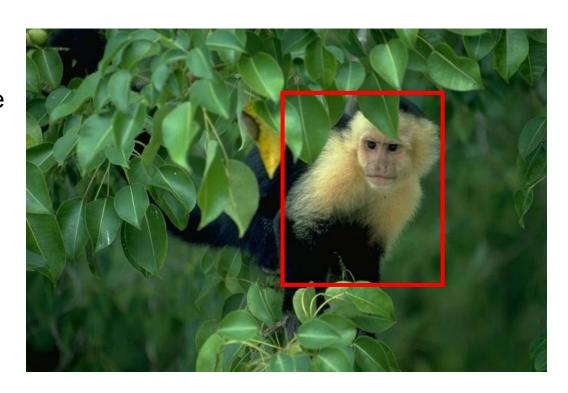
Category-level localization

Cordelia Schmid

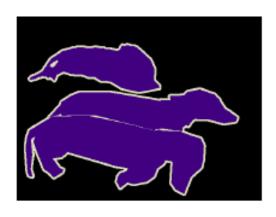
Recognition

- Classification
 - Object present/absent in an image
 - Often presence of a significant amount of background clutter

- Localization / Detection
 - Localize object within the frame
 - Bounding box or pixellevel segmentation

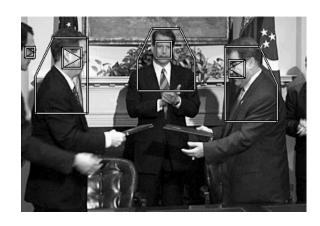


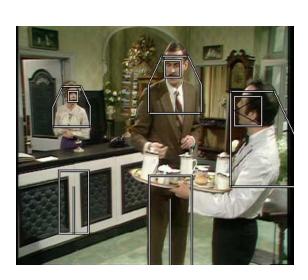
Pixel-level object classification



Difficulties

Intra-class variations





- Scale and viewpoint change
- Multiple aspects of categories

Approaches

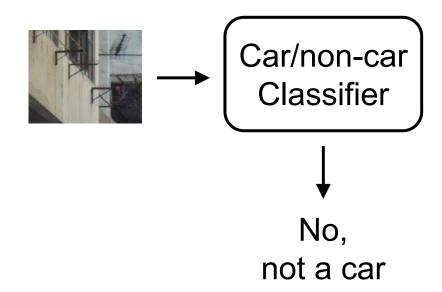
- Intra-class variation
 - => Modeling of the variations, mainly by learning from a large dataset, for example by SVMs
- Scale + limited viewpoints changes
 - => multi-scale approach
- Multiple aspects of categories
 - => separate detectors for each aspect, front/profile face, build an approximate 3D "category" model

Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients (HOG)
- 4. State of the art algorithms and PASCAL VOC

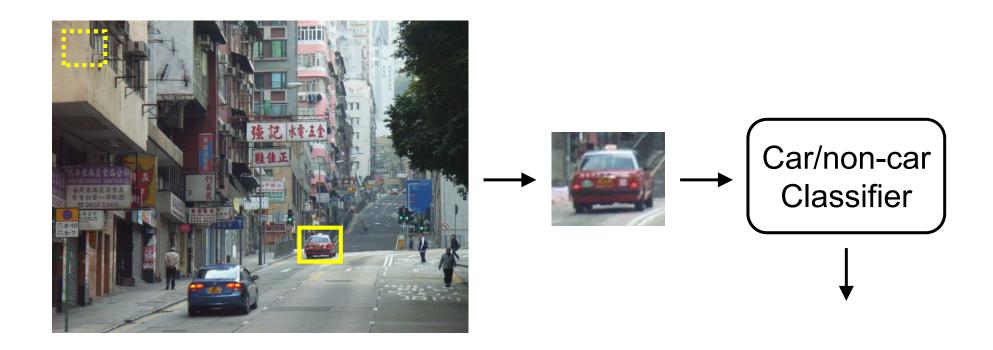
Sliding window detector

Basic component: binary classifier



Sliding window detector

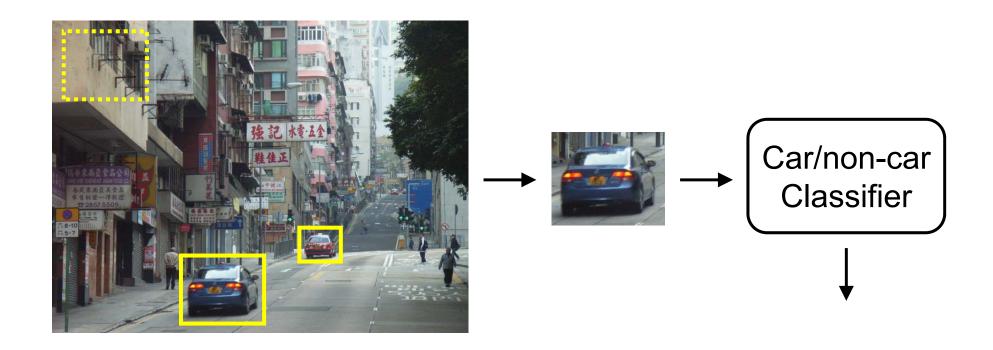
Detect objects in clutter by <u>search</u>



• Sliding window: exhaustive search over position and scale

Sliding window detector

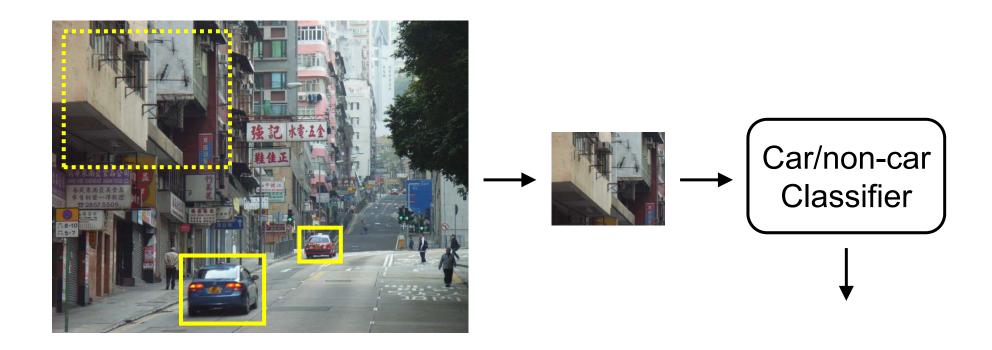
Detect objects in clutter by <u>search</u>



• Sliding window: exhaustive search over position and scale

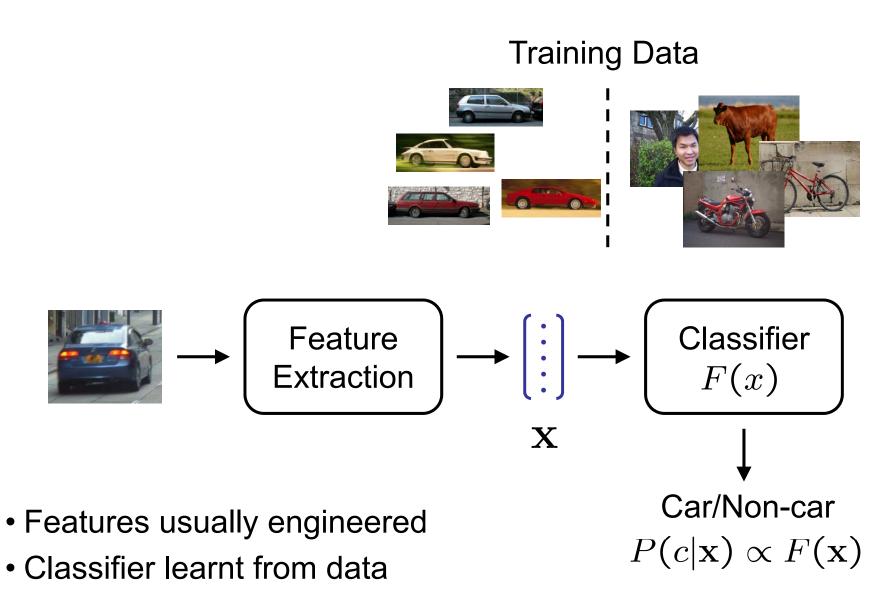
Detection by Classification

Detect objects in clutter by <u>search</u>



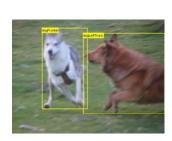
• Sliding window: exhaustive search over position and scale (can use same size window over a spatial pyramid of images)

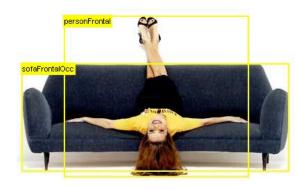
Window (Image) Classification

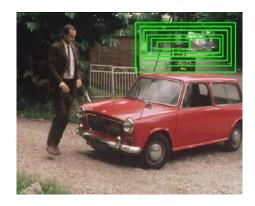


Problems with sliding windows ...

- aspect ratio
- granularity (finite grid)
- partial occlusion
- multiple responses







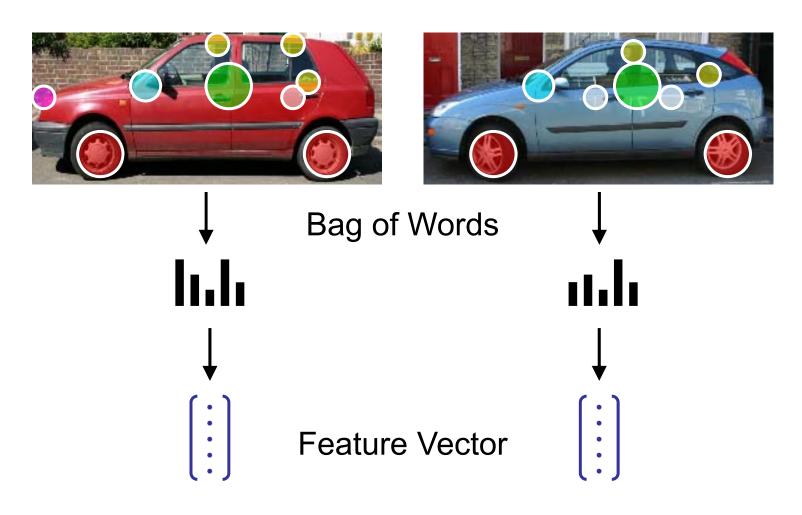
Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients (HOG)
- 4. State of the art algorithms and PASCAL VOC

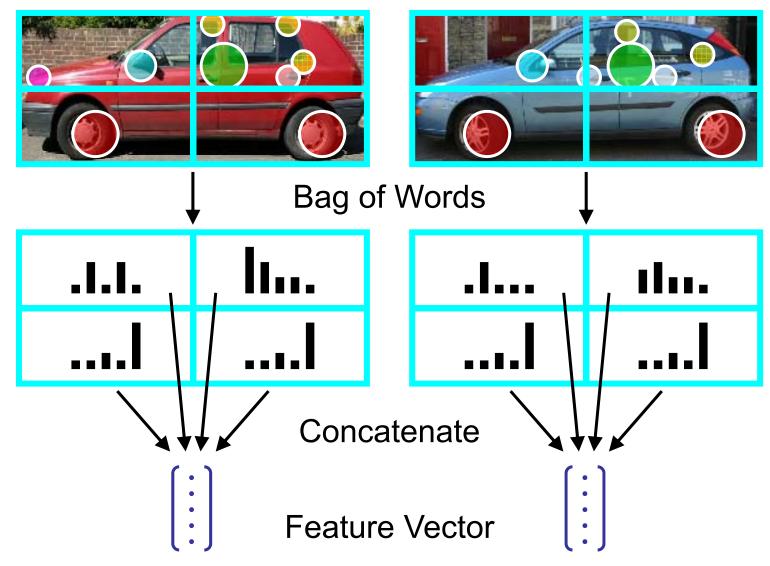
BOW + Spatial pyramids

Start from BoW for region of interest (ROI)

- no spatial information recorded
- sliding window detector

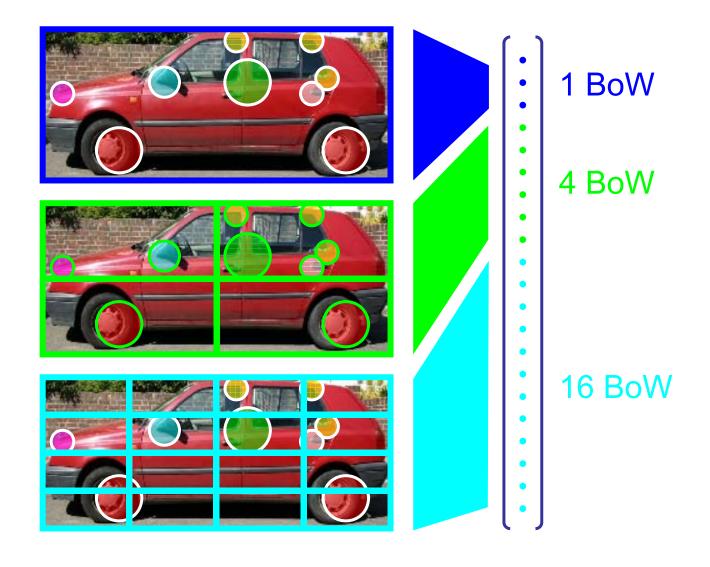


Adding Spatial Information to Bag of Words



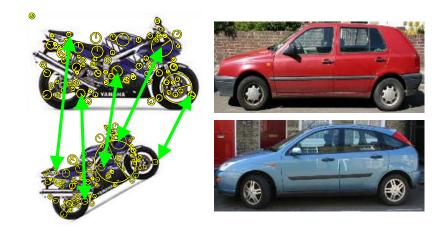
Keeps fixed length feature vector for a window

Spatial Pyramid – represent correspondence

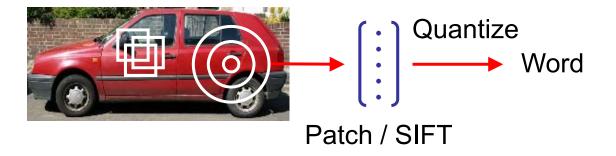


Dense Visual Words

- Why extract only sparse image fragments?
- Good where lots of invariance is needed, but not relevant to sliding window detection?



Extract dense visual words on an overlapping grid



Outline

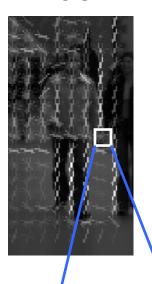
- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients + linear SVM classifier
- 4. State of the art algorithms and PASCAL VOC

Feature: Histogram of Oriented Gradients (HOG)

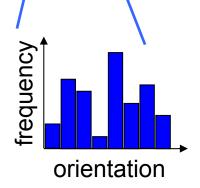
image

dominant direction

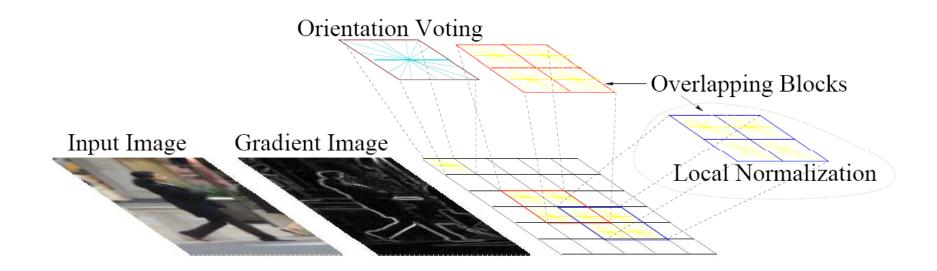
HOG



- tile 64 x 128 pixel window into 8 x 8 pixel cells
- each cell represented by histogram over 8 orientation bins (i.e. angles in range 0-180 degrees)



Histogram of Oriented Gradients (HOG) continued

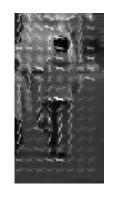


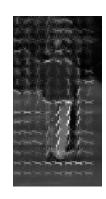
- Adds a second level of overlapping spatial bins renormalizing orientation histograms over a larger spatial area
- Feature vector dimension (approx) = 16 x 8 (for tiling) x 8 (orientations) x 4 (for blocks) = 4096

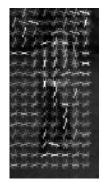
Window (Image) Classification

- HOG Features
- Linear SVM classifier

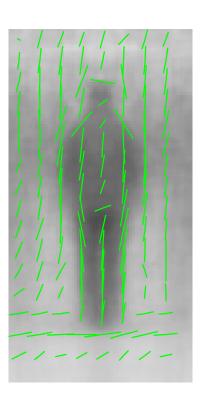
pedestrian/Non-pedestrian $P(c|\mathbf{x}) \propto F(\mathbf{x})$

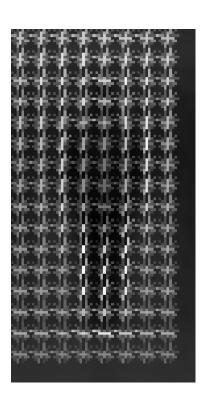






Averaged examples

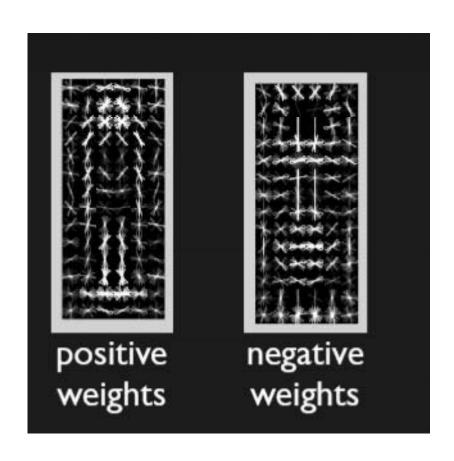


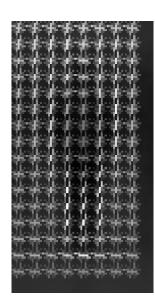


Dalal and Triggs, CVPR 2005

Learned model

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$





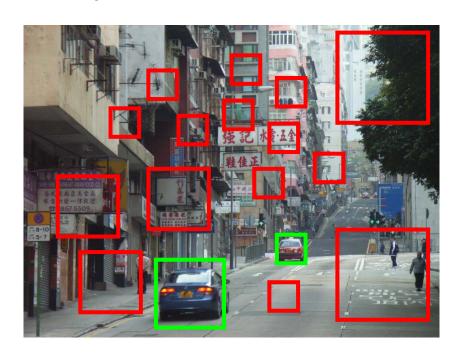
average over positive training data

Training a sliding window detector

- Unlike training an image classifier, there are a (virtually) infinite number of possible negative windows
- Training (learning) generally proceeds in three distinct stages:
 - 1. Bootstrapping: learn an initial window classifier from positives and random negatives
 - 2. Hard negatives: use the initial window classifier for detection on the training images (inference) and identify false positives with a high score
 - 3. Retraining: use the hard negatives as additional training data

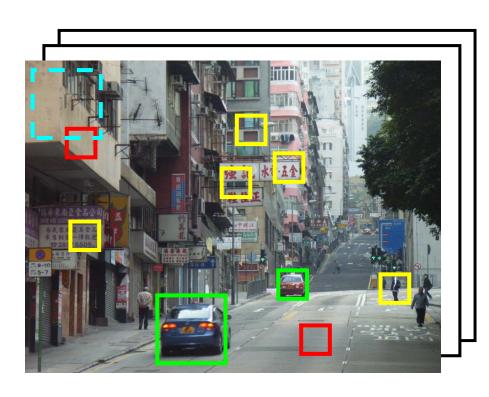
Training a sliding window detector

 Object detection is inherently asymmetric: much more "non-object" than "object" data



- Classifier needs to have very low false positive rate
- Non-object category is very complex need lots of data

Bootstrapping



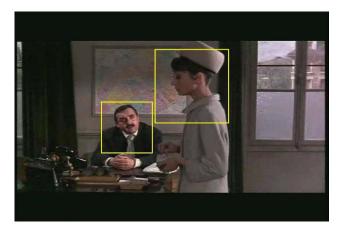
- 1. Pick negative training set at random
- 2. Train classifier
- 3. Run on training data
- 4. Add false positives to training set
- 5. Repeat from 2

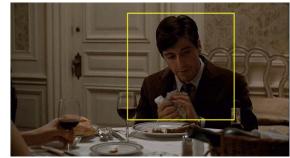
- Collect a finite but diverse set of non-object windows
- Force classifier to concentrate on hard negative examples
- For some classifiers can ensure equivalence to training on entire data set

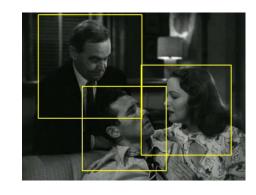
Example: train an upper body detector

- Training data used for training and validation sets
 - 33 Hollywood2 training movies
 - 1122 frames with upper bodies marked
- First stage training (bootstrapping)
 - 1607 upper body annotations jittered to 32k positive samples
 - 55k negatives sampled from the same set of frames
- Second stage training (retraining)
 - 150k hard negatives found in the training data

Training data – positive annotations



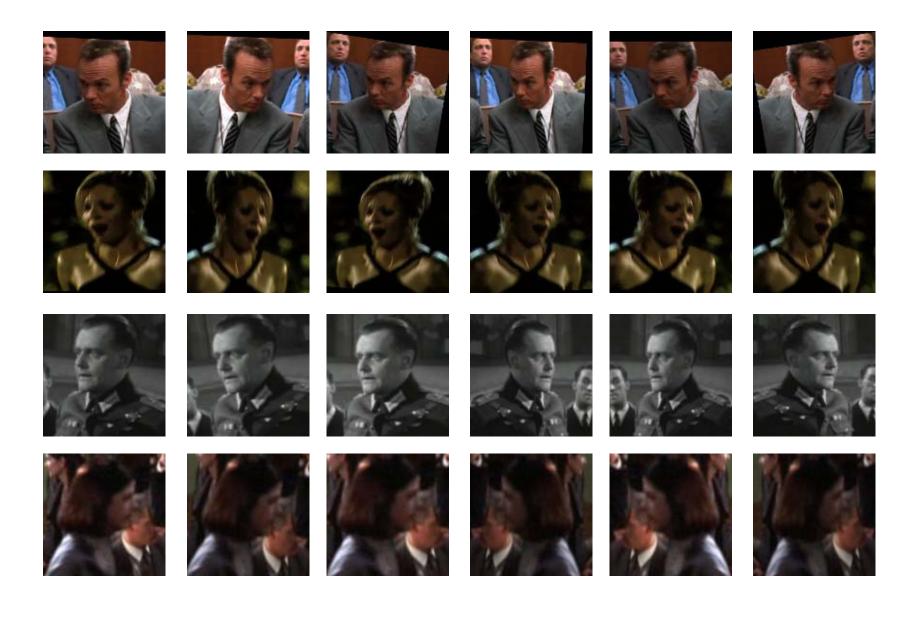




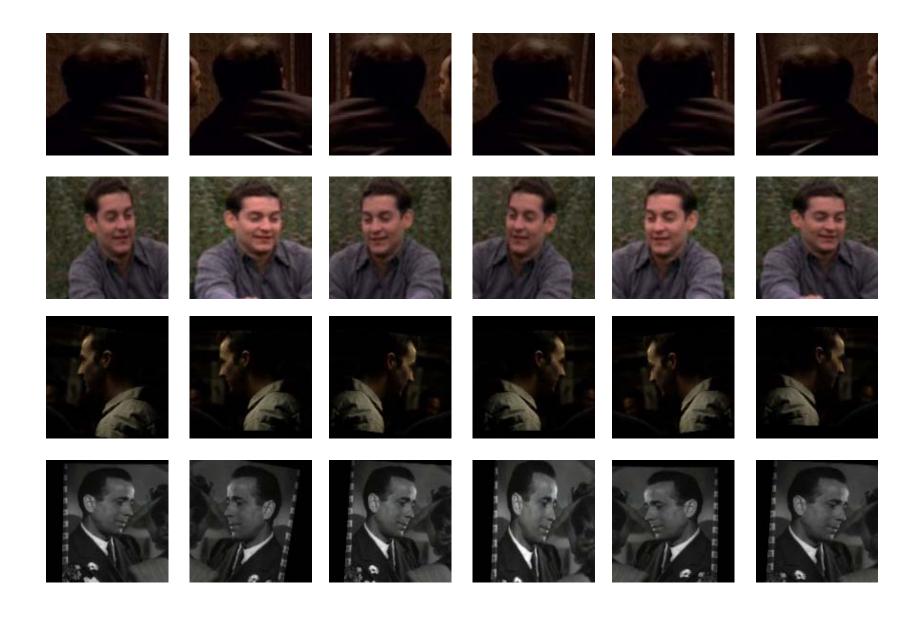
Positive windows

Note: common size and alignment

Jittered positives

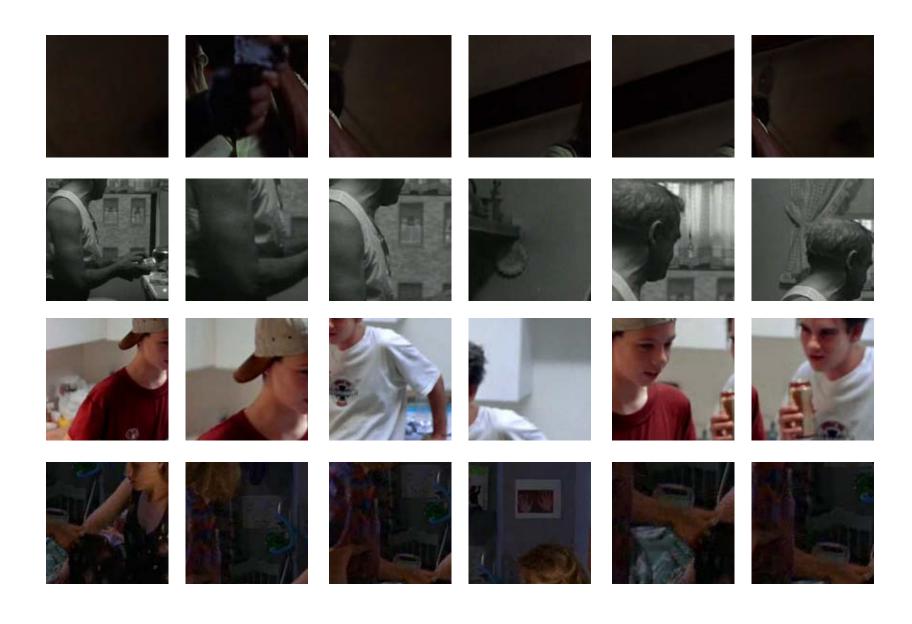


Jittered positives

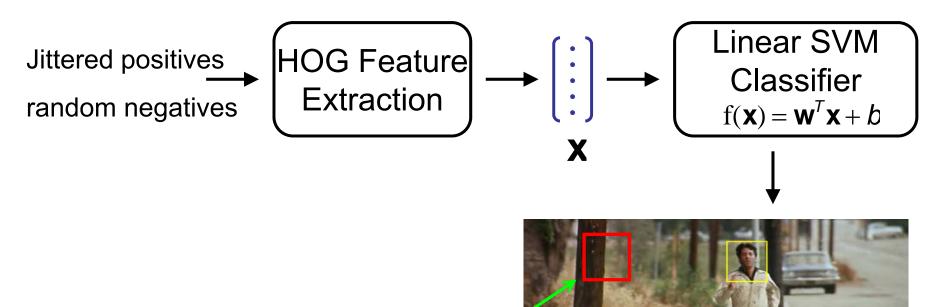


Random negatives

Random negatives

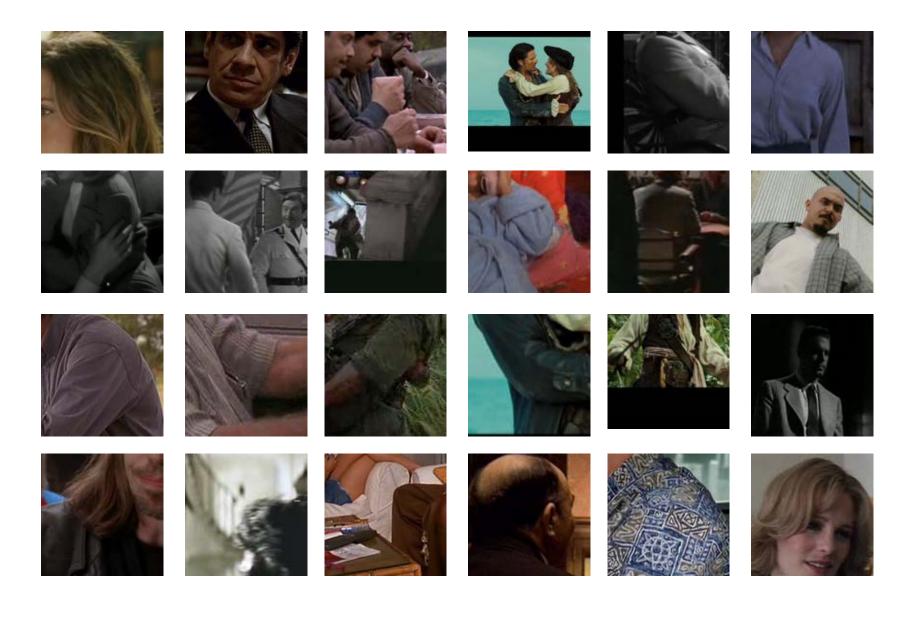


Window (Image) first stage classification



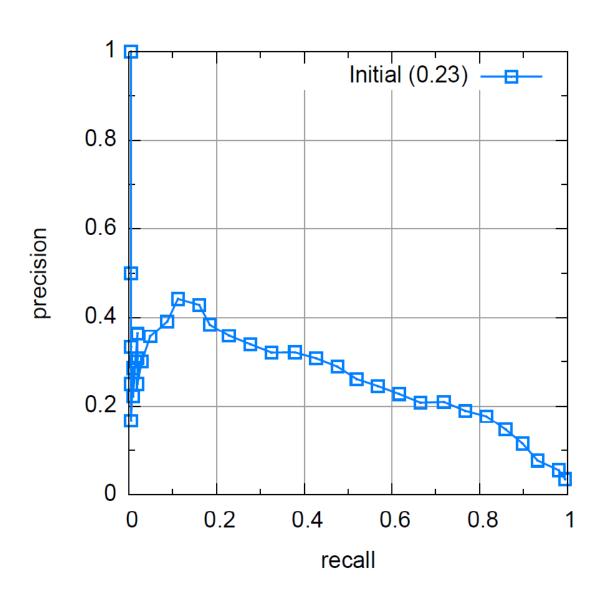
- find high scoring false positives detections.
- these are the hard negatives for the next round of training
- cost = # training images x inference on each image

Hard negatives

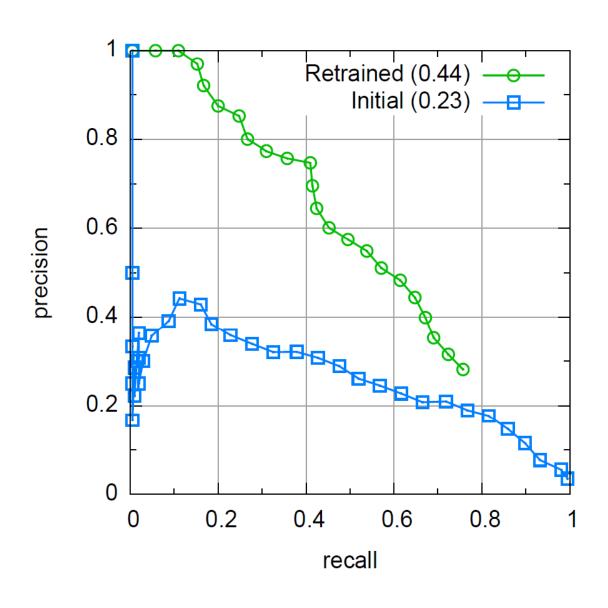


Hard negatives

First stage performance on validation set

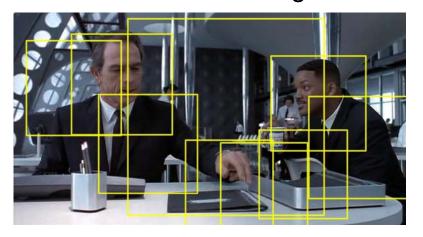


Effects of retraining

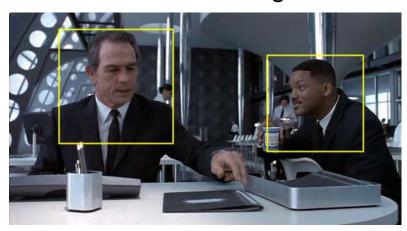


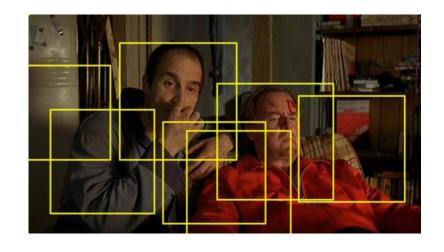
Side by side

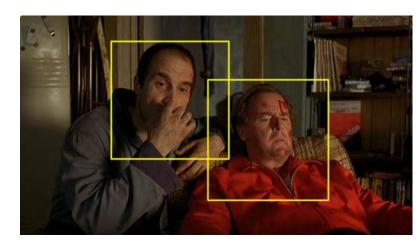
before retraining



after retraining

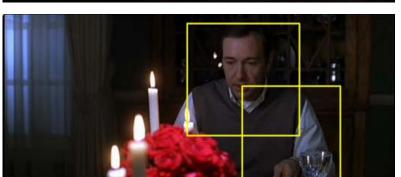


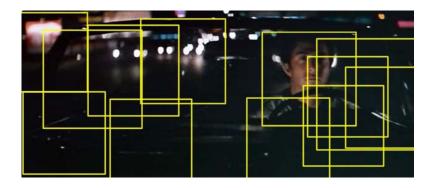




Side by side

before retraining

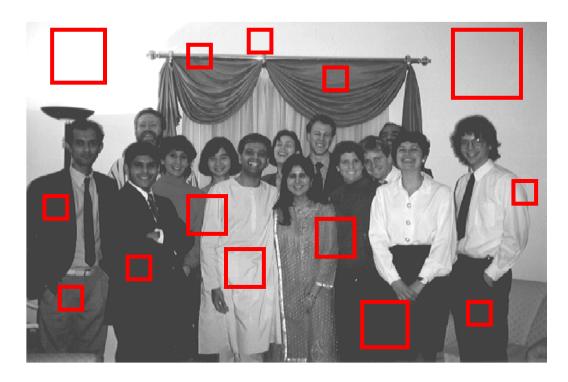




after retraining

Accelerating Sliding Window Search

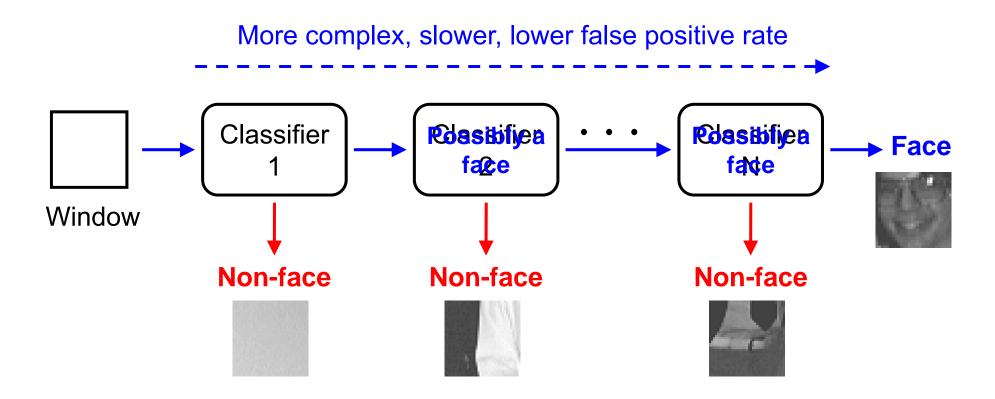
 Sliding window search is slow because so many windows are needed e.g. x × y × scale ≈ 100,000 for a 320×240 image



- Most windows are clearly not the object class of interest
- Can we speed up the search?

Cascaded Classification

Build a sequence of classifiers with increasing complexity



Reject easy non-objects using simpler and faster classifiers

Cascaded Classification

- Slow expensive classifiers only applied to a few windows → significant speed-up
- Controlling classifier complexity/speed:
 - Number of support vectors
 - Number of features
 - Two-layer approach

[Romdhani et al, 2001]

[Viola & Jones, 2001]

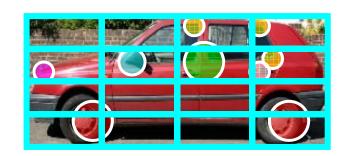
[Harzallah et al, 2009]

Summary: Sliding Window Detection

 Can convert any image classifier into an object detector by sliding window. Efficient search methods available.

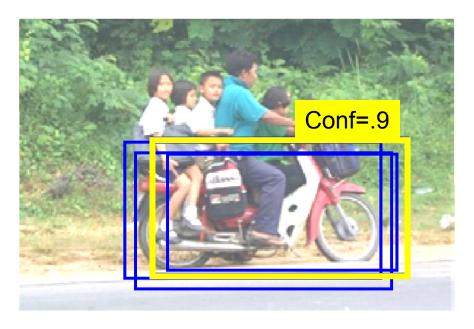
 Requirements for invariance are reduced by searching over e.g. translation and scale

 Spatial correspondence can be "engineered in" by spatial tiling



Test: Non-maximum suppression (NMS)

 Scanning-window detectors typically result in multiple responses for the same object



• To remove multiple responses, a simple greedy procedure called "Non-maximum suppression" is applied:

NMS:

- 1. Sort all detections by detector confidence
- 2. Choose most confident detection d_i ; remove all d_j s.t. $overlap(d_i, d_j) > T$
- 3. Repeat Step 2. until convergence

Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. HOG + linear SVM classifier
- 4. PASCAL VOC and state of the art algorithms

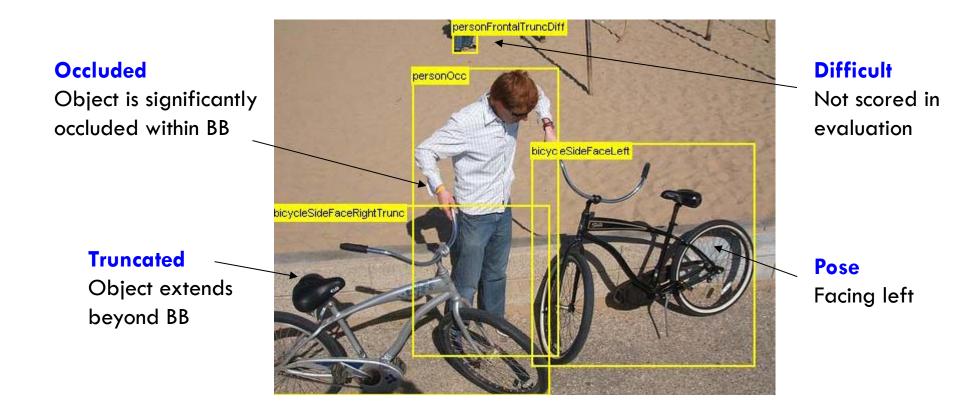
PASCAL VOC dataset - Content

- 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, train, TV
- Real images downloaded from flickr, not filtered for "quality"

Complex scenes, scale, pose, lighting, occlusion, ...

Annotation

Complete annotation of all objects

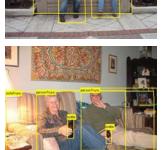


Examples

Aeroplane Bicycle Bird Bottle Boat Bus Car Cat Chair Cow CARDWELL TRANSIT CENTRE

Examples

Dining Table Motorbike Person Dog Horse **Potted Plant** Sheep Sofa Train



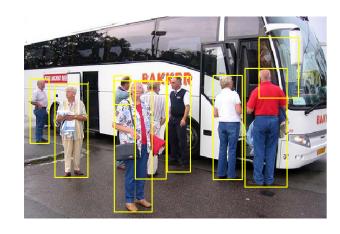
Main Challenge Tasks

Classification

- Is there a dog in this image?
- Evaluation by precision/recall

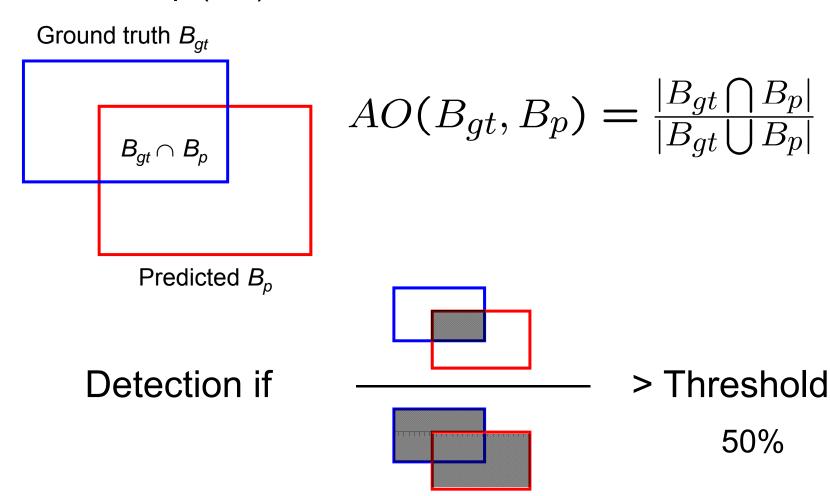
Detection

- Localize all the people (if any) in this image
- Evaluation by precision/recall based on bounding box overlap



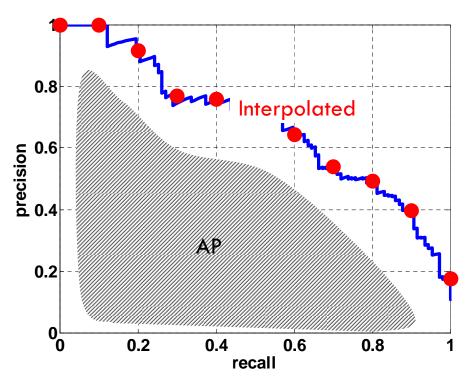
Detection: Evaluation of Bounding Boxes

Area of Overlap (AO) Measure



Classification/Detection Evaluation

 Average Precision [TREC] averages precision over the entire range of recall



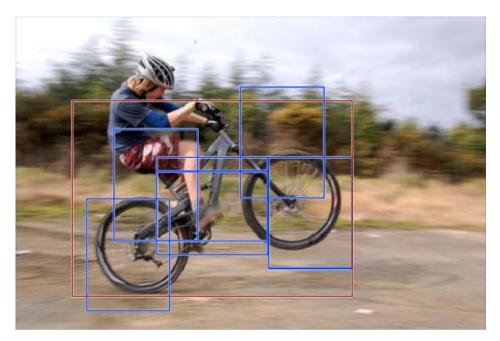
- A good score requires both high recall and high precision
- Application-independent
- Penalizes methods giving high precision but low recall

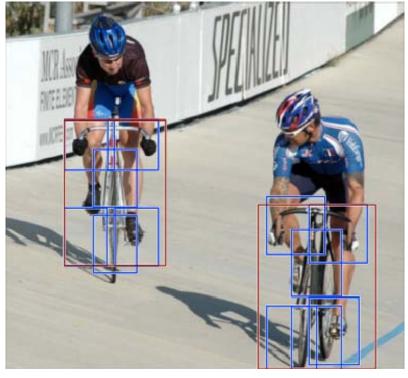
Object Detection with Discriminatively Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester, Deva Ramanan, Ross Girshick PAMI 2010

Matlab code available online: http://www.cs.brown.edu/~pff/latent/

Approach

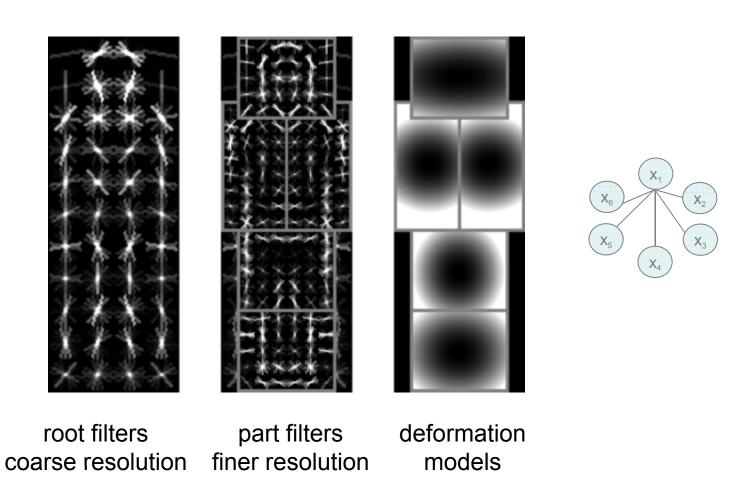




- Mixture of deformable part-based models
 - One component per "aspect" e.g. front/side view
- Each component has global template + deformable parts
- Discriminative training from bounding boxes alone

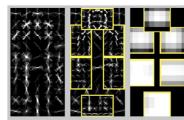
Example Model

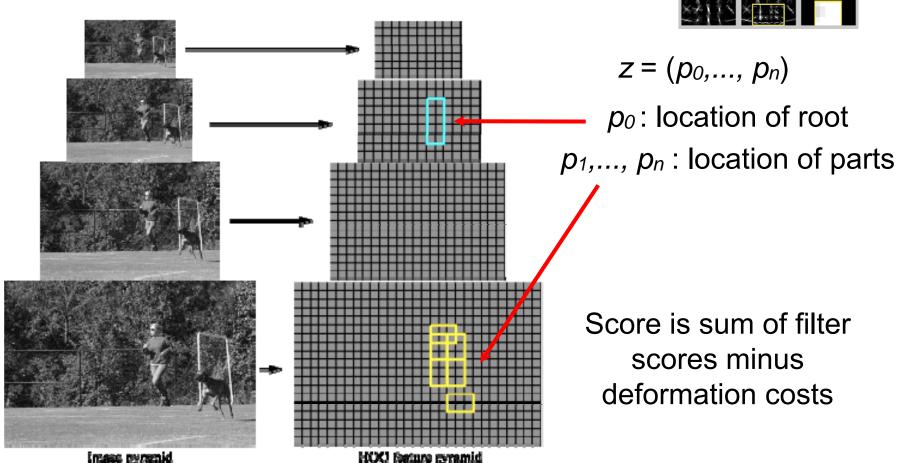
One component of person model



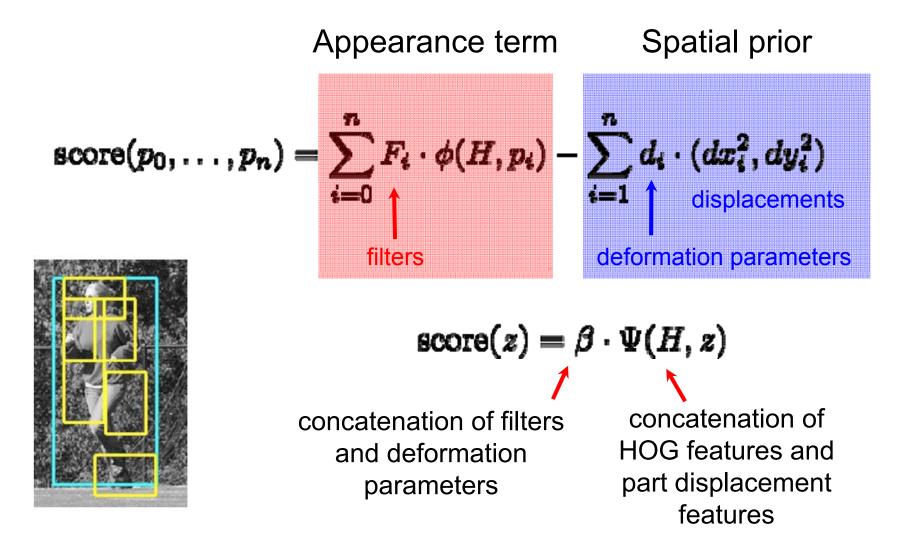
Object Hypothesis

- Position of root + each part
- Each part: HOG filter (at higher resolution)





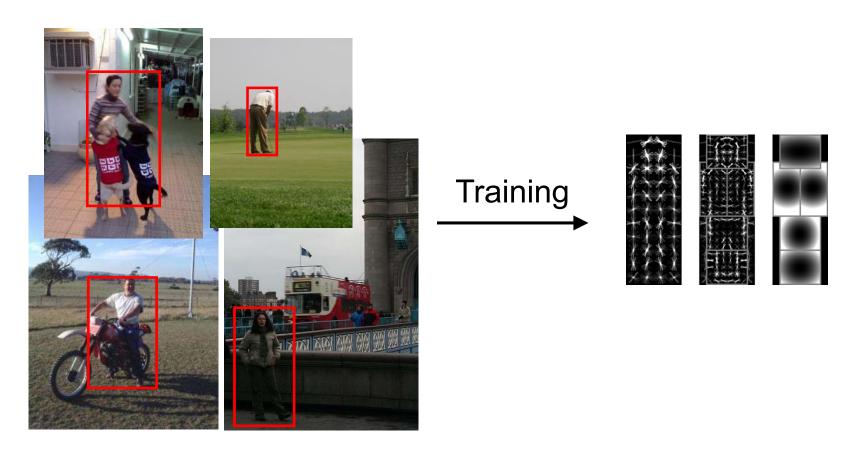
Score of a Hypothesis



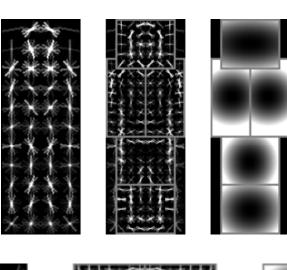
Linear classifier applied to feature subset defined by hypothesis

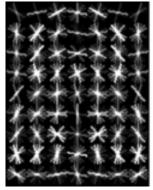
Training

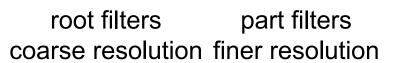
- Training data = images + bounding boxes
- Need to learn: model structure, filters, deformation costs
- Latent SVM:
 - determine classifier and model parameters (location of the parts)

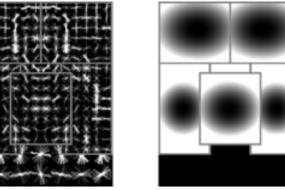


Person Model



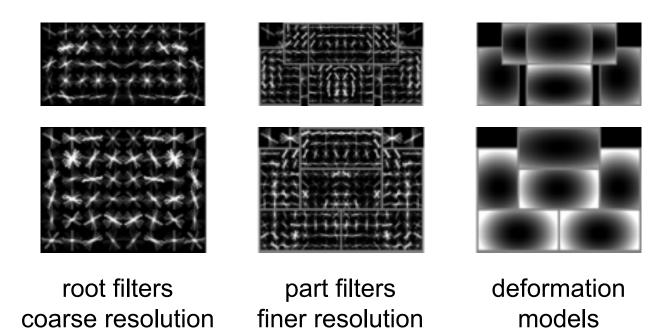






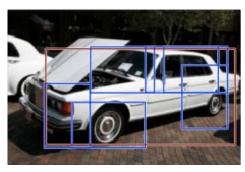
deformation models

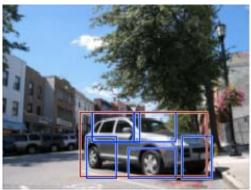
Car Model



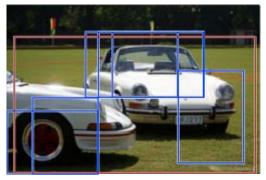
Car Detections

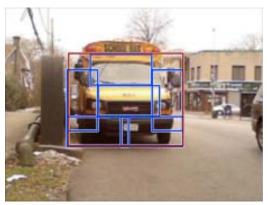
high scoring true positives





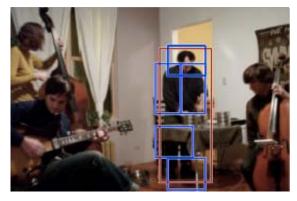
high scoring false positives

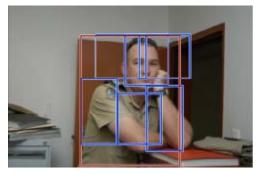


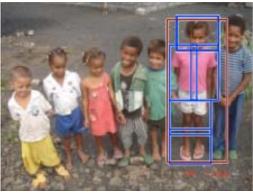


Person Detections

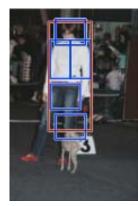
high scoring true positives







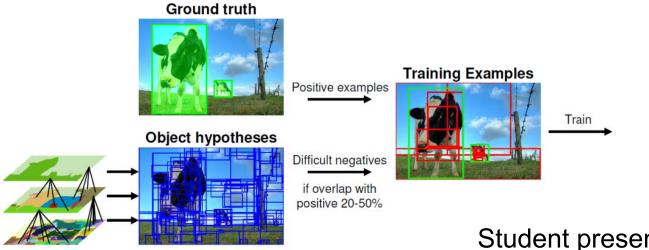
high scoring false positives (not enough overlap)



Selective search for object location [v.d.Sande et al. 11]

Pre-select class-independent candidate image windows with segmentation

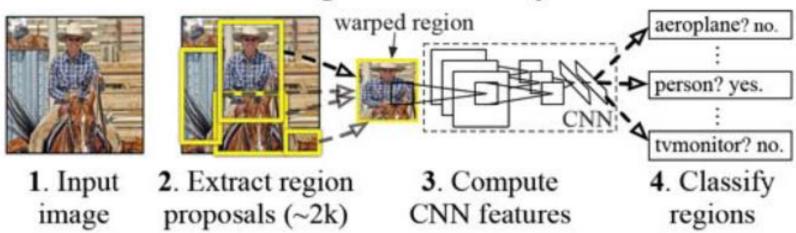
- Local features + bag-of-words
- SVM classifier with histogram intersection kernel + hard negative mining



Student presentation

CNN features for detection

R-CNN: Regions with CNN features



Object detection system overview. Our system (1) takes an input image, (2) extracts around 2000 bottom-up region proposals, (3) computes features for each proposal using a large convolutional neural network (CNN), and then (4) classifies each region using class-specific linear SVMs. R-CNN achieves a mean average precision (mAP) of 53.7% on PASCAL VOC 2010. For comparison, Uijlings et al. (2013) report 35.1% mAP using the same region proposals, but with a spatial pyramid and bag-of-visual-words approach. The popular deformable part models perform at 33.4%.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR'14