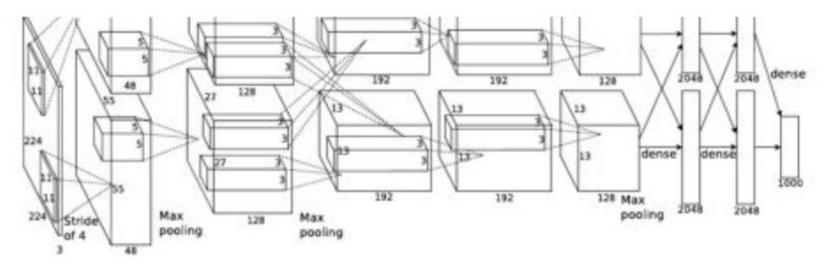


Feature Maps

Feature Maps After Contrast Normalization

Large-scale image classification

• State-of-the-art performance on ImageNet



A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012