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Note that in practice not all neighbors have to be matched correctly. 
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Matching of descriptorsMatching of descriptors

Find the nearest neighbor in the second image• Find the nearest neighbor in the second image 

P i t t i• Pruning strategies
– Ratio with respect to the second best match (d1/d2 << 1)
– Local neighborhood constraints (semi-local constraints)– Local neighborhood constraints (semi-local constraints)
– Backwards matching (matches are NN in both directions)

• Geometric verification with global constraint 
– Hough transform [see for example Lowe’04, student presentation]
– RANSAC (RANdom Sampling Consensus)  [Fishler&Bolles’81] 



Algorithm RANSACAlgorithm RANSAC

Robust estimation with RANSAC of a homography• Robust estimation with RANSAC of a homography 
– Repeat

• Select 4 point matchesSelect 4 point matches 
• Compute 3x3 homography 
• Measure support (number of inliers within threshold, i.e.

– Choose (H with the largest number of inliers) 
– Re-estimate H with all inliers 



ComparisonComparison
Hough Transform
Ad t

RANSAC
Ad t•Advantages

– Can handle high percentage of 
outliers (>95%)
E t t i f l tt i

•Advantages
– General method suited to large range 

of problems
E t i l t– Extracts groupings from clutter in 

linear time

•Disadvantages

– Easy to implement
– “Independent” of number of dimensions

•Disadvantages
– Quantization issues
– Only practical for small number of 

dimensions (up to 4)

– Basic version only handles moderate 
number of outliers (<50%)

•Improvements available
– Probabilistic Extensions

•Many variants available, e.g.
– PROSAC: Progressive RANSAC 

[Chum05]– Continuous Voting Space
– Can be generalized to arbitrary 

shapes and objects

[Chum05]
– Preemptive RANSAC [Nister05]



Visual searchVisual search

…



Image search system for large datasetsImage search system for large datasets 

Large image dataset
(one million images or more)(one million images or more)

Image search

ranked image listquery

Image search 
system

• Issues for very large databases
• to reduce the query timeq y
• to reduce the storage requirements
• with minimal loss in retrieval accuracy 



Two strategiesg

1. Efficient approximate nearest neighbor search on local 
feature descriptorsfeature descriptors.

2 Quantize descriptors into a “visual vocabulary” and use2. Quantize descriptors into a “visual vocabulary” and use 
efficient techniques from text retrieval
(Bag of words representation)(Bag-of-words representation)



Strategy 1: Efficient approximate NN search

Local features invariant 
descriptordescriptor 

vectors

Images
invariant 
d i tdescriptor 

vectors

1. Compute local features in each image independently
2. Describe each feature by a descriptor vector
3. Find nearest neighbour vectors between query and database g q y
4. Rank matched images by number of (tentatively) corresponding regions 
5. Verify top ranked images based on spatial consistency



Finding nearest neighbour vectors

Establish correspondences between query image and images in the database by 
nearest neighbour matching on SIFT vectors

128D descriptor 
space

Model image Image database 

S l f ll i bl f ll f t t i th iSolve following problem for all feature vectors,                     , in the query image:

where,                      ,  are features from all the database images.



Quick look at the complexity of the NN-search

N … images
M … regions per image (~1000)
D … dimension of the descriptor (~128)

Exhaustive linear search: O(M NMD)

Example: 
• Matching two images (N=1), each  having 1000 SIFT descriptors
Nearest neighbors search: 0 4 s (2 GHz CPU implemenation in C)Nearest neighbors search: 0.4 s (2 GHz CPU, implemenation in C) 

• Memory footprint: 1000 * 128 = 128kB / image

# of images CPU time Memory req.

N =   1,000 … ~7min            (~100MB)
N = 10,000 … ~1h7min        (~    1GB)

g y q

…
N = 107 ~115 days     (~    1TB)
…
All images on Facebook:All images on Facebook:
N = 1010        …   ~300 years  (~    1PB)



Nearest-neighbor matchingea est e g bo atc g

S l f ll i bl f ll f t t i th iSolve following problem for all feature vectors, xj, in the query image:

where xi are features in database images.

Nearest-neighbour matching is the major computational bottleneck
• Linear search performs dn operations for n features in the 

d t b d d di idatabase and d dimensions
• No exact methods are faster than linear search for d>10

A i t th d b h f t b t t th t f• Approximate methods can be much faster, but at the cost of 
missing some correct matches.  



K-d treed t ee
• K-d tree is a binary tree data structure for organizing a set of points

E h i t l d i i t d ith i li d h l• Each internal node is associated with an axis aligned hyper-plane 
splitting its associated points into two sub-trees.

• Dimensions with high variance are chosen first• Dimensions with high variance are chosen first.

• Position of the splitting hyper-plane is chosen as the mean/median of 
the projected points – balanced tree.
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Large scale object/scene recognitionLarge scale object/scene recognition
Image dataset:

k d i li t

> 1 million images

query

Image search 
system

ranked image list
q y

• Each image described by approximately 1000 descriptors
109 descriptors to index for one million images!– 109 descriptors to index for one million images! 

• Database representation in RAM:Database representation in RAM: 
– Size of descriptors : 1 TB, search+memory intractable



Bag-of-features [Sivic&Zisserman’03]Bag of features [Sivic&Zisserman 03]

sparse freq enc ector

centroids
(visual words)

Set of SIFT
descriptors

Query
image

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

+tf idf weighting

queryingInverted• “visual words”: queryingfile• visual words : 
– 1 “word” (index) per local 

descriptor 

ranked imageGeometricRe-ranked 

p
– only images ids in inverted file
=> 8 GB fits!

g
short-listverificationlist

[Chum & al. 2007]



Indexing text with inverted filesIndexing text with inverted files 

Document 
collection:

Inverted file: Term List of hits (occurrences in documents)Inverted file: Term            List of hits (occurrences in documents)

People           [d1:hit hit hit], [d4:hit hit] …

Common [d1:hit hit] [d3: hit] [d4: hit hit hit]Common       [d1:hit hit], [d3: hit], [d4: hit hit hit] …

Sculpture      [d2:hit], [d3: hit hit hit]  …

Need to map feature descriptors to “visual words” 







Visual wordsVisual words
•Example: each group 
f t h b l tof patches belongs to 

the same visual word

22
K. Grauman, B. Leibe

Figure from  Sivic & Zisserman, ICCV 2003



Vector quantize the descriptor spaceVector quantize the descriptor space

1v1



Vector quantize the descriptor spaceVector quantize the descriptor space
v10

v30

v1

v31

v2

v31

• Histogram of visual word occurrence 
represents the imagerepresents the image

• Sparse if large visual vocabulary



Inverted file index for visual words

Word List of image 
• number numbers

• Score each image by the number of common visual words (tentative• Score each image by the number of common visual words (tentative 
correspondences)

• Dot product between bag-of-features

Image credit: A. Zisserman K. Grauman, B. Leibe

Dot product between bag of features 

• Fast for sparse vectors ! 



Inverted file index for visual words

Word List of image 
• number numbers

•For fast search store a posting list for the dataset•For fast search, store a posting list for the dataset

•This maps visual word occurrences to the images they occur in (like a 
book index)

Image credit: A. Zisserman K. Grauman, B. Leibe

)

•Increment a counter for each query descriptor



Inverted file index for visual words

Word List of image 
• number numbers

•Worst case complexity is linear in the number of images•Worst case complexity is linear in the number of images

•In practice it is linear in the length of the list (<< N)

St i d d i t

Image credit: A. Zisserman K. Grauman, B. Leibe

•Storage: one index per descriptor 



Visual words – approximate NN searchVisual words approximate NN search 

Map descriptors to words by quantizing the feature space• Map descriptors to words by quantizing the feature space
– Quantize via k-means clustering to obtain visual words
– Assign descriptors to closest visual wordsAssign descriptors to closest visual words

• Bag-of-features as approximate nearest neighbor search g pp g
Descriptor matching with k-nearest neighbors

Bag-of-features matching function

where q(x) is a quantizer, i.e., assignment to a visual word andq( ) q , , g
δa,b is the Kronecker operator (δa,b=1 iff a=b)



Approximate nearest neighbor search evaluationApproximate nearest neighbor search evaluation
•ANN algorithms usually returns a short-list of nearest neighbors

this short list is supposed to contain the NN with high probability– this short-list is supposed to contain the NN with high probability
– exact search may be performed to re-order this short-list

•Proposed quality evaluation of ANN search: trade-off between
– Accuracy: NN recall = probability that the NN is in this list

againstagainst
– Ambiguity removal = proportion of vectors in the short-list

- the lower this proportion, the more information we have about the 
tvector 

- the lower this proportion, the lower the complexity if we perform exact 
search on the short-list

•ANN search algorithms usually have some parameters to handle this trade-off



ANN evaluation of bag-of-featuresANN evaluation of bag of features
•ANN algorithms 
returns a list of0 7 returns a list of 
potential neighbors
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20K visual word: false matches



200K visual word: good matches missed



Problem with bag-of-featuresProblem with bag of features

• The intrinsic matching scheme performed by BOF is weak• The intrinsic matching scheme performed by BOF is weak
– for a “small” visual dictionary: too many false matches 
– for a “large” visual dictionary: many true matches are missedg y y

• No good trade-off between “small” and “large” !
– either the Voronoi cells are too big
– or these cells can’t absorb the descriptor noise
 intrinsic approximate nearest neighbor search of BOF is not intrinsic approximate nearest neighbor search of BOF is not 

sufficient
– possible solutions
 soft assignment [Philbin et al. CVPR’08]
 additional short codes [Jegou et al. ECCV’08]



Hamming Embedding [Jegou et al ECCV’08]Hamming Embedding [Jegou et al. ECCV 08]

Representation of a descriptor x
– Vector-quantized to q(x) as in standard BOF
+ short binary vector b(x) for an additional localization in the Voronoi cell

Two descriptors x and y match iif

where h(a,b)  Hamming distance



Hamming EmbeddingHamming Embedding

•Nearest neighbors for Hamming distance  those for Euclidean distance
 a metric in the embedded space reduces dimensionality curse effects a metric in the embedded space reduces dimensionality curse effects

Effi i•Efficiency
– Hamming distance = very few operations
– Fewer random memory accesses: 3 x faster that BOF with same dictionary 

i !size!



Hamming EmbeddingHamming Embedding

•Off-line (given a quantizer)
draw an orthogonal projection matrix P of size d × d– draw an orthogonal projection matrix P of size db × d

 this defines db random projection directions
– for each Voronoi cell and projection direction, compute the median p j , p

value for a learning set

•On-line: compute the binary signature b(x) of a given 
descriptor

project x onto the projection directions as z(x) = (z z )– project x onto the projection directions as z(x) = (z1,…zdb) 
– bi(x) = 1 if zi(x) is above the learned median value, otherwise 0



ANN evaluation of Hamming EmbeddingANN evaluation of Hamming Embedding
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Matching points - 20k word vocabularyMatching points 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!



Matching points - 200k word vocabularyMatching points 200k word vocabulary
69 matches 35 matches

Still many matches with the non-corresponding one



Matching points - 20k word vocabulary + HEMatching points 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!



Bag-of-features [Sivic&Zisserman’03]Bag of features [Sivic&Zisserman 03]

sparse freq enc ector

centroids
(visual words)

Set of SIFT
descriptors

Query
image

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

queryingInverted• “visual words”: queryingfile• visual words : 
– 1 “word” (index) per local 

descriptor 

ranked imageGeometricRe-ranked 

– only images ids in inverted file
=> 8 GB fits!

g
short-listverificationlist

[Chum & al. 2007]



Geometric verification

Use the position and shape of the underlying features 
t i t i l litto improve retrieval quality

Both images have many matches – which is correct?g y



Geometric verificationGeometric verification

Remove outliers matches contain a high number of• Remove outliers, matches contain a high number of 
incorrect ones  

• Estimate geometric transformation

• Robust strategies
RANSAC– RANSAC 

– Hough transform



Geometric verification

We can measure spatial consistency between the query 
d h l i i l liand each result to improve retrieval quality

Many spatially consistent 
matches – correct result

Few spatially consistent 
matches – incorrectmatches – correct result matches – incorrect 

result



Geometric verification

Gives localization of the object



Geometric verification – example 

1. Query 2. Initial retrieval set (bag of words model)

…

3. Spatial verification (re-rank on # of inliers)



Evaluation dataset: Oxford buildings

All Soul's

Ashmolean

Bridge of 
Sighs

Balliol

Keble

Magdalen

Bodleian

Th

University 
Museum

Thom 
Tower

Cornmarket

Radcliffe 
Camera

 Ground truth obtained for 11 landmarks Ground truth obtained for 11 landmarks
 Evaluate performance by mean Average Precision



Measuring retrieval performance: Precision - Recall

• Precision: % of returned images that g
are relevant

• Recall: % of relevant images that are 
returned
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Average Precision

1

0.6

0.8

io
n • A good AP score requires both high 

recall and high precision
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P f d b A P i i ( AP)Performance measured by mean Average Precision (mAP) 
over 55 queries on 100K or 1.1M image datasets





INRIA holidays datasetINRIA holidays dataset

Evaluation for the INRIA holidays dataset 1491 images• Evaluation for the INRIA holidays dataset, 1491 images
– 500 query images + 991 annotated true positives
– Most images are holiday photos of friends and familyMost images are holiday photos of friends and family 

• 1 million & 10 million distractor images from Flickr
• Vocabulary construction on a different Flickr setVocabulary construction on a different Flickr set 

• Evaluation metric: mean average precision (in [0,1], 
bigger = better)bigger  better)
– Average over precision/recall curve 



Holiday dataset – example queriesHoliday dataset example queries 



Dataset : Venice ChannelDataset : Venice Channel

Query Base 2Base 1

Base 4Base 3



Dataset : San Marco squareDataset : San Marco square

Query Base 1 Base 3Base 2Query Base 1 Base 3Base 2

Base 4 Base 5 Base 7Base 6

Base 9Base 8



Example distractors - FlickrExample distractors Flickr



Experimental evaluation

• Evaluation on our holidays dataset, 500 query images, 1 million distracter 
imagesg

• Metric: mean average precision (in [0,1], bigger = better)
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Results – Venice Channel

Base 1 Flickr

Query

Flickr Base 4

Query



Towards large-scale image searchTowards large scale image search

BOF+inverted file can handle up to 10 millions images• BOF+inverted file can handle up to ~10 millions images
– with a limited number of descriptors per image  RAM: 40GB
– search: 2 secondssearch: 2 seconds

• Web-scale = billions of imagesg
– with 100 M per machine  search: 20 seconds, RAM: 400 GB
– not tractable 

• Solution: represent each image by one compressed vector



Very large scale image search 

d i ti t

centroids
(visual words)Set of SIFT

descriptors
Query
image

Hessian-Affine
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

description vector

[Mikolajezyk & Schmid 04]
[Lowe 04]

Vector 
icompression

• Each image is represented by  one vector
(Bag-of-features VLAD Fisher GIST)

Vector 
search

(Bag of features, VLAD, Fisher, GIST)

•Vector compression to reduce storage 

ranked imageGeometricRe-ranked 

requirements and search time

g
short-listverificationlist

[Lowe 04, Chum & al 2007]



Very large scale image searchVery large scale image search

GIST descriptors with spectral hashing [Weiss et al ’08]• GIST descriptors with spectral hashing [Weiss et al.’08]
– very limited invariance to crop, scale, rotation

• Aggregating local descriptors into compact image 
representations [Jegou et al.’10]p [ g ]



Global scene context – GIST descriptor 

 The “gist” of a scene: Oliva & Torralba (2001)

 5 frequency bands and 6 orientations for each image location
 Tiling of the image to describe the image

 The position of the descriptor in the image is encoded in the representation 



GIST descriptor + spectral hashing 

 Spectral hashing produces binary codes similar to  spectral clusters [Weiss 
et al ’08]et al. 08]

 Each image is represented by a binary code, comparison with 
H i di tHamming distance 

 Hamming distance should correlate with semantic similarityg y

 Spectral clustering to generate cluster and codes 

 Very compact codes 



Aggregating local descriptorsAggregating local descriptors

Set of n local descriptors 1 vector• Set of n local descriptors  1 vector

P l h b f f t ft ith SIFT f t• Popular approach: bag of features, often with SIFT features

• Recently improved aggregation schemes• Recently improved aggregation schemes
– Fisher vector [Perronnin & Dance ‘07]

– VLAD descriptor [Jegou, Douze, Schmid, Perez ‘10]VLAD descriptor [Jegou, Douze, Schmid, Perez 10]

– Supervector [Zhou et al. ‘10]

– Sparse coding [Wang et al. ’10, Boureau et al.’10]

• Used in very large-scale retrieval and classification



Aggregating local descriptors

 Most popular approach: BoF representation [Sivic & Zisserman 03]

► sparse vector
► highly dimensional

→ significant dimensionality reduction introduces lossg y

 Vector of locally aggregated descriptors (VLAD) [Jegou et al. 10]

non sparse vector► non sparse vector
► fast to compute 
► excellent results with a small vector dimensionality

 Fisher vector [Perronnin & Dance 07]

► probabilistic version of VLAD► probabilistic version of VLAD
► initially used for image classification
► comparable or improved performance over VLAD for image retrieval



VLAD : vector of locally aggregated descriptors

 Determine a vector quantifier (k-means)
► output: k centroids (visual words): c1,…,ci,…ck

► centroid ci has dimension d

 For a given image 
► assign each descriptor to closest center ci

► accumulate (sum) descriptors per cell► accumulate (sum) descriptors per cell
vi := vi + (x - ci)

VLAD (di i D k d)
x

 VLAD (dimension D = k x d)

 The vector is square-root + L2-normalized ci

 Alternative: Fisher vector

[Jegou, Douze, Schmid, Perez, CVPR’10]



VLADs for corresponding images

v1 v2 v3 ...

SIFT-like representation per centroid (+ components: blue, - components: red)

 good coincidence of energy & orientations



Fisher vector

 Use a Gaussian Mixture Model as vocabulary 
 Statistical measure of the descriptors of the image w.r.t the GMM

D i ti f lik lih d t GMM t Derivative of likelihood w.r.t. GMM parameters

GMM parameters:

weight

mean

co-variance (diagonal)

Translated cluster →Translated cluster → 
large derivative on        for this 

component

[Perronnin & Dance 07]



Fisher vector

For image retrieval in our experiments:
l d i ti t di K*D [K b f G i D di f d i ]- only deviation wrt mean, dim: K*D [K number of Gaussians, D dim of descriptor] 

- variance does not improve for comparable vector length



VLAD/Fisher/BOF performance and dimensionality reduction

 We compare Fisher, VLAD and BoF on INRIA Holidays Dataset (mAP %)
 Dimension is reduced to D’ dimensions with PCA

 Observations:

GIST                             960        36.5

 Observations:
► Fisher, VLAD better than BoF for a given descriptor size
► Choose a small D if output dimension D’ is small
► Performance of GIST not competitive 

[Jegou, Perronnin, Douze, Sanchez, Perez, Schmid, PAMI’12]



Compact image representation

 Aim: improving the tradeoff between
► search speed
► memory usage
► search quality

 Approach: joint optimization of three stages
► local descriptor aggregation
► dimension reduction► dimension reduction
► indexing algorithm

Image representation
VLAD / Fisher

PCA + 
PQ codes

(Non) – exhaustive 
searchVLAD / Fisher PQ codes search



Product quantization for nearest neighbor search

 Vector split into m subvectors:

S b t ti d t l b ti Subvectors are quantized separately by quantizers
where each     is learned by k-means with a limited number of centroids

 Example: y = 128-dim vector split in 8 subvectors of dimension 16
► each subvector is quantized with 256 centroids  -> 8 bit 
► very large codebook 256^8 ~ 1 8x10^19► very large codebook 256^8 ~ 1.8x10^19

16 components

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8
256

t id 1 2 3 4 5 6 7 8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

centroids

8 bits
⇒ 8 subvectors x 8 bits = 64-bit quantization index

[Jegou, Douze, Schmid, PAMI’11]



Optimizing the dimension reduction and quantization together

 Fisher vectors undergoes two approximations
► mean square error from PCA projection
► mean square error from quantization

 Given k and bytes/image, choose D’ minimizing their sum

Results on Holidays dataset:
- there exists an optimal D’
- 16 byte best results for k=6416 byte best results for k 64
- 320 byte best results for k=256



Results on the Holidays dataset with various quantization parameters 



Joint optimization of  Fisher/VLAD and dimension reduction-indexing 

 For Fisher/ \VLAD
► The larger k, the better the raw search performance
► But large k produce large vectors, that are harder to index

 Optimization of the vocabulary size
► Fixed output size (in bytes)
► D’ computed from k via the joint optimization of reduction/indexing

 end-to-end parameter optimization



Comparison to the state of the art



Large scale experiments (10 million images)

 Exhaustive search of VLADs, D’=64
► 4.77s

 With the product quantizer
► Exhaustive search with ADC: 0.29s
► Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted fileIVFADC  -- Combination with an inverted file 



Large scale experiments (10 million images)
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Event retrieval in large video collections [Revaud et al. 2013] 

Video description

frame t  VLAD descriptor, reduced to 512D with PCA 

Comparison of two videos

•query

Comparison of two videos

•database 
• video

Fast calculation in the frequency domain + product quantization




