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Action recognition - goalAction recognition goal

• Short actions, i.e. answer phone, shake hands 

h hand shakeanswer phone hand shake



Action recognition - goalAction recognition goal

Activities/events i e making a sandwich doing homework• Activities/events, i.e. making a sandwich, doing homework

Making sandwich Doing homeworkg g

TrecVid Multi-media event detection dataset



Action recognition - goalAction recognition goal

Activities/events i e birthday party parade• Activities/events, i.e. birthday party, parade

Birthday party Parade y p y

TrecVid Multi-media event detection dataset



Action recognition tasks

• Action classification: assigning an action label to a video clip

Action recognition - tasks

Action classification: assigning an action label to a video clip

M ki  d i h  Making sandwich: present
Feeding animal: not present
…



Action recognition tasks

• Action classification: assigning an action label to a video clip

Action recognition - tasks

Action classification: assigning an action label to a video clip

M ki  d i h  Making sandwich: present
Feeding animal: not present
…

Action locali ation search locations of an action in a ideo• Action localization: search locations of an action in a video



OverviewOverview 

• Optical flow

• Trajectory-based low level features for action recognition



Motion fieldMotion field

• The motion field is the projection of the 3D scene motion 
into the image



Optical flowOptical flow

• Definition: optical flow is the apparent motion of 
brightness patterns in the image
Id ll ti l fl ld b th th ti• Ideally, optical flow would be the same as the motion 
field

• Have to be careful: apparent motion can be caused by• Have to be careful: apparent motion can be caused by 
lighting changes without any actual motion
– Think of a uniform rotating sphere under fixed lightingThink of a uniform rotating sphere under fixed lighting 

vs. a stationary sphere under moving illumination



Estimating optical flowEstimating optical flow

Gi t b t f ti t th t ti
I(x,y,t–1) I(x,y,t)

• Given two subsequent frames, estimate the apparent motion 
field u(x,y) and v(x,y) between them

K ti• Key assumptions
• Brightness constancy:  projection of the same point looks the 

same in every framesame in every frame
• Small motion: points do not move very far
• Spatial coherence: points move like their neighbors



The brightness constancy constraintThe brightness constancy constraint

Brightness Constancy Equation:

I(x,y,t–1) I(x,y,t)

g y q
),()1,,( ),,(),( tyxyx vyuxItyxI 

),(),(),,()1,,( yxvIyxuItyxItyxI 

Linearizing the right side using Taylor expansion:

),(),(),,()1,,( yxvIyxuItyxItyxI yx 

0 tyx IvIuIHence, tyx,



The brightness constancy constraintThe brightness constancy constraint
0 tyx IvIuI

• How many equations and unknowns per pixel?
– One equation, two unknowns

tyx

• What does this constraint mean?
0)(  II

• The component of the flow perpendicular to the gradient

0),(  tIvuI

The component of the flow perpendicular to the gradient 
(i.e., parallel to the edge) is unknown

gradient

0)','(  vuI
(u,v)

(u’ v’)

If (u, v) satisfies the equation, 
so does (u+u’, v+v’) if

edge

(u ,v )
(u+u’,v+v’)



The aperture problemThe aperture problem

P i d tiPerceived motion



The aperture problemThe aperture problem

Actual motionActual motion



Solving the aperture problemSolving the aperture problem
• How to get more equations for a pixel?
• Spatial coherence constraint: pretend the pixel’s 

neighbors have the same (u,v)
E g if we use a 5x5 window that gives us 25 equations per pixel– E.g., if we use a 5x5 window, that gives us 25 equations per pixel
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B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In International Joint Conference on Artificial Intelligence,1981.
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Lucas Kanade flowLucas-Kanade flow
• Linear least squares problem
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The summations are over all pixels in the window
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The summations are over all pixels in the window



Lucas Kanade flowLucas-Kanade flow
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Recall the Harris corner detector: M ATA is
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• Recall the Harris corner detector: M = ATA is 

the second moment matrix
• When is the system solvable?

• By looking at the eigenvalues of the second moment matrix
• The eigenvectors and eigenvalues of M relate to edge 

direction and magnitude 
The eigenvector associated with the larger eigenvalue points• The eigenvector associated with the larger eigenvalue points 
in the direction of fastest intensity change, and the other 
eigenvector is orthogonal to it



Uniform regionUniform region

– gradients have small magnitude
– small 1, small 2
– system is ill-conditioned



EdgeEdge

– gradients have one dominant direction
– large 1, small 2large 1, small 2
– system is ill-conditioned



High texture or corner regionHigh-texture or corner region

– gradients have different directions, large magnitudes
– large 1, large 2
– system is well-conditioned



Optical Flow Resultsp



Multi-resolution registrationg



Coarse to fine optical flow estimationCoarse to fine optical flow estimation

23



Optical Flow Results



Horn & Schunck algorithmHorn & Schunck algorithm 

Additional smoothness constraint : 

 ,))()(( 2222 dxdyvvuue yxyxs  
besides OF constraint equation term

,)( 2 dxdyIvIuIe tyxc  
minimize es+ec λ regularization parameter

B.K.P. Horn and B.G. Schunck, "Determining optical flow." Artificial Intelligence,1981



Horn & Schunck algorithmHorn & Schunck algorithm



Horn & Schunck
The Euler-Lagrange equations : 
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In our case ,
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so the Euler-Lagrange equations are 
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 is the Laplacian operator



Horn & Schunck

Remarks : 

1. Coupled PDEs solved using iterative 
methods and finite differences

,)(          xtyx IIvIuIu
t
u



 

,)(          ytyx IIvIuIv
t
v



 

2. Information spreads from corner-type 
patterns
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Horn & SchunckHorn & Schunck

• Works well for small displacements
– For example Middlebury sequence  

29



Large displacement estimation in optical flow

 Large displacement is still an open problem in optical flow estimation

MPI Sintel dataset



Large displacement optical flow

 Classical optical flow [Horn and Schunck 1981]

► energy:

color/gradient constancy smoothness constraint

► minimization using a coarse-to-fine scheme

g y

 Large displacement approaches:
► LDOF    [Brox and Malik 2011]

a matching term, penalizing the difference between flow and HOG matches

► MDP-Flow2   [Xu et al. 2012]
e pensi e f sion of matches (SIFT + PatchMatch) and estimated flo at each le elexpensive fusion of matches (SIFT + PatchMatch) and estimated flow at each level

► DeepFlow [Weinzaepfel et al. 2013]
deep matching + flow refinement with variational approachdeep matching + flow refinement with variational approach



Deep Matching: main idea

First image Second image

 Each subpatch is allowed to move:
► independently

First image Second image

► independently
► in a limited range depending on its size

Th h i f t t t i l ti d li The approach is fast to compute using convolution and max-pooling

 The idea is applied recursivelypp y



Deep Matching (1)

non-overlapping 
patches of 4x4 pixels

Reference image

p p

convolution

Target imageTarget image



Deep Matching (2)

response maps for 
each 4x4 patch

response maps 
of 8x8 patches

max-pooling sub-sampling aggregation

max-pooling sub-samplingp g

(3x3 filter)

p g

(half)

aggregationaggregation



Deep Matching (2)

response maps for 
each 4x4 patch

response maps 
of 8x8 patches

max-pooling sub-sampling aggregation

max-pooling sub-sampling aggregation

response maps 
of 16x16 patches

max-pooling sub-sampling aggregation

response maps 
of 32x32 patches

max-pooling sub-sampling aggregation

…

Pipeline similar in spirit to deep convolutional nets [Lecun et al. 1998]



Deep Matching (3)

Extract scale-space 
local maxima

Backtrack quasi-dense 
correspondences

Multi-scale response pyramid

local maxima correspondences

p py

Bottom-up Top-down



Deep Matching (3) local maximum

First 
image

Second 
image



Deep Matching: example results

 Repetitive textures     

First image Second image



Deep Matching: example results

 Non-rigid deformation

First image Second image



DeepFlow

 Classical optical flow [Horn and Schunck 1981]

► energy

 Integration of Deep Matching

energy► energy

► matches guide the flow
► similar to [Brox and Malik 2011]► similar to [Brox and Malik 2011]

 Minimization using: Minimization using:
► coarse-to-fine strategy
► fixed point iterations
► Successive Over Relaxation (SOR)► Successive Over Relaxation (SOR)



Experimental results: datasets

 MPI-Sintel [Butler et al. 2012]

► sequences from a realistic animated movie
► large displacements (>20px for 17 5% of pixels)► large displacements (>20px for 17.5% of pixels)
► atmospheric effects and motion blur



Experimental results: datasets

 KITTI [Geiger et al. 2013]

► sequences captured from a driving platform
► large displacements (>20px for 16% of pixels)► large displacements (>20px for 16% of pixels)
► real-world: lightings, surfaces, materials



Experimental results: sample results

Ground-truthGround truth

LDOF [Brox & Malik 2011]

MDP-Flow2 [Xu et al. 2012]

DeepFlow



Experimental results: sample results

Ground-truthGround truth

LDOF [Brox & Malik 2011]

MDP-Flow2 [Xu et al. 2012]

DeepFlow



Experimental results: improvements due to Deep Matching

 Comparison on MPI-Sintel training set
► AEE: average endpoint error
► s40+: only on large displacements► s40+: only on large displacements

HOG matching Deep MatchingHOG matching Deep Matching



OverviewOverview 

• Optical flow

• Trajectory-based low level features for action recognition



Dense trajectories [Wang et al. IJCV’13]

- Dense sampling

j [ g ]

- Feature tracking based on optical flow 
- Trajectory-aligned descriptors



Trajectory descriptors j y p

Motion boundary descriptorMotion boundary descriptor
– spatial derivatives are calculated separately for optical flow in x and y, quantized
into a histogram 
– relative dynamics of different regions
– suppresses constant motions



Dense trajectories

 Advantages:

- Captures the intrinsic dynamic structures in videos

- MBH is robust to certain camera motion

Disadvantages: Disadvantages:

- Generates irrelevant trajectories in background due to camera motion

- Motion descriptors are modified by camera motion, e.g., HOF, MBH



Improved dense trajectories [Wang et al. ICCV’13]

- Improve dense trajectories by explicit camera motion estimation

- Detect humans to remove outlier matches for homography estimation
- Stabilize optical flow to eliminate camera motion



Camera motion estimation
 Find the correspondences between two consecutive frames:

- Extract and match SURF features (robust to motion blur)

- Use optical flow, remove uninformative points 

 Combine SURF (green) and optical flow (red) results in a (g ) p ( )
more balanced distribution

 Use RANSAC to estimate a homography from all feature matches

Inlier matches of the homography



Remove inconsistent matches due to humans
 Human motion is not constrained by camera motion, thus 
generates outlier matchesgenerates outlier matches
 Apply a human detector in each frame, and track the human 
bounding box forward and backward to join detections

 Remove feature matches inside the human bounding box 
during homography estimation

Inlier matches and warped flow without or with HDInlier matches and warped  flow, without or with HD



Remove background trajectories g j
 Remove trajectories by thresholding the maximal magnitude 

of stabilized motion vectors
 Our method works well under various camera motions, such as pan,  
zoom, tilt

Successful examples Failure casesp

Removed trajectories (white) and foreground ones (green)

 Failure due to severe motion blur; the homography is not  correctly 
estimated due to unreliable feature matchesestimated due to unreliable feature matches



Experimental setting

"RootSIFT" normalization for each descriptor, then PCA 
 Motion stabilized trajectories and features (HOG, HOF, MBH) 

p ,
to reduce its dimension by a factor of two

 Use Fisher vector to encode each descriptor separately, 
set the number of Gaussians to K=256set the number of Gaussians to K=256

 Use Power+L2 normalization for FV, and linear SVM 
with one-against-rest for multi-class classification

Datasets

 Hollywood2: 12 classes from 69 movies, report mAP

 HMDB51: 51 classes, report accuracy on three splits

 Olympic sports: 16 sport actions, report mAP

 UCF50: 50 classes report accuracy over 25 groups UCF50: 50 classes, report accuracy over 25 groups



Evaluation of the intermediate steps

HOG HOF MBH HOF+MBH Combined
DTF 38 4% 39 5% 49 1% 49 8% 52 2%DTF 38.4% 39.5% 49.1% 49.8% 52.2%
ITF 40.2% 48.9% 52.1% 54.7% 57.2%

Results on HMDB51 using Fisher vector

 Baseline: DTF = "dense trajectory feature"

Results on HMDB51 using Fisher vector

 ITF = "improved trajectory feature”

j y

 HOF improves significantly and MBH somewhat 
 Almost no impact on HOG

 HOF and MBH are complementary, as they represent  zero and first order 
motion information



Impact of feature encoding on improved trajectories

Datasets Bag of features Fisher vector
DTF ITF DTF ITFDTF ITF DTF ITF

Hollywood2 58.5% 62.2% 60.1% 64.3%
HMDB51 47.2% 52.1% 52.2% 57.2%
Olympic Sport 75.4% 83.3% 84.7% 91.1%
UCF50 84.8% 87.2% 88.6% 91.2%

 Standard bag of features: train a codebook of 4000 visual words with k-

Compare DTF and ITF using different feature encoding

 We observe a similar improvement of ITF over DTF  when using 

g
means for each descriptor type;  RBF- kernel SVM for classification

BOF or FV for feature encoding

 The improvement of FV over BOF varies from 2% to 7% depending 
on the dataseton the dataset



Impact of human detection and state of the artp

 Human detection always helps. For Hollywood2 and HMDB51, the

HD = human detection

 Significantly outperforms the state of the art on all four datasets

Human detection always helps. For Hollywood2 and HMDB51, the 
difference is more significant, as there are more humans present



Results on TrecVid MED 2013Results on TrecVid MED 2013

100 positive video clips per event category 5000 negative• 100 positive video clips per event category, 5000 negative 
video clips

• Testing on 98000 videos clips i e 4000 hours• Testing on 98000 videos clips, i.e., 4000 hours
• 20 known events, 10 adhoc events
• Videos come from publicly available user generated• Videos come from publicly available, user-generated 

content on various Internet sites

• Descriptors: MBH, SIFT, audio, text & speech recognition



Quantitative results on TrecVid MED’11Quantitative results on TrecVid MED 11

Performance of all channels (mAP)



Quantitative results on TrecVid MED’11Quantitative results on TrecVid MED 11

Performance of all channels (mAP)



Quantitative results on TrecVid MED’11Quantitative results on TrecVid MED 11

Performance of all channels (mAP)



Quantitative results on TrecVid MED’11Quantitative results on TrecVid MED 11

Performance of all channels (mAP)



TrecVid MED 2013 resultsTrecVid MED 2013 - results

rank 1 rank 2 rank 3

Horse riding competition



TrecVid MED 2013 resultsTrecVid MED 2013 - results

rank 1 rank 2 rank 3

Tuning a musical instrument


