Actom Sequence Models for Efficient Action Detection

LEAR – INRIA Grenoble

Adrien Gaidon

Zaid Harchaoui

Cordelia Schmid

Presentation by Benoit Massé

Introduction

- Video : Big Data
- Automatisation ?
 - Semantic analysis
 - Retrieval

Problem:

Find if and when a specific action happen

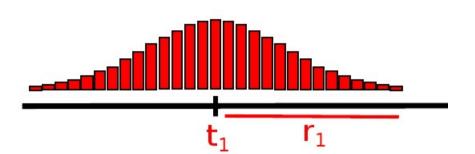
State of the art

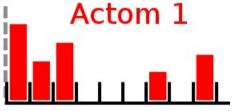
- Training
 - Define the action
 - Choose the features
 - Train
- Retrieval
 - Classification
 - Detection

State of the art

- Training
 - Define the action => Spatio-temporal extent
 - Choose the features => HoG, HoF, SP interest Point
 - Train=> Bag-of-Feature
- Retrieval
 - ClassificationSVM, Bayesian Network
 - Detection => ?

Actoms


• Actom: short atomic action

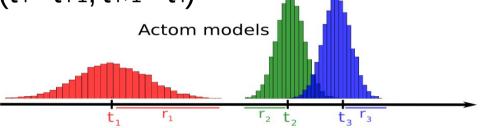

Actoms

An actom has

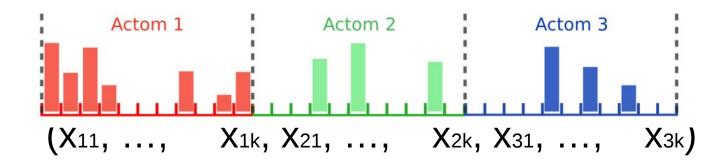
- A location t
- A radius r

Actom descriptors : Set of visual words

- Bag of Features applied on HoG, HoF, Harris Interest points...
- Ponderated sum from t r to t + r


Interest of Actoms

- An action is composed of several actoms
 - New goal: find an ordered sequence of actoms
 - No temporal dependance inside an action
 - Gap between actoms
 - Overlap
- An action can be composed of very different parts
 - => Classic methods compute the average


Actom Sequence Model (ASM)

One Action = One Actom Sequence

The radius r_i of actom i depends on its distance to the closer other actoms: min(t_i-t_{i-1}, t_{i+1}-t_i)

ASM: concatenation of actoms words

Classification

- Given a new ASM $(x_{11}, ..., x_{nk})$, does it corresponds to the trained action ? (for instance : « drinking »)
 - Classic machine learning problem
 - Chosen solution : SVM
 - Including negative examples improves the classifier

Detection

 Given a video, find all the occurences of the trained action. (for instance: « drinking »)

For every 5 frames

Set the current frame as the middle actom

Generate candidates for other actoms

Apply classification on the result

End

Delete non-maximal overlapping actions

Detection

Tricky step: Generating the other actoms

We must estimate the distance between actoms

- Training: Build the multivariate distribution {t_{i+1} t_i}
 Remove the outliers
- Estimation: Try all the possible combinations
 (starting from the middle limit the error propagation)

Experiments

4 kind of actions

- Drinking
- Smoking
- Open a door
- Sit down

Criteria

- OV20 (20 % Overlap)
- OVAA (All Actoms Overlap)

State of the art Comparison

- Bag of Features
- Bag of Features with a grid
- Other published methods

Results

Method	"Drinking"	"Smoking"	
matching criterion: OV20			
DLSBP [3]	40	NA	
LP [12]	49	NA	
KMSZ [9]	54.1	24.5	
BOF	36 (±1)	19 (±1)	
BOF T3	44 (±2)	23 (±3)	
ASM	57 (±3)	31 (±2)	
matching criterion: OVAA			
BOF	11 (±2)	1 (±0)	
BOF T3	18 (±3)	4 (±1)	
ASM	50 (±5)	22 (±2)	

Method	"Open Door"	"Sit Down"	
matching criterion: OV20			
DLSBP [3]	13.9	14.4	
BOF	12.2	14.2	
BOF T3	11.5	17.7	
ASM	16.4	19.8	
matching criterion: OVAA			
BOF	9.9	5.8	
BOF T3	5.1	13.1	
ASM	14.9	16.7	

Conclusion

ASM gives better result than state-of-the-art, using the same data sets.

=> Actoms are particularly adapted for representing the temporal structure of actions into videos

QUESTIONS?