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Classification

 Given training data labeled for two or more classes

 Determine a surface that separates those classes

 Use that surface to predict the class membership of new data



Classification examples in category-level recognition

 Image classification: for each of a set of labels, predict if it is relevant or not 
for a given image.

 For example: Person = yes, TV = yes, car = no, ...



Classification examples in category-level recognition

 Category localization: predict bounding box coordinates. 
 Classify each possible bounding box as containing the category or not.
 Report most confidently classified box.



Classification examples in category-level recognition

 Semantic segmentation: classify pixels to categories (multi-class)
 Impose spatial smoothness by Markov random field models.



Classification examples in category-level recognition

 Event recognition: classify video as belonging to a certain category or not.
 Example of “cliff diving” category video recognized by our system.



Classification examples in category-level recognition

 Temporal action localization: find all instances in a movie.
 Enables “fast-forward” to actions of interest, here “drinking”



Classification

 Goal is to predict for a test data input the corresponding class label.
– Data input x, eg. image but could be anything, format may be vector or other
– Class label y, can take one out of at least 2 discrete values, can be more

► In binary classification we often refer to one class as “positive”, and the 
other as “negative”

 Classifier: function f(x) that assigns a class to x, or probabilities over the 
classes.

 Training data: pairs (x,y) of inputs x, and corresponding class label y.

 Learning a classifier: determine function f(x) from some family of functions 
based on the available training data.

 Classifier partitions the input space into regions where data is assigned to a 
given class

– Specific form of these boundaries will depend on the family of classifiers used



Generative classification: principle

 Model the class conditional distribution over data x for each class y:
► Data of the class can be sampled (generated) from this distribution 

 Estimate the a-priori probability that a class will appear

 Infer the probability over classes using Bayes' rule of conditional probability

 Unconditional distribution on x is obtained by marginalizing over the class y

p ( y∣x)=
p ( y) p(x∣y)
p (x)

p(x)=∑y
p( y) p(x∣y)

p(x∣y)

p( y)



Generative classification: practice

 In order to apply Bayes' rule, we need to estimate two distributions.

 A-priori class distribution
► In some cases the class prior probabilities are known in advance.
► If the frequencies in the training data set are representative for the true 

class probabilities, then estimate the prior by these frequencies.
► More elaborate methods exist, but not discussed here.

 Class conditional data distributions
► Select a class of density models

 Parametric model, e.g. Gaussian, Bernoulli, …
 Semi-parametric models: mixtures of Gaussian, Bernoulli, ...
 Non-parametric models: histograms, nearest-neighbor method, …
 Or more structured models taking problem knowledge into account.

► Estimate the parameters of the model using the data in the training set 
associated with that class.



Estimation of the class conditional model

 Given a set of n samples from a certain class, and a family of distributions.

 Question how do we quantify the fit of a certain model to the data, and how 
do we find the best model defined in this sense?

 Maximum a-posteriori (MAP) estimation: use Bayes' rule again as follows:
► Assume a prior distribution over the parameters of the model
► Then the posterior likelihood of the model given the data is 

► Find the most likely model given the observed data

 Maximum likelihood parameter estimation: assume prior over parameters is 
uniform (for bounded parameter spaces), or “near uniform” so that its effect 
is negligible for the posterior on the parameters.
► In this case the MAP estimator is given by 
► For i.id. samples: 

p(θ)

X={x1, ... , xn} P={pθ(x);θ∈Θ}

p(θ∣X)=p(x∣θ) p(θ)/ p(X)

θ̂=argmax θ p(θ∣X )=argmax θ{ln p(θ)+ ln p(X∣θ)}

θ̂=argmax θ∏i=1

n
p(x i∣θ)=argmax θ∑i=1

n
ln p(xi∣θ)

θ̂=argmax θ p(X∣θ)



Generative classification methods

 Generative probabilistic methods use Bayes’ rule for prediction
► Problem is reformulated as one of parameter/density estimation

 Adding new classes to the model is easy:
► Existing class conditional models stay as they are
► Estimate p(x|new class) from training examples of new class
► Re-estimate class prior probabilities

p ( y∣x)=
p ( y) p(x∣y)
p (x)

p (x)=∑y
p ( y) p (x∣y)



Example of generative classification

 Three-class example in 2D with parametric model
– Single Gaussian model per class, uniform class prior
– Exercise 1: how is this model related to the Gaussian mixture model we 

looked at last week for clustering ? 
– Exercise 2: characterize surface of equal class probability when the 

covariance matrices are the same for all classes

p ( y∣x)=
p ( y) p(x∣y)
p (x)p(x∣y)



Density estimation, e.g. for class-conditional models

 Any type of data distribution may be used, preferably one that is modeling 
the data well, so that we can hope for accurate classification results.

 If we do not have a clear understanding of the data generating process, we 
can use a generic approach,

► Gaussian distribution, or other reasonable parametric model
 Estimation in closed form, otherwise often relatively simple estimation

► Mixtures of XX
 Estimation using EM algorithm, not more complicated than single XX

► Non-parametric models can adapt to any data distribution given enough 
data for estimation. Examples: (multi-dimensional) histograms, and 
nearest neighbors.
 Estimation often trivial, given a single smoothing parameter. 



Histogram density estimation

 Suppose we have N data points use a histogram with C cells
 Consider maximum likelihood estimator

 Take into account constraint that density should integrate to one

 Exercise: derive maximum likelihood estimator 

 Some observations:
► Discontinuous density estimate
► Cell size determines smoothness
► Number of cells scales exponentially 

with the dimension of the data

θ̂=argmaxθ∑i=1

n
pθ(x i)=argmaxθ∑c=1

C
nc lnθc

θC :=1−(∑k=1

C−1
vkθk )/vC



The Naive Bayes model

 Histogram estimation, and other methods, scale poorly with data dimension
► Fine division of each dimension: many empty bins
► Rough division of each dimension: poor density model

 Even for one cut per dimension: 2D cells 

 The number of parameters can be made linear in the data dimensionality by 
assuming independence between the dimensions 

 For example, for histogram model: we estimate a histogram per dimension
► Still CD cells, but only D x C parameters to estimate, instead of CD

 Independence assumption can be (very) unrealistic for high dimensional data
► But classification performance may still be good using the derived p(y|x)
► Partial independence, e.g. using graphical models, relaxes this problem.

 Principle can be applied to estimation with any type of density estimate

p(x)=∏d=1

D
p(x (d))



Example of a naïve Bayes model

 Hand-written digit classification
– Input: binary 28x28 scanned digit images, collect in 784 long bit string

– Desired output: class label of image

 Generative model over 28 x 28 pixel images: 2784 possible images
– Independent Bernoulli model for each class
– Probability per pixel per class
– Maximum likelihood estimator is average value

per pixel/bit per class

 Classify using Bayes’ rule: p ( y∣x)=
p ( y) p(x∣y)
p (x)

p (x∣y=c)=∏d
p (xd∣y=c)

p (xd=1∣y=c)=θcd
p (xd=0∣y=c)=1−θcd



k-nearest-neighbor density estimation: principle

 Instead of having fixed cells as in histogram method, 
► Center cell on the test sample for which we evaluate the density.
► Fix number of samples in the cell, find the corresponding cell size.

 Probability to find a point in a sphere A centered on x
0
 with volume v is

 A smooth density is approximately constant in small region, and thus

 Alternatively: estimate P from the fraction of training data in A:
– Total N data points, k in the sphere A

 Combine the above to obtain estimate

 Note: density estimates not guaranteed to integrate to one!

P(x∈A )=∫A
p( x)dx

P(x∈A )=∫A
p(x)dx≈∫A

p(x0)dx=p(x0)v A

P(x∈A )≈ k
N

p(x0)≈
k
NvA



k-nearest-neighbor density estimation: practice

 Procedure in practice: 
► Choose  k 
► For given x, compute the volume v which contain k samples.
► Estimate density with 

 Volume of a sphere with radius r in d dimensions is 

 What effect does k have?
► Data sampled from mixture 

of Gaussians plotted in green
► Larger k, larger region, 

smoother estimate
► Similar role as cell size for

histogram estimation

p( x)≈ k
Nv

v (r , d)= 2rdπd /2

Γ(d /2+ 1)



K-nearest-neighbors for classification 

 Use Bayes' rule with kNN density estimation for p(x|y)

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates

► Estimate class prior probabilities 

► Calculate class posterior distribution as fraction of k neighbors in class c

p(x∣y=c)=
k c
N c v

p( y=c)=
N c

N

p( y=c∣x)=
p( y=c) p(x∣y=c)

p(x)

= 1
p (x)

k c
Nv

=
k c
k

p(x)= k
N v



Smoothing effects for large values of k: data set

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c
N c v

p(x)= k
N v



Smoothing effects for large values of k, k=1

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c
N c v

p(x)= k
N v



Smoothing effects for large values of k, k=5

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c
N c v

p(x)= k
N v



Smoothing effects for large values of k, k=10

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c
N c v

p(x)= k
N v



Smoothing effects for large values of k, k=100

 Use Bayes' rule with kNN density estimation for p(x|y), with a little twist

► Find sphere volume v to capture k data points for estimate

► Use the same sphere for each class for estimates p(x∣y=c)=
k c
N c v

p(x)= k
N v



Summary generative classification methods

 (Semi-) Parametric models, e.g. p(x|y) is Gaussian, or mixture of …
► Pros: no need to store training data, just the class conditional models
► Cons: may fit the data poorly, and might therefore lead to poor 

classification result 

 Non-parametric models: 
► Pros: flexibility, no assumptions distribution shape, “learning” is trivial. 

KNN can be used for anything that comes with a distance.
► Cons of histograms:

• Only practical in low dimensional data (<5 or so), application in high 
dimensional data leads to exponentially many and mostly empty cells

• Naïve Bayes modeling in higher dimensional cases
– Cons of k-nearest neighbors

• Need to store all training data (memory cost)
• Computing nearest neighbors (computational cost)
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