Action recognition in videos

Cordelia Schmid

Action recognition - goal

• Short actions, i.e. answer phone, shake hands

answer phone

hand shake

Action recognition - goal

• Activities/events, i.e. making a sandwich, doing homework

Making sandwich

Doing homework

TrecVid Multi-media event detection dataset

Action recognition - goal

• Activities/events, i.e. birthday party, parade

Birthday party

Parade

TrecVid Multi-media event detection dataset

Action recognition - tasks

• Action classification: assigning an action label to a video clip

...

Making sandwich: present Feeding animal: not present

Action recognition - tasks

• Action classification: assigning an action label to a video clip

. . .

Making sandwich: present Feeding animal: not present

• Action localization: search locations of an action in a video

Overview

- Optical flow
- Trajectory-based low level features for action recognition

Motion field

• The motion field is the projection of the 3D scene motion into the image

Optical flow

- Definition: optical flow is the *apparent* motion of brightness patterns in the image
- Ideally, optical flow would be the same as the motion field
- Have to be careful: apparent motion can be caused by lighting changes without any actual motion
 - Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination

- Given two subsequent frames, estimate the apparent motion field u(x,y) and v(x,y) between them
- Key assumptions
 - Brightness constancy: projection of the same point looks the same in every frame
 - Small motion: points do not move very far
 - Spatial coherence: points move like their neighbors

The brightness constancy constraint

Brightness Constancy Equation:

$$I(x, y, t-1) = I(x + u(x, y), y + v(x, y), t)$$

Linearizing the right side using Taylor expansion:

$$I(x, y, t-1) \approx I(x, y, t) + I_x u(x, y) + I_y v(x, y)$$

Hence,
$$I_x u + I_y v + I_t \approx 0$$

The brightness constancy constraint

$$I_x u + I_y v + I_t = 0$$

- How many equations and unknowns per pixel?
 One equation, two unknowns
- What does this constraint mean? $\nabla I \cdot (u, v) + I_t = 0$
- The component of the flow perpendicular to the gradient (i.e., parallel to the edge) is unknown

If (u, v) satisfies the equation, so does (u+u', v+v') if $\nabla I \cdot (u', v') = 0$

The aperture problem

The aperture problem

Solving the aperture problem

- How to get more equations for a pixel?
- **Spatial coherence constraint:** pretend the pixel's neighbors have the same (u,v)
 - E.g., if we use a 5x5 window, that gives us 25 equations per pixel

$$\begin{bmatrix} I_x(\mathbf{x}_1) & I_y(\mathbf{x}_1) \\ I_x(\mathbf{x}_2) & I_y(\mathbf{x}_2) \\ \vdots & \vdots \\ I_x(\mathbf{x}_n) & I_y(\mathbf{x}_n) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{x}_1) \\ I_t(\mathbf{x}_2) \\ \vdots \\ I_t(\mathbf{x}_n) \end{bmatrix}$$

B. Lucas and T. Kanade. <u>An iterative image registration technique with an application to</u> <u>stereo vision.</u> In *International Joint Conference on Artificial Intelligence*,1981.

Lucas-Kanade flow

• Linear least squares problem

$$\begin{bmatrix} I_x(\mathbf{x}_1) & I_y(\mathbf{x}_1) \\ I_x(\mathbf{x}_2) & I_y(\mathbf{x}_2) \\ \vdots & \vdots \\ I_x(\mathbf{x}_n) & I_y(\mathbf{x}_n) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{x}_1) \\ I_t(\mathbf{x}_2) \\ \vdots \\ I_t(\mathbf{x}_n) \end{bmatrix}$$

 $\mathbf{A}_{n\times 2} \mathbf{d}_{2\times 1} = \mathbf{b}_{n\times 1}$

Solution given by $(\mathbf{A}^T \mathbf{A})\mathbf{d} = \mathbf{A}^T \mathbf{b}$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

The summations are over all pixels in the window

Lucas-Kanade flow

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

- Recall the Harris corner detector: $M = A^T A$ is the second moment matrix
- When is the system solvable?
 - By looking at the eigenvalues of the second moment matrix
 - The eigenvectors and eigenvalues of M relate to edge direction and magnitude
 - The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change, and the other eigenvector is orthogonal to it

Uniform region

- gradients have small magnitude
- small λ_1 , small λ_2
- system is ill-conditioned

- gradients have one dominant direction
- large λ_1 , small λ_2
- system is ill-conditioned

High-texture or corner region

- gradients have different directions, large magnitudes
- large λ_1 , large λ_2
- system is well-conditioned

Optical Flow Results

Multi-resolution registration

Coarse to fine optical flow estimation

Optical Flow Results

Horn & Schunck algorithm

Additional smoothness constraint :

$$e_{s} = \iint ((u_{x}^{2} + u_{y}^{2}) + (v_{x}^{2} + v_{y}^{2}))dxdy,$$

besides OF constraint equation term

$$e_c = \iint (I_x u + I_y v + I_t)^2 dx dy,$$

minimize es+λec

 λ regularization parameter

B.K.P. Horn and B.G. Schunck, "Determining optical flow." Artificial Intelligence, 1981

Horn & Schunck algorithm

According to the calculus of variations, a minimizer of E must fulfill the Euler-Lagrange equations

Horn & Schunck

The Euler-Lagrange equations :

$$F_{u} - \frac{\partial}{\partial x} F_{u_{x}} - \frac{\partial}{\partial y} F_{u_{y}} = 0$$
$$F_{v} - \frac{\partial}{\partial x} F_{v_{x}} - \frac{\partial}{\partial y} F_{v_{y}} = 0$$

In our case,

$$F = (u_x^2 + u_y^2) + (v_x^2 + v_y^2) + \lambda (I_x u + I_y v + I_t)^2,$$

so the Euler-Lagrange equations are

$$\Delta u = \lambda (I_x u + I_y v + I_t) I_x,$$
$$\Delta v = \lambda (I_x u + I_y v + I_t) I_y,$$

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$
 is the Laplacian operator

Horn & Schunck

Remarks :

1. Coupled PDEs solved using iterative methods and finite differences $\frac{\partial u}{\partial t} = \Delta u - \lambda (I_x u + I_y v + I_t) I_x,$ $\frac{\partial v}{\partial t} = \Delta v - \lambda (I_x u + I_y v + I_t) I_y,$

2. Information spreads from corner-type patterns

Horn & Schunck

- Works well for small displacements
 - For example Middlebury sequence

Large displacement estimation in optical flow

• Large displacement is still an open problem in optical flow estimation

MPI Sintel dataset

Large displacement optical flow

- Classical optical flow [Horn and Schunck 1981]
 - energy: $E(\mathbf{w}) = \iint E_{data} + \alpha E_{smooth} \mathbf{dx}$ color/gradient constancy smoothness constraint
 - minimization using a coarse-to-fine scheme
- Large displacement approaches:
 - ► LDOF [Brox and Malik 2011]

a matching term, penalizing the difference between flow and HOG matches

$$E(\mathbf{w}) = \iint E_{data} + \alpha E_{smooth} + \beta E_{match} \mathbf{dx}$$

 MDP-Flow2 [Xu et al. 2012] expensive fusion of matches (SIFT + PatchMatch) and estimated flow at each level

 DeepFlow [Weinzaepfel et al. 2013] deep matching + flow refinement with variational approach

Deep Matching: main idea

First image

Second image

- Each subpatch is allowed to move:
 - ▶ independently
 - ▶ in a limited range depending on its size
- The approach is fast to compute using convolution and max-pooling
- The idea is applied recursively

Deep Matching (2)

Deep Matching (2)

Pipeline similar in spirit to deep convolutional nets [Lecun et al. 1998]

...

Deep Matching (3)

Bottom-up

Top-down

Deep Matching (3)

First image

Second image

Deep Matching: example results

• Repetitive textures

First image

Second image

Deep Matching: example results

• Non-rigid deformation

First image

Second image

DeepFlow

• Classical optical flow [Horn and Schunck 1981]

• energy
$$E(\mathbf{w}) = \iint E_{data} + \alpha E_{smooth} \mathbf{dx}$$

• Integration of Deep Matching

• energy
$$E(\mathbf{w}) = \iint E_{data} + \alpha E_{smooth} + \beta E_{match} \mathbf{dx}$$

- ▶ matches guide the flow
- ▶ similar to [Brox and Malik 2011]
- Minimization using:
 - coarse-to-fine strategy
 - ► fixed point iterations
 - Successive Over Relaxation (SOR)

Experimental results: datasets

- MPI-Sintel [Butler et al. 2012]
 - ► sequences from a realistic animated movie
 - ► large displacements (>20px for 17.5% of pixels)
 - ► atmospheric effects and motion blur

Experimental results: datasets

- KITTI [Geiger et al. 2013]
 - ► sequences captured from a driving platform
 - ► large displacements (>20px for 16% of pixels)
 - ► real-world: lightings, surfaces, materials

Experimental results: sample results

DeepFlow

Experimental results: sample results

Ground-truth

LDOF [Brox & Malik 2011]

MDP-Flow2 [Xu et al. 2012]

DeepFlow

Experimental results: improvements due to Deep Matching

- Comparison on MPI-Sintel training set
 - ► AEE: average endpoint error
 - ► s40+: only on large displacements

Matching	Flow evaluation			
	AEE	s40+		
No match	5.54	39.86		
KLT [OpenCV]	5.51	39.20		
SIFT-NN	5.44	38.28		
HOG-NN	5.27	37.86		
Deep Matching	4.42	29.23		

HOG matching

Deep Matching

Overview

- Optical flow
- Trajectory-based low level features for action recognition

Dense trajectories [Wang et al. IJCV'13]

- Dense sampling
- Feature tracking based on optical flow
- Trajectory-aligned descriptors

Trajectory descriptors

Motion boundary descriptor

– spatial derivatives are calculated separately for optical flow in x and y, quantizec into a histogram

- relative dynamics of different regions
- suppresses constant motions

Dense trajectories

- Advantages:
- Captures the intrinsic dynamic structures in videos
- MBH is robust to certain camera motion
- Disadvantages:
 - Generates irrelevant trajectories in background due to camera motion
 - Motion descriptors are modified by camera motion, e.g., HOF, MBH

Improved dense trajectories [Wang et al. ICCV'13]

- Improve dense trajectories by explicit camera motion estimation
- Detect humans to remove outlier matches for homography estimation
- Stabilize optical flow to eliminate camera motion

Camera motion estimation

- Find the correspondences between two consecutive frames:
- Extract and match SURF features (robust to motion blur)
- Use optical flow, remove uninformative points
- Combine SURF (green) and optical flow (red) results in a more balanced distribution
- Use RANSAC to estimate a homography from all feature matches

Inlier matches of the homography

Remove inconsistent matches due to humans

- Human motion is not constrained by camera motion, thus generates outlier matches
- Apply a human detector in each frame, and track the human bounding box forward and backward to join detections
- Remove feature matches inside the human bounding box during homography estimation

Inlier matches and warped flow, without or with HD

Remove background trajectories

- Remove trajectories by thresholding the maximal magnitude of stabilized motion vectors
- Our method works well under various camera motions, such as pan, zoom, tilt

Successful examples

Failure cases

Removed trajectories (white) and foreground ones (green)

• Failure due to severe motion blur; the homography is not correctly estimated due to unreliable feature matches

Experimental setting

- Motion stabilized trajectories and features (HOG, HOF, MBH)
- •"RootSIFT" normalization for each descriptor, then PCA to reduce its dimension by a factor of two
- Use Fisher vector to encode each descriptor separately, set the number of Gaussians to K=256
- Use Power+L2 normalization for FV, and linear SVM with one-against-rest for multi-class classification

Datasets

- Hollywood2: 12 classes from 69 movies, report mAP
- HMDB51: 51 classes, report accuracy on three splits
- Olympic sports: 16 sport actions, report mAP
- UCF50: 50 classes, report accuracy over 25 groups

Evaluation of the intermediate steps

	HOG	HOF	MBH	HOF+MBH	Combined
DTF	38.4%	39.5%	49.1%	49.8%	52.2%
ITF	40.2%	48.9%	52.1%	54.7%	57.2%

Results on HMDB51 using Fisher vector

- Baseline: DTF = "dense trajectory feature"
- ITF = "improved trajectory feature"
- HOF improves significantly and MBH somewhat
- Almost no impact on HOG
- HOF and MBH are complementary, as they represent zero and first order motion information

Impact of feature encoding on improved trajectories

Datasets	Bag of features		Fisher vector		
	DTF	ITF	DTF	ITF	
Hollywood2	58.5%	62.2%	60.1%	64.3%	
HMDB51	47.2%	52.1%	52.2%	57.2%	
Olympic Sport	75.4%	83.3%	84.7%	91.1%	
UCF50	84.8%	87.2%	88.6%	91.2%	

Compare DTF and ITF using different feature encoding

- Standard bag of features: train a codebook of 4000 visual words with k-means for each descriptor type; RBF- χ^2 kernel SVM for classification
- We observe a similar improvement of ITF over DTF when using BOF or FV for feature encoding
- The improvement of FV over BOF varies from 2% to 7% depending on the dataset

Impact of human detection and state of the art

- Human detection always helps. For Hollywood2 and HMDB51, the difference is more significant, as there are more humans present
- Significantly outperforms the state of the art on all four datasets

Results on TrecVid MED 2013

- 100 positive video clips per event category, 5000 negative video clips
- Testing on 98000 videos clips, i.e., 4000 hours
- 20 known events, 10 adhoc events
- Videos come from publicly available, user-generated content on various Internet sites
- Descriptors: MBH, SIFT, audio, text & speech recognition

Performance of all channels (mAP)

Channel	mAP
Motion Static Audio OCR ASR	$\begin{array}{c} 44.65 \\ 33.97 \\ 18.15 \\ 10.85 \\ 8.21 \end{array}$
Visual=Motion+Static Visual+Audio Visual+OCR Visual+ASR Visual+Audio+OCR+ASR	$\begin{array}{c} 47.22 \\ 50.41 \\ 48.97 \\ 48.28 \\ 52.28 \end{array}$

Performance of all channels	rthday rty	
Channel	mAP	Bin
Motion Static Audio OCR ASR	$\begin{array}{c} 44.65\\ 33.97\\ 18.15\\ 10.85\\ 8.21 \end{array}$	30.7 25.9 33.3 10.1 3.6
Visual=Motion+Static Visual+Audio Visual+OCR Visual+ASR Visual+Audio+OCR+ASR	$\begin{array}{c} 47.22 \\ 50.41 \\ 48.97 \\ 48.28 \\ 52.28 \end{array}$	34.8 47.7 35.8 35.0 48.4

Performance of all channels Channel	(mAP) mAP	Birthday party	Repair appliance
Motion Static Audio OCR ASR	$\begin{array}{c} 44.65\\ 33.97\\ 18.15\\ 10.85\\ 8.21 \end{array}$	30.7 25.9 33.3 10.1 3.6	$\begin{array}{c} 42.6 \\ 43.6 \\ 43.3 \\ 32.1 \\ 39.2 \end{array}$
Visual=Motion+Static Visual+Audio Visual+OCR Visual+ASR Visual+Audio+OCR+ASR	47.22 50.41 48.97 48.28 52.28	$\begin{array}{c} 34.8 \\ 47.7 \\ 35.8 \\ 35.0 \\ 48.4 \end{array}$	$47.5 \\ 54.5 \\ 50.8 \\ 54.5 \\ 57.2$

Performance of all channels Channel	(mAP) mAP	Birthday party	Repair appliance	Make sandwich
Motion Static Audio OCR ASR	$\begin{array}{c} 44.65 \\ 33.97 \\ 18.15 \\ 10.85 \\ 8.21 \end{array}$	$30.7 \\ 25.9 \\ 33.3 \\ 10.1 \\ 3.6$	$\begin{array}{c} 42.6 \\ 43.6 \\ 43.3 \\ 32.1 \\ 39.2 \end{array}$	$22.5 \\ 21.5 \\ 11.2 \\ 19.4 \\ 6.7$
$ Visual=Motion+Static \\ Visual+Audio \\ Visual+OCR \\ Visual+ASR \\ Visual+Audio+OCR+ASR \\ Visual+Audio+OCR+ASR \\ Visual+Audio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ $	$\begin{array}{r} 47.22 \\ 50.41 \\ 48.97 \\ 48.28 \\ 52.28 \end{array}$	$\begin{array}{c} 34.8 \\ 47.7 \\ 35.8 \\ 35.0 \\ 48.4 \end{array}$	47.5 54.5 50.8 54.5 57.2	$27.8 \\ 27.3 \\ 35.7 \\ 28.8 \\ 35.4$

TrecVid MED 2013 - results

rank 1

rank 3

Horse riding competition

TrecVid MED 2013 - results

Tuning a lever harp to the key of E Flat Major

rank 1

rank 2

rank 3

Tuning a musical instrument

