Efficient visual search of local features

Cordelia Schmid
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* Find the nearest neighbor in the second image

* Pruning strategies
— Ratio with respect to the second best match (d1/d2 << 1)
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* Find the nearest neighbor in the second image

* Pruning strategies
— Ratio with respect to the second best match (d1/d2 << 1)
— Local neighborhood constraints (semi-local constraints)
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Neighbors of the point have to match and angles have to correspond.
Note that in practice not all neighbors have to be matched correctly.
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* Find the nearest neighbor in the second image

* Pruning strategies
— Ratio with respect to the second best match (d1/d2 << 1)
— Local neighborhood constraints (semi-local constraints)
— Backwards matching (matches are NN in both directions)
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* Find the nearest neighbor in the second image

* Pruning strategies
— Ratio with respect to the second best match (d1/d2 << 1)
— Local neighborhood constraints (semi-local constraints)
— Backwards matching (matches are NN in both directions)

« Geometric verification with global constraint

— Hough transform [see for example Lowe’04, student presentation]
— RANSAC (RANdom Sampling Consensus) [Fishler&Bolles'81]
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* Robust estimation with RANSAC of a homography

— Repeat
« Select 4 point matches
« Compute 3x3 homography
» Measure support (number of inliers within threshold, i.e. d?, <ter < t)
d?. = d(x,H '¥')? + d(x', Hx)?
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— Choose (H with the largest number of inliers)
— Re-estimate H with all inliers
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Hough Transform RANSAC
«Advantages «Advantages
— Can handle high percentage of — General method suited to large range
outliers (>95%) of problems
— Extracts groupings from clutter in — [Easy to implement
linear time — “Independent” of number of dimensions
Disadvantages Disadvantages
— Quantization issues — Basic version only handles moderate
— Only practical for small number of number of outliers (<50%)
dimensions (up to 4)
Improvements available *Many variants available, e.g.
— Probabilistic Extensions — PROSAC: Progressive RANSAC

[ChumO5]

— Continuous Voting Space
gsp — Preemptive RANSAC [Nister05]

— Can be generalized to arbitrary
shapes and objects






Large image dataset
(one million images or more)

Image search
system

* Issues for very large databases
» to reduce the query time

* to reduce the storage requirements
« with minimal loss in retrieval accuracy



Two strategies

1. Efficient approximate nearest neighbor search on local
feature descriptors.

2. Quantize descriptors into a “visual vocabulary” and use
efficient techniques from text retrieval

(Bag-of-words representation)



Strategy 1: Efficient approximate NN search
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Local features

invariant
descriptor
vectors
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Compute local features in each image independently

Describe each feature by a descriptor vector

Find nearest neighbour vectors between query and database

Rank matched images by number of (tentatively) corresponding regions

Verify top ranked images based on spatial consistency



Finding nearest neighbour vectors

Establish correspondences between query image and images in the database by
nearest neighbour matching on SIFT vectors
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Model image 128D descriptor Image database
space

Solve following problem for all feature vectors, X; € 72.128, in the query image:
Vi NN(j) = arg mim [[x; — x|

where, X; € 7?..128 , are features from all the database images.



Quick look at the complexity of the NN-search

N ... images
M ... regions per image (~1000)
D ... dimension of the descriptor (~128)

Exhaustive linear search: O(M NMD)

Example:

« Matching two images (N=1), each having 1000 SIFT descriptors
Nearest neighbors search: 0.4 s (2 GHz CPU, implemenation in C)
* Memory footprint: 1000 * 128 = 128kB / image

# of images CPU time Memory req.

N= 1,000 ... ~7min (~100MB)
N =10,000 ... ~1h7min  (~ 1GB)

N = 107 ~115days (~ 1TB)

All images on Facebook:
N=10" ... ~300years (~ 1PB)




Nearest-neighbor matching

Solve following problem for all feature vectors, x;, in the query image:

Vi NN(j) = arg miin l|x; — xj||

where x; are features in database images.

Nearest-neighbour matching is the major computational bottleneck
« Linear search performs dn operations for n features in the
database and d dimensions
* No exact methods are faster than linear search for d>10

« Approximate methods can be much faster, but at the cost of
missing some correct matches.



K-d tree

« K-d tree is a binary tree data structure for organizing a set of points

» Each internal node is associated with an axis aligned hyper-plane
splitting its associated points into two sub-trees.

» Dimensions with high variance are chosen first.

* Position of the splitting hyper-plane is chosen as the mean/median of
the projected points — balanced tree.

‘Y

o] °o? i

oll




(.Q
5

Image dataset:
> 1 million images

ranked i |mage Ilst
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Image search
system

« Each image described by approximately 1000 descriptors
— 109 descriptors to index for one million images!

« Database representation in RAM:
— Size of descriptors : 1 TB, search+memory intractable



descriptors | isyal words)
e o i sparse frequency vector

__ Bag-of-features_>l n . n
; processing

+tf-idf weighting

| Harris-Hessian-Laplace
regions + SIFT descriptors

o ” . Inverted L
 “visual words’: querying

— 1 *word” (index) per local
descriptor

— only images ids in inverted file
=> 8 GB fits! Y

Re-rgn ked Geometric ranked image
list verification short-list

[Chum & al. 2007]




dl d2 d3 d4

COmmaon
common people sculpture  common
sculpture

Document sculpture Common
collection: people people

common sculpture people

people common

Inverted file:  Term List of hits (occurrences in documents)
People [d1:hit hit hit], [d4:hit hit] ...
Common [d1:hit hit], [d3: hit], [d4: hit hit hit] ...
Sculpture  [d2:hit], [d3: hit hit hit] ...

Need to map feature descriptors to “visual words”



Visual words: main idea

Map high-dimensional descriptors to tokens/words by

quantizing the feature space
« Quantize via

clustering, let
cluster centers be
the prototype
“‘words”

/Qo/ /

Descriptor space

K. Grauman, B. Leibe



Visual words: main idea

Map high-dimensional descriptors to tokens/words by

quantizing the feature space
* Determine which

word to assign to
each new image
region by finding
the closest cluster
center.

K. Grauman, B. Leibe



Example: each group
of patches belongs to
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The same visual word



 Histogram of visual word occurrence
represents the image
» Sparse if large visual vocabulary

v10



Inverted file index for visual words

Word List of image
number numbers
1)— 510, ..

2 |— 10,...

frame #5 frame #10

® Score each image by the number of common visual words (tentative
correspondences)

Dot product between bag-of-features

* Fast for sparse vectors !



Inverted file index for visual words

Word List of image
number numbers
1)— 510, ..

2 |— 10,...

frame #5 frame #10

*For fast search, store a posting list for the dataset

*This maps visual word occurrences to the images they occur in (like a
book index)

sIncrement a counter for each query descriptor



Inverted file index for visual words

Word List of image
number numbers
1)— 510, ..

2 |— 10,...

frame #5 frame #10

*\Worst case complexity is linear in the number of images
*In practice it is linear in the length of the list (<< N)

*Storage: one index per descriptor



Visual words

Visual wo roximate NN search

anpn
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« Map descriptors to words by quantizing the feature space
— Quantize via k-means clustering to obtain visual words
— Assign descriptors to closest visual words

« Bag-of-features as approximate nearest neighbor search

Descriptor matching with k-nearest neighbors

/ (z.y) = 1 if v is a k-NN of y
eNNLES) =90 otherwise

Bag-of-features matching function /g (z,y) = 5q(:r:),q(y)

where q(x) is a quantizer, i.e., assignment to a visual word and
0, is the Kronecker operator (0, ,=1 iff a=b)
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Approximate nearest neighbor search evaluation

*ANN algorithms usually returns a short-list of nearest neighbors
— this short-list is supposed to contain the NN with high probability
— exact search may be performed to re-order this short-list

*Proposed quality evaluation of ANN search: trade-off between
— Accuracy: NN recall = probability that the NN is in this list
against
— Ambiguity removal = proportion of vectors in the short-list

- the lower this proportion, the more information we have about the
vector

- the lower this proportion, the lower the complexity if we perform exact
search on the short-list

*ANN search algorithms usually have some parameters to handle this trade-off



NN recall

i BOW —.

le-06 1e-05 0.0001 0.001
rate of points retrieved

*ANN algorithms
returns a list of
potential neighbors

Accuracy: NN recall
= probability that the
NN is in this list

Ambiguity removal.
= proportion of vectors
In the short-list

*In BOF, this trade-off
IS managed by the
number of clusters k



20K V|sual word false matches




200K visual word: good matches mlssed




Problem with baag-of-features
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« The intrinsic matching scheme performed by BOF is weak
— for a “small” visual dictionary: too many false matches
— for a “large” visual dictionary: many true matches are missed

* No good trade-off between “small” and “large” !
— either the Voronoi cells are too big
— or these cells can’t absorb the descriptor noise

— intrinsic approximate nearest neighbor search of BOF is not
sufficient

— possible solutions
> soft assignment [Philbin et al. CVPR’'08]
» additional short codes [Jegou et al. ECCV’08]



Hamming Embedding wegou etal. ccvos
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Representation of a descriptor x
— Vector-quantized to g(x) as in standard BOF
+ short binary vector b(x) for an additional localization in the Voronoi cell

Two descriptors x and y match iif

(tf-idf(q(.r)))?  if q(x) = q(y)
fue(x,y) = and h (b(),b(y)) < hy  where h(a,b) Hamming distance
0 otherwise



Hamming Embedding

*Nearest neighbors for Hamming distance ~ those for Euclidean distance
— a metric in the embedded space reduces dimensionality curse effects

Efficiency
— Hamming distance = very few operations

— Fewer random memory accesses: 3 x faster that BOF with same dictionary
sizel
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-Off-line (given a quantizer)
— draw an orthogonal projection matrix P of size d, X d
— this defines d, random projection directions

— for each Voronoi cell and projection direction, compute the median
value for a learning set

*On-line: compute the binary signature b(x) of a given
descriptor

— project x onto the projection directions as z(x) = (z4,...zy,)

— bi(x) = 1 if z(x) is above the learned median value, otherwise 0
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NN recall

0.1
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?e-OS le-07 1e-06 1e-05 0.0001 0.001 0.01
rate of points retrieved

0.1

compared to BOW: at least

10 times less points in the

short-list for the same level
of accuracy

Hamming Embedding
provides a much better
trade-off between recall and
ambiguity removal
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Many matches with the non-corresponding image!



35 matches

69 matches

Still many matches with the non-corresponding one
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10x more matches with the corresponding image!
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Set of SIFT centroids
| descriptors (visual words)
e 1 sparse frequency vector

Harris-Hessian-Laplace Bag-of-features

~ regions + SIFT descriptors_> el », —Pprocessing —>I B . N

+tf-idf weighting

 “visual words”: querying

— 1 “word” (index) per local
descriptor

— only images ids in inverted file
=> 8 GB fits! v

Re-rgn ked Geometric ranked image
list verification short-list

[Chum & al. 2007]




Geometric verification

Use the position and shape of the underlying features
to improve retrieval quality

Both images have many matches — which is correct?
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Remove outliers, matches contain a high number of
iIncorrect ones

Estimate geometric transformation

Robust strategies
— RANSAC
— Hough transform



Geometric verification

We can measure spatial consistency between the query
and each result to improve retrieval quality

Many spatially consistent Few spatially consistent
matches — correct result matches — |rllcorrect
result



Geometric verification

Gives localization of the object




Geometric verification — example

2. Initial retrieval set (bag of words model)




Evaluation dataset: Oxford buildings

Magdalen &y

University {_
Museum
Tower . .
Radcliffe |55
: 4 s Camera bt | 15
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« Ground truth obtained for 11 landmarks
« Evaluate performance by mean Average Precision
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Average Precision

precision

* A good AP score requires both high
recall and high precision

« Application-independent

Performance measured by mean Average Precision (mAP)
over 55 queries on 100K or 1.1M 1mage datasets



Query: ChristChurch3

' [—Before re—ranking
— After re—ranking
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INRIA holidays dataset

1 M1 \NI7 2\ 1 1\

Evaluation for the INRIA holidays dataset, 1491 images
— 500 query images + 991 annotated true positives
— Most images are holiday photos of friends and family

1 million & 10 million distractor images from Flickr
Vocabulary construction on a different Flickr set

Evaluation metric: mean average precision (in [0,1],
bigger = better)

— Average over precision/recall curve















Experimental evaluation

Evaluation on our holidays dataset, 500 query images, 1 million distracter

images

Metric: mean average precision (in [0,1], bigger = better)

mAP
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database size



Results — Venice Channel
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« BOF+inverted file can handle up to ~10 millions images
— with a limited number of descriptors per image 2> RAM: 40GB
— search: 2 seconds

« Web-scale = billions of images
— with 100 M per machine - search: 20 seconds, RAM: 400 GB
— not tractable

« Solution: represent each image by one compressed vector



Very large scale image search

centroids
Query Set of SIFT (visual words)
image descriptors

l description vector

Bag-of-features
processing — I ] ‘ |

+tf-idf weighting

Hessian-Affine
regions + SIFT descriptors

[Mikolajezyk & Schmid 04] : l
[Lowe 04]
Vector
compression
« Each image is represented by one vector l
(Bag-of-features, VLAD, Fisher, GIST)
Vector
search

*\Vector compression to reduce storage
requirements and search time

Re-ranked Geometric ranked image
- s b -
list verification short-list

[Lowe 04, Chum & al 2007]
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« GIST descriptors with spectral hashing [Weiss et al."08]

— very limited invariance to crop, scale, rotation

» Aggregating local descriptors into compact image
representations [Jegou et al.”10]



Global scene context — GIST descriptor

e The “gist” of a scene: Oliva & Torralba (2001)
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Edge Orientation

e 5 frequency bands and 6 orientations for each image location
e Tiling of the image to describe the image

e The position of the descriptor in the image is encoded in the representation



GIST descriptor + spectral hashing

e Spectral hashing produces binary codes similar to spectral clusters [Weiss
et al.’08]

e Each image is represented by a binary code, comparison with
Hamming distance

e Hamming distance should correlate with semantic similarity
e Spectral clustering to generate cluster and codes

e Very compact codes
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Set of n local descriptors - 1 vector

Popular approach: bag of features, often with SIFT features

Recently improved aggregation schemes
— Fisher vector [Perronnin & Dance ‘07]
— VLAD descriptor [Jegou, Douze, Schmid, Perez ‘10]
— Supervector [Zhou et al. “10]
— Sparse coding [Wang et al. *10, Boureau et al.’10]

Used in very large-scale retrieval and classification



Aggregating local descriptors

e Most popular approach: BoF representation [Sivic & Zisserman 03]
sparse vector
highly dimensional

— significant dimensionality reduction introduces loss

e Vector of locally aggregated descriptors (VLAD) [Jegou et al. 10]
non sparse vector
fast to compute
excellent results with a small vector dimensionality

e Fisher vector [Perronnin & Dance 07]
probabilistic version of VLAD
initially used for image classification
comparable or improved performance over VLAD for image retrieval



VLAD : vector of locally aggregated descriptors

e Determine a vector quantifier (k-means)
» output: k centroids (visual words): c,,...,C,...C,
» centroid ¢, has dimension d

e Fora givenimage
» assign each descriptor to closest center ¢,
» accumulate (sum) descriptors per cell
Vi =Vt (X - G)
e VLAD (dimension D =k x d)

e The vector is square-root + L2-normalized

e Alternative: Fisher vector

o

[Jegou, Douze, Schmid, Perez, CVPR’10]



VLADs for corresponding images
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SIFT-like representation per centroid (+ components: blue, - components: red)

e good coincidence of energy & orientations



Fisher vector

e Use a Gaussian Mixture Model as vocabulary
e Statistical measure of the descriptors of the image w.r.t the GMM
e Derivative of likelihood w.r.t. GMM parameters

GMM parameters:
w; weight
1 i mean

O0; co-variance (diagonal)

Translated cluster —
large derivative on [4; for this
component

[Perronnin & Dance 07]



Fisher vector

FV formulas:

, T
x 1 oy [T
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~

i#(7) = soft-assignment of patch 2} to Gaussian i

Fisher Vector = concatenation of per-Gaussian gradient vectors

For image retrieval in our experiments:

- only deviation wrt mean, dim: K*D [K number of Gaussians, D dim of descriptor]
- variance does not improve for comparable vector length



VLAD/Fisher/BOF performance and dimensionality reduction

e \We compare Fisher, VLAD and BoF on INRIA Holidays Dataset (mAP %)
e Dimension is reduced to D’ dimensions with PCA

Descriptor K D Holidays (mAP)
D'=D — D'=2048 — D'=512 — D'=128 — D'=64 — D'=32
BOW 1000 1000 40.1 43.5 44.4 43.4 40.8
20000 20000 43.7 41.8 44.9 45.2 444 41.8
Fisher (u) 16 1024 54.0 54.6 523 499 46.6
64 4096 59.5 60.7 61.0 56.5 52.0 48.0
256 16384 62.5 62.6 57.0 53.8 50.6 48.6
VLAD 16 1024 52.0 52.7 52.6 50.5 47.7
64 4096 55.6 57.6 59.8 55.7 52.3 48.4
256 16384 58.7 62.1 56.7 54.2 51.3 48.1
GIST 960 36.5

e Observations:
» Fisher, VLAD better than BoF for a given descriptor size
» Choose a small D if output dimension D’ is small
» Performance of GIST not competitive

[Jegou, Perronnin, Douze, Sanchez, Perez, Schmid, PAMI’12]



Compact image representation

e Aim: improving the tradeoff between
search speed
memory usage
search quality

e Approach: joint optimization of three stages
local descriptor aggregation
dimension reduction
indexing algorithm

Image representation PCA +
VLAD / Fisher PQ codes

(Non) — exhaustive
search




Product quantization for nearest neighbor search

e Vector split into m subvectors: y — [yll ‘e |ym]

e Subvectors are quantized separately by quantizers ¢(¥) = [@1(¥1)] - - - |@m(¥m)]
where each ¢; is learned by k-means with a limited number of centroids

e Example: y = 128-dim vector split in 8 subvectors of dimension 16
» each subvector is quantized with 256 centroids -> 8 bit
» very large codebook 25678 ~ 1.8x10*19

16 components

Y1 Yo VE! Y4 Y5 Y6 Y7 Ys
HOBNOENOEBNOEBNOEBROEBNOENO
centroids

q:(y1) q(¥2) q;(y3) d4(Y4) qs(¥s) d6(Ys) q7(y7) ds(Ys)

[Jegou, Douze, Schmid, PAMI’11]



mAP

Optimizing the dimension reduction and quantization together
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Fisher vectors undergoes two approximations
mean square error from PCA projection
mean square error from quantization

|
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Given k and bytes/image, choose D’ minimizing their sum

Fisher, K=16, ADC 16x8 ——

Fisher, K=64, ADC 16x8 ——
Fisher, K=256, ADC 16x8 ———
Fisher, K=16, ADC 256x10 -
Fisher, K=64, ADC 256x10 -

II:isher, K:EEE,IADG 256x10 e

16

64

256 1024 4096
D!

Results on Holidays dataset:

- there exists an optimal D’

- 16 byte best results for k=64

- 320 byte best results for k=256



Results on the Holidays dataset with various quantization parameters

mAP
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ADC parameters
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| | | | miniBOF [8]

8 16 32 64 128 256 512
number of bytes



Joint optimization of Fisher/VLAD and dimension reduction-indexing

e For Fisher/ \VLAD
» The larger K, the better the raw search performance
» But large k produce large vectors, that are harder to index

e Optimization of the vocabulary size
» Fixed output size (in bytes)

» D’ computed from K via the joint optimization of reduction/indexing

=» end-to-end parameter optimization



Comparison to the state of the art

Method bytes UKB  Holidays
BOW, K=20,000 10364 2.87 43.7
BOW, K=200,000 12886 2.81 54.0
miniBOF [12] 20 2.07 25.5
80 2.72 40.3

160 2.83 42.6

FV K=64, spectral hashing 128 bits 16 2.57 39.4
VLAD, K=16, ADC 16x8 [23] 16 2.88 46.0
VLAD, K=64, ADC 32x10 [23] 40 3.10 49.5
FV K=8, binarized [22] 65 2.79 46.0
FV K=64, binarized [22] 520 3.21 574
FV K=64, ADC 16x8 (D'=96) 16 3.10 50.6
FV K=256, ADC 256x 10 (D'=2048) 320 3.47 63.4

[12] H. Jégou, M. Douze, and C. Schmid, “Packing bag-of-features,” in

ICCV, September 2009.

[22] F. Perronmin, Y. Liu, J. Sanchez, and H. Poirier, “Large-scale image

retrieval with compressed Fisher vectors,” in CVPR, June 2010.

[23] H. Jégou, M. Douze, C. Schmid, and P Pérez, “Aggregating local

descriptors into a compact image representation,” in CVPR, June 2010.



Large scale experiments (10 million images)

e Exhaustive search of VLADs, D’=64

» 4.77s

e With the product quantizer

» Exhaustive search with ADC:

0.29s

» Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted file

Database indexing

ely)
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: residual
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guantizer ge

inverted file structure

inverted list E'i
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list entry '
id code
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o1 [ [ |
append
to inverted list




Large scale experiments (10 million images)

recall@100

0.8

0.7 -

0.6

0.5

0.4

03 1

0.2

01 -

0

BOF D=200k —+—

VLAD k=64 ——

VLAD k=64, D'=96 —e—

VLAD k=64, ADC 16 bytes —=—
VLAD+Spectral Hashing, 16 bytes —=—

1000

10k 100k 1M
Database size: Holidays+images from Flickr

Timings

|~ 4.768s

++++++++++++++ i

ADC: 0.286<
IVFADC: 0.014s<

SH = 0.267s



Event retrieval in large video collections [Revaud et al. 2013]

Video description

frame t &> VLAD descriptor, reduced to 512D with PCA

mparison of two vide

U

edatabase
* videv

Fast calculation in the frequency domain + product quantization






