Category-level localization

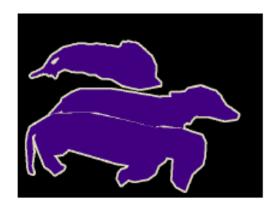
Cordelia Schmid

Recognition

- Classification
 - Object present/absent in an image
 - Often presence of a significant amount of background clutter

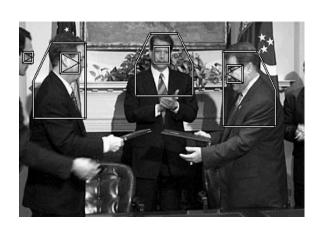
- Localization / Detection
 - Localize object within the frame
 - Bounding box or pixellevel segmentation

Pixel-level object classification



Difficulties

• Intra-class variations





- Scale and viewpoint change
- Multiple aspects of categories

Approaches

Intra-class variation

=> Modeling of the variations, mainly by learning from a large dataset, for example by SVMs

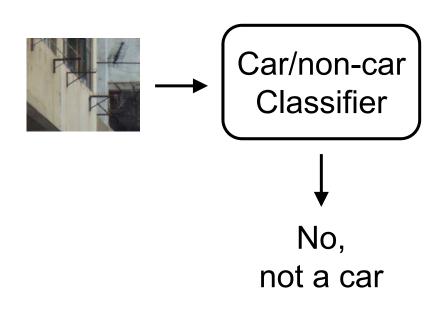
- Scale + limited viewpoints changes
 => multi-scale approach or invariant local features
- Multiple aspects of categories
 => separate detectors for each aspect, front/profile face, build an approximate 3D "category" model

Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients (HOG)
- 4. State of the art algorithms and PASCAL VOC

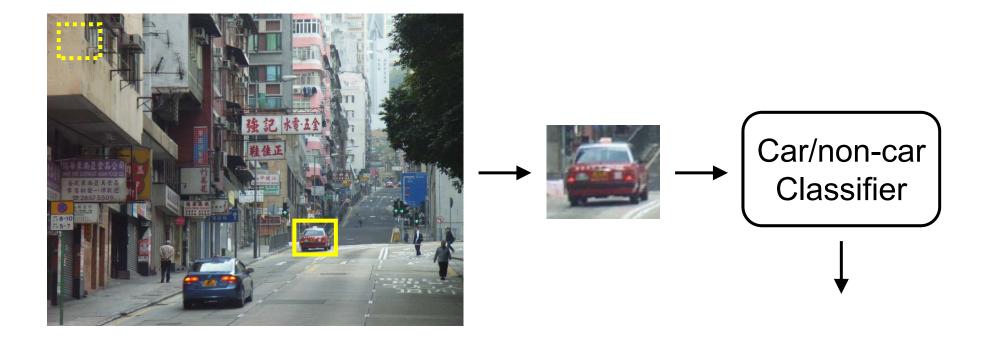
Sliding window detector

• Basic component: binary classifier



Sliding window detector

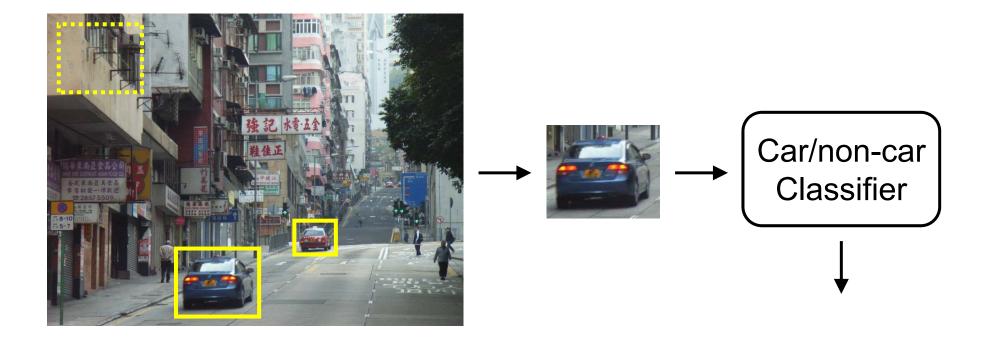
• Detect objects in clutter by search



• Sliding window: exhaustive search over position and scale

Sliding window detector

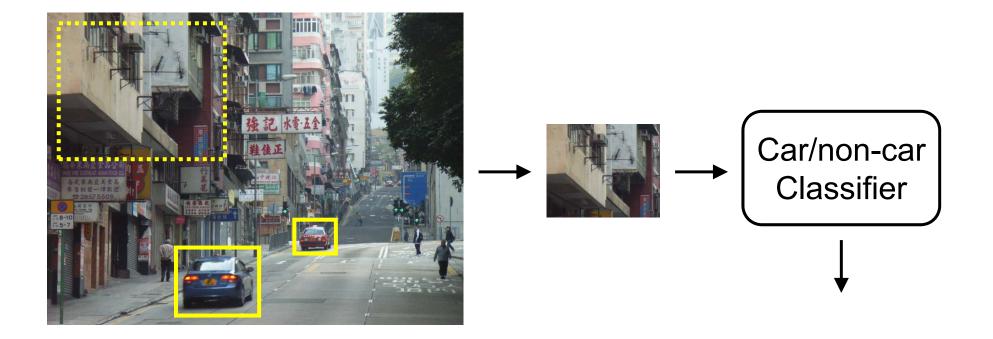
• Detect objects in clutter by search



• Sliding window: exhaustive search over position and scale

Detection by Classification

• Detect objects in clutter by **<u>search</u>**



• **Sliding window**: exhaustive search over position and scale (can use same size window over a spatial pyramid of images)

Feature Extraction

Classification

Does the image contain a car?

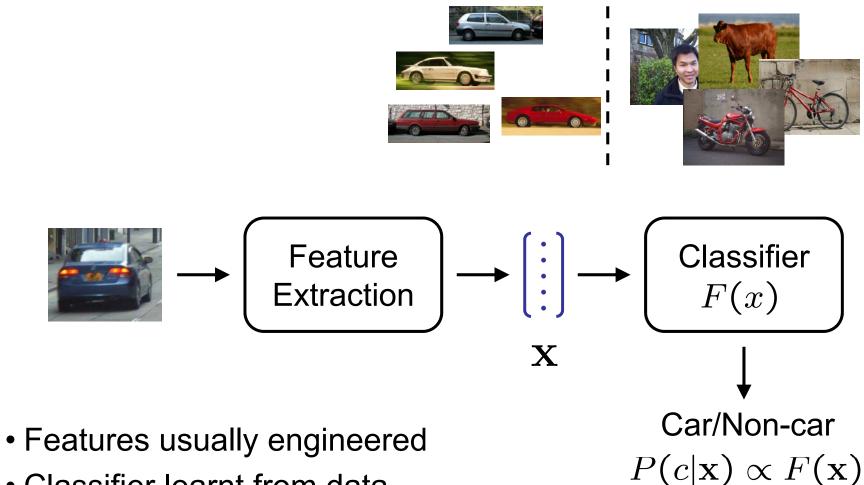
Detection

Does the image contain a car?

- Classification: Unknown location + clutter) lots of invariance
- Detection: Uncluttered, normalized image) more "detail"

Window (Image) Classification

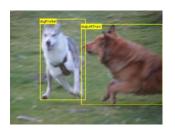
Training Data

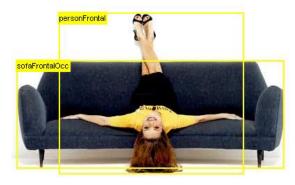


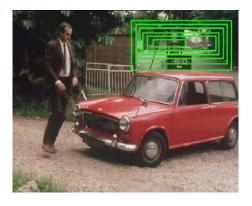
Classifier learnt from data

Problems with sliding windows ...

- aspect ratio
- granularity (finite grid)
- partial occlusion
- multiple responses







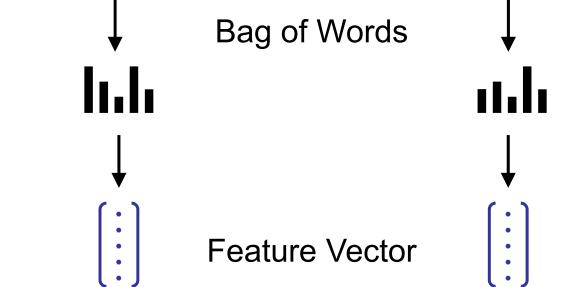
Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients (HOG)
- 4. State of the art algorithms and PASCAL VOC

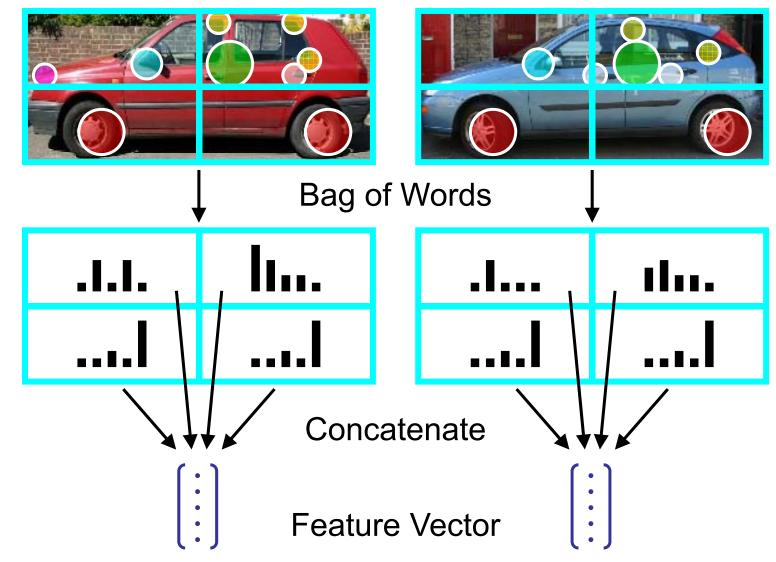
BOW + Spatial pyramids

Start from BoW for region of interest (ROI)

- no spatial information recorded
- sliding window detector

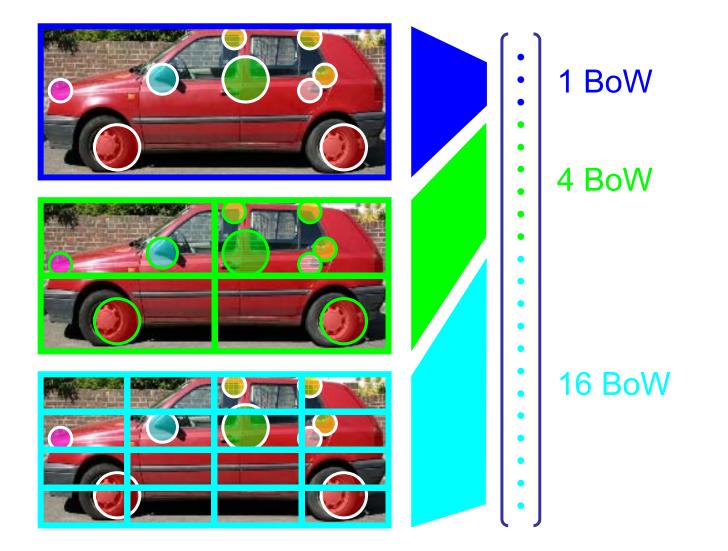


Adding Spatial Information to Bag of Words



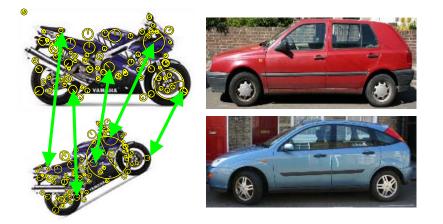
Keeps fixed length feature vector for a window

Spatial Pyramid – represent correspondence

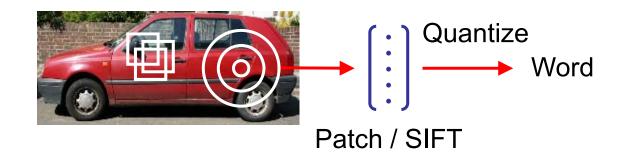


Dense Visual Words

- Why extract only **sparse** image fragments?
- Good where lots of invariance is needed, but not relevant to sliding window detection?



Extract dense visual words on an overlapping grid



• More "detail" at the expense of invariance

Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients + linear SVM classifier
- 4. State of the art algorithms and PASCAL VOC

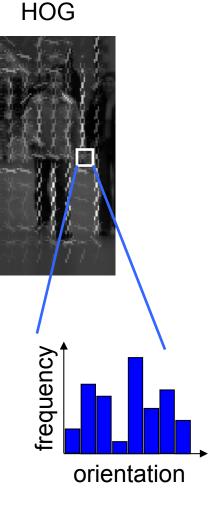
Feature: Histogram of Oriented Gradients (HOG)

image

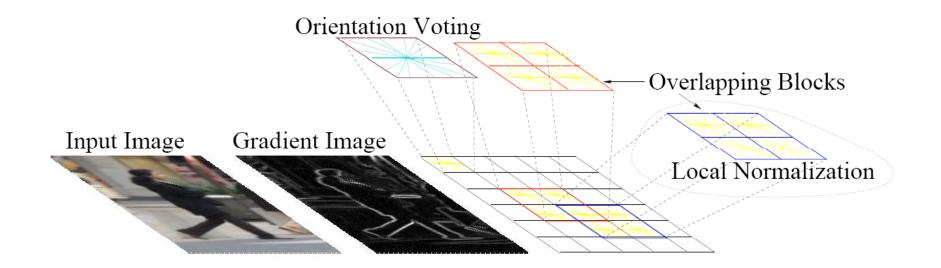
dominant direction

• tile 64 x 128 pixel window into 8 x 8 pixel cells

• each cell represented by histogram over 8 orientation bins (i.e. angles in range 0-180 degrees)

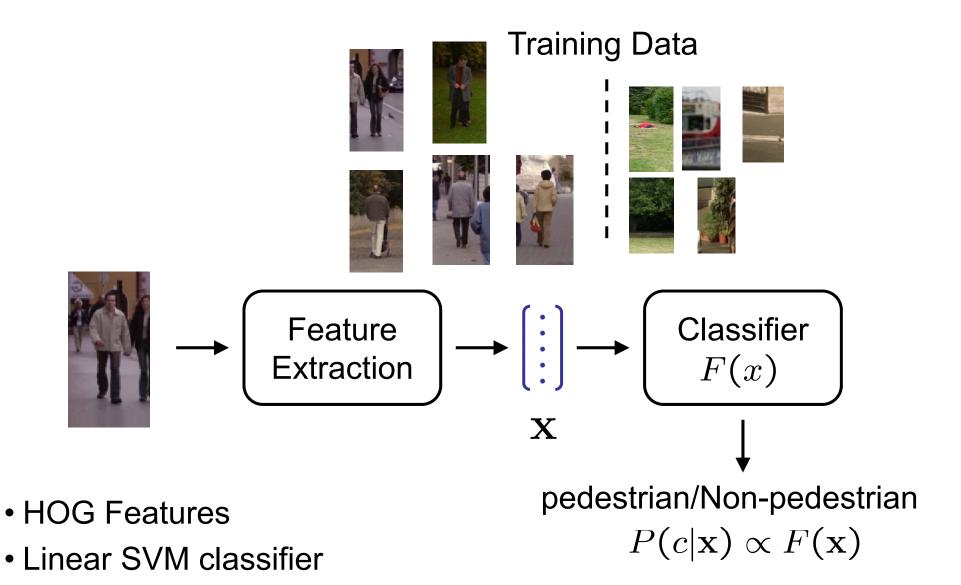


Histogram of Oriented Gradients (HOG) continued



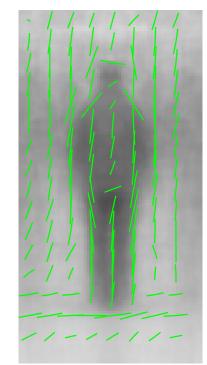
- Adds a second level of overlapping spatial bins renormalizing orientation histograms over a larger spatial area
- Feature vector dimension (approx) = 16 x 8 (for tiling) x 8 (orientations) x 4 (for blocks) = 4096

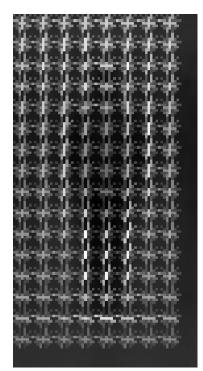
Window (Image) Classification





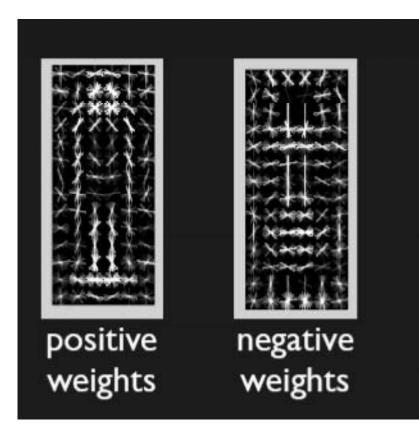
Averaged examples

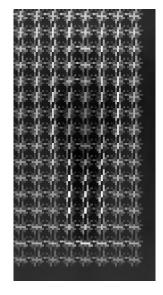




Dalal and Triggs, CVPR 2005

 $f(\mathbf{X}) = \mathbf{W}^T \mathbf{X} + b$





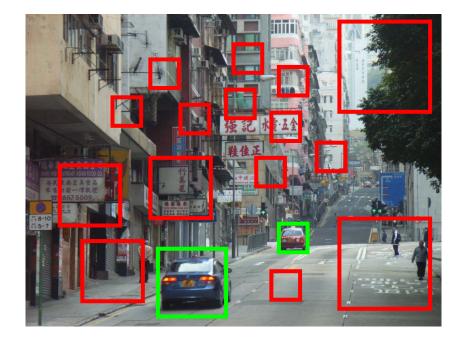
average over positive training data

Training a sliding window detector

- Unlike training an image classifier, there are a (virtually) infinite number of possible negative windows
- Training (learning) generally proceeds in three distinct stages:
 - 1. Bootstrapping: learn an initial window classifier from positives and random negatives
 - 2. Hard negatives: use the initial window classifier for detection on the training images (inference) and identify false positives with a high score
 - 3. Retraining: use the hard negatives as additional training data

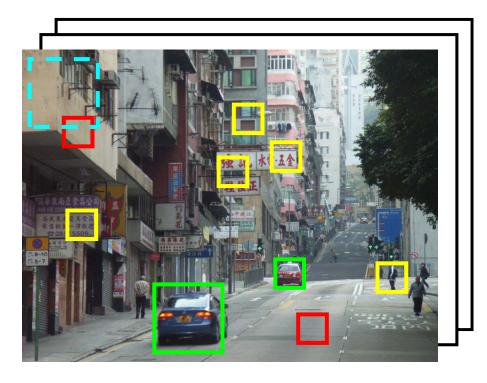
Training a sliding window detector

 Object detection is inherently asymmetric: much more "non-object" than "object" data



- Classifier needs to have very low false positive rate
- Non-object category is very complex need lots of data

Bootstrapping



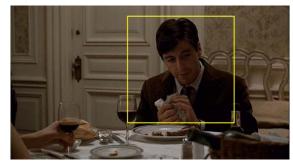
- 1. Pick negative training set at random
- 2. Train classifier
- 3. Run on training data
- 4. Add false positives to training set
- 5. Repeat from 2

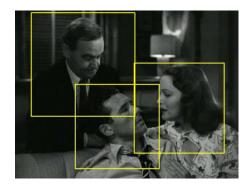
- Collect a finite but diverse set of non-object windows
- Force classifier to concentrate on hard negative examples
- For some classifiers can ensure equivalence to training on entire data set

Example: train an upper body detector

- Training data used for training and validation sets
 - 33 Hollywood2 training movies
 - 1122 frames with upper bodies marked
- First stage training (bootstrapping)
 - 1607 upper body annotations jittered to 32k positive samples
 - 55k negatives sampled from the same set of frames
- Second stage training (retraining)
 - 150k hard negatives found in the training data

Training data – positive annotations





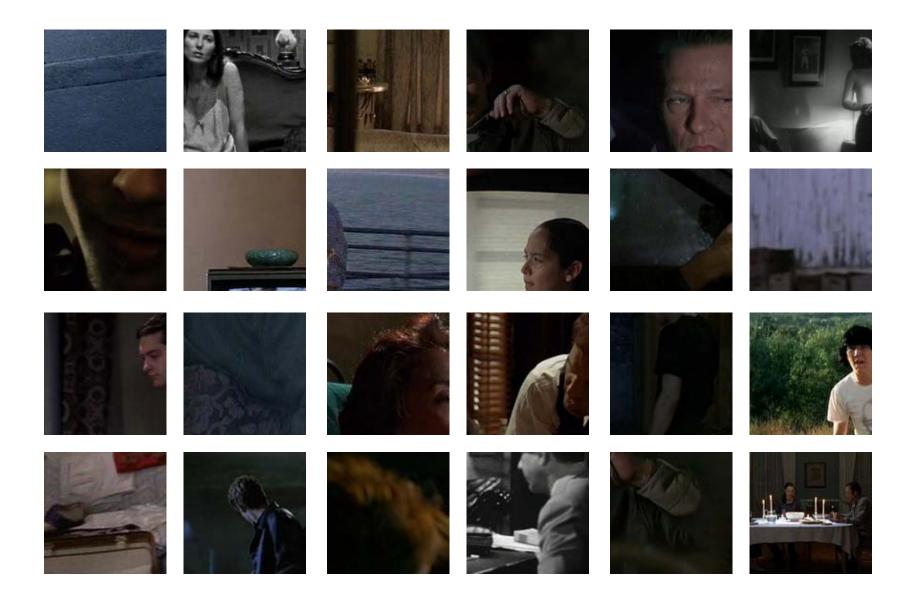
Positive windows

Note: common size and alignment

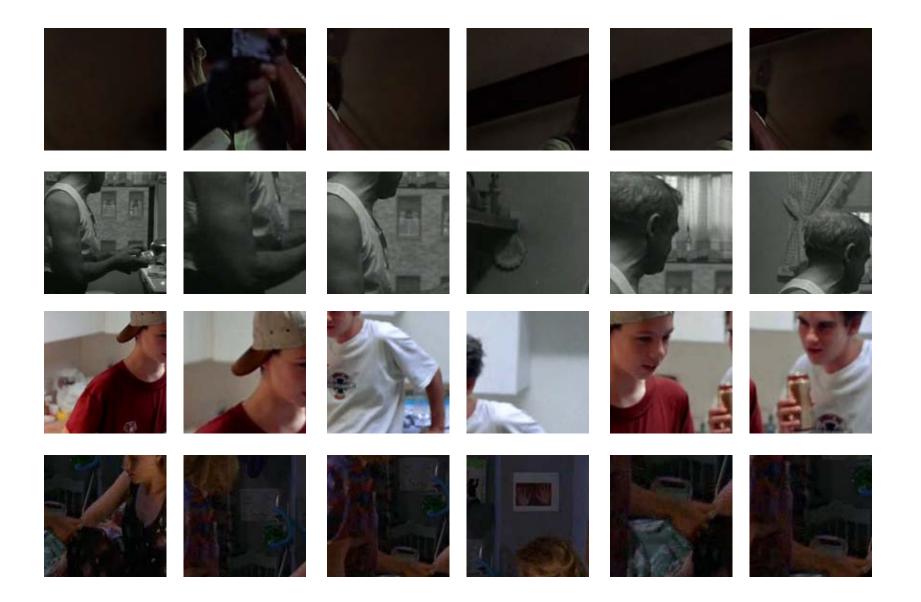
Jittered positives

Jittered positives

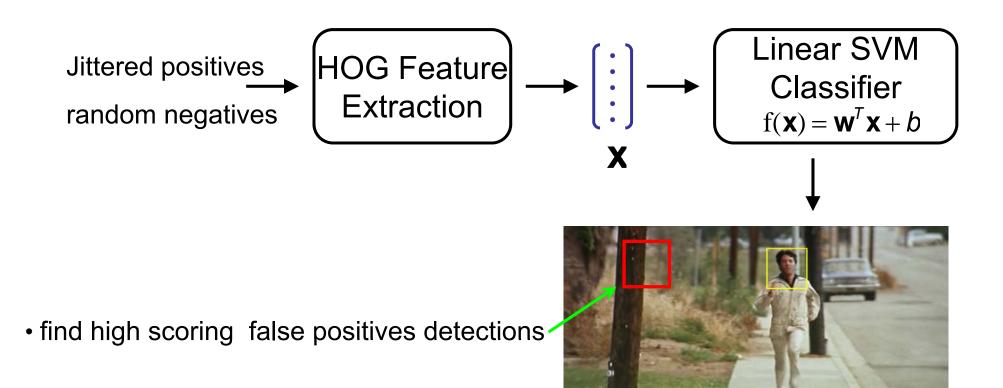
Random negatives



Random negatives

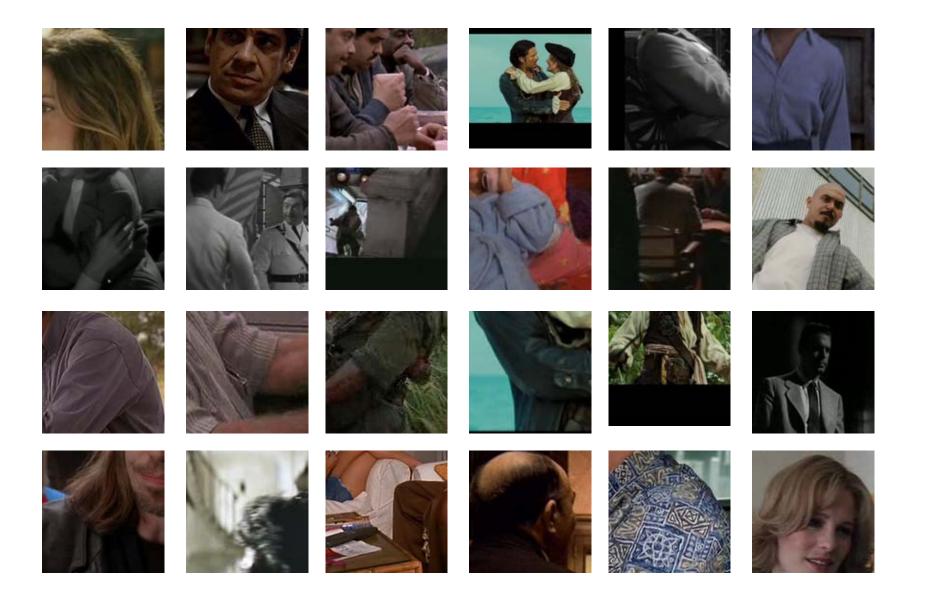


Window (Image) first stage classification

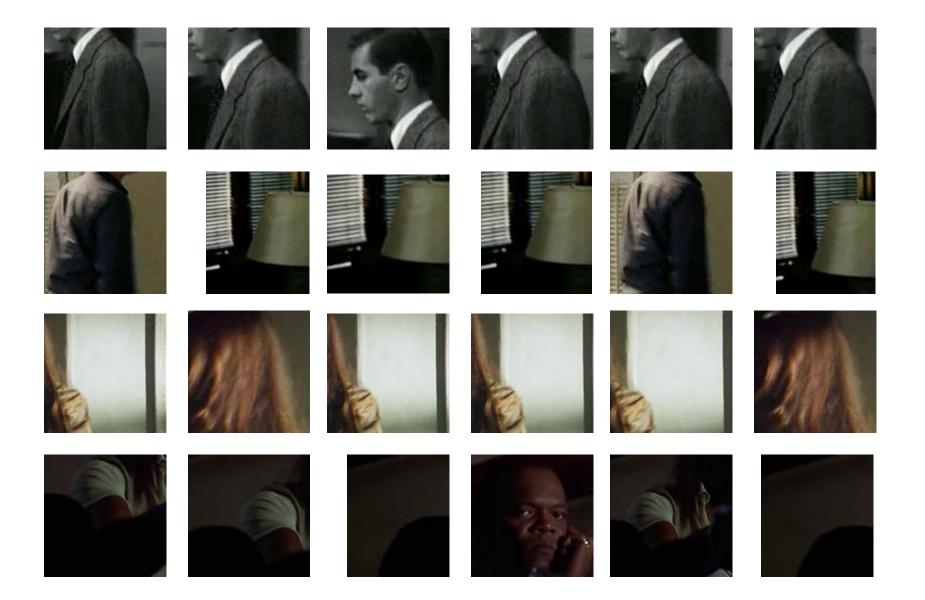


- these are the hard negatives for the next round of training
- cost = # training images x inference on each image

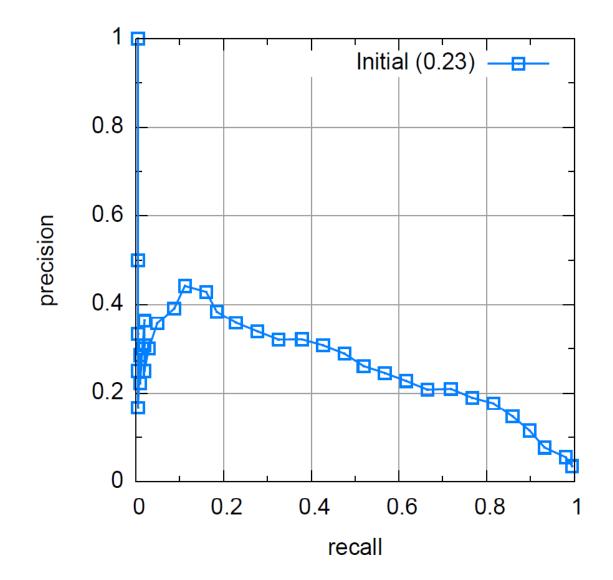
Hard negatives



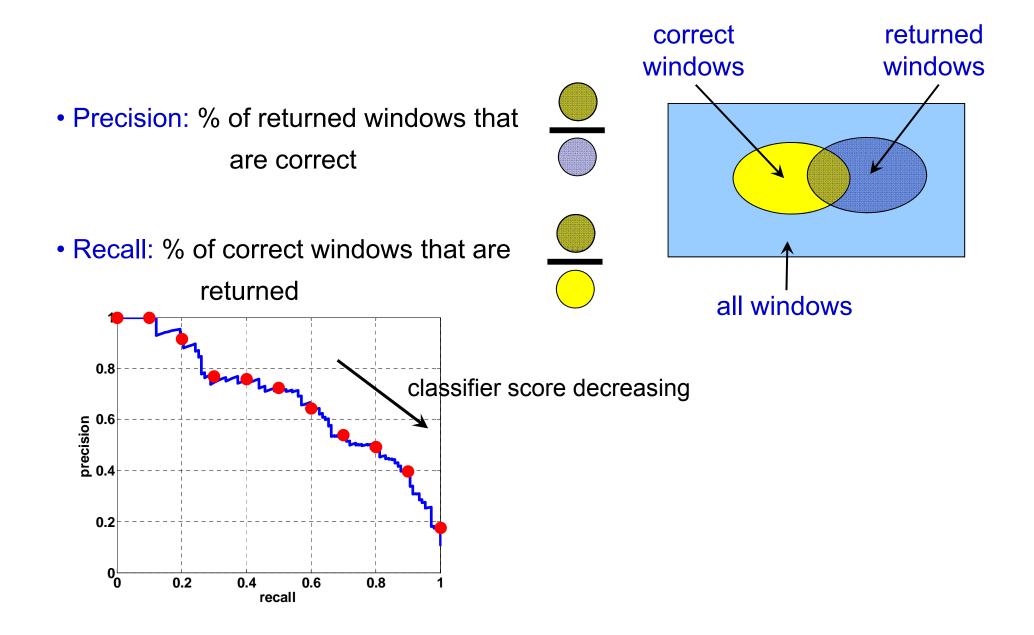
Hard negatives



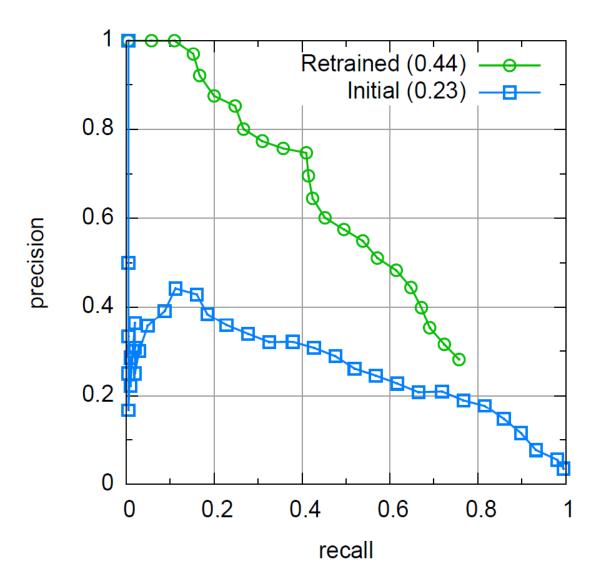
First stage performance on validation set



Precision – Recall curve

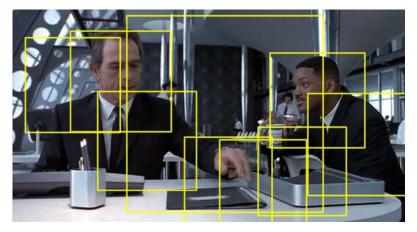


Effects of retraining

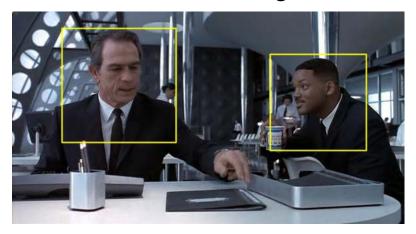


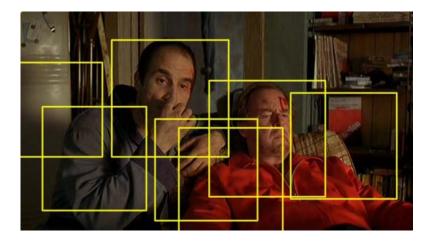
Side by side

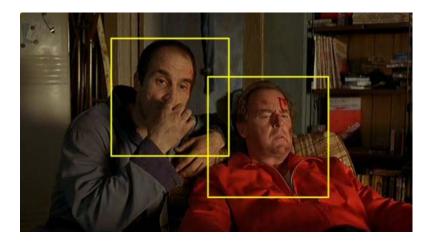
before retraining



after retraining

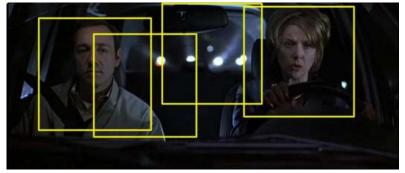


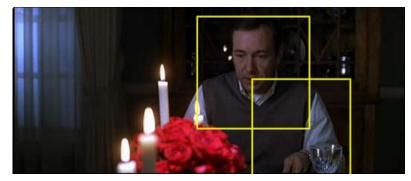


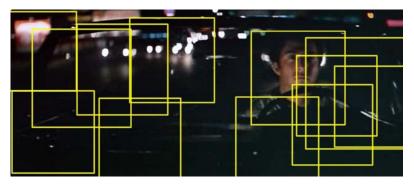


Side by side

before retraining



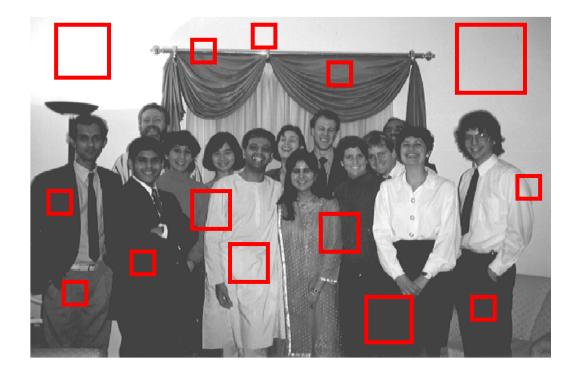




after retraining

Accelerating Sliding Window Search

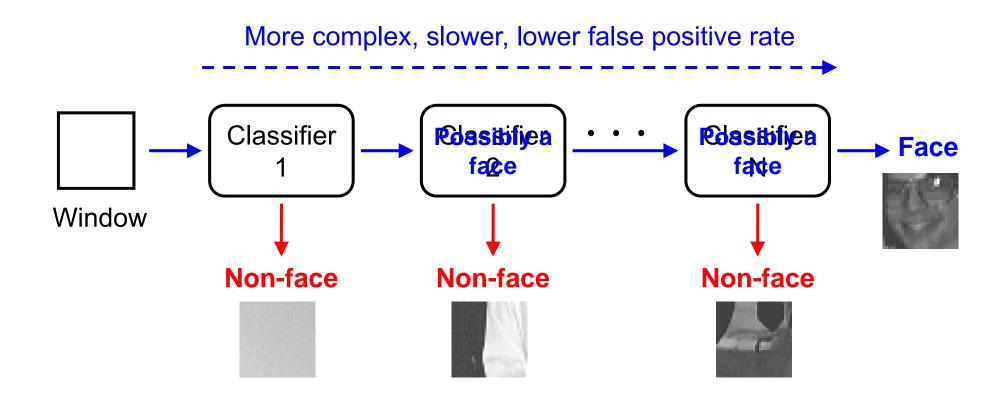
 Sliding window search is slow because so many windows are needed e.g. x × y × scale ≈ 100,000 for a 320×240 image



- Most windows are clearly not the object class of interest
- Can we speed up the search?

Cascaded Classification

• Build a sequence of classifiers with increasing complexity



• Reject easy non-objects using simpler and faster classifiers

Cascaded Classification

- Slow expensive classifiers only applied to a few windows → significant speed-up
- Controlling classifier complexity/speed:
 - Number of support vectors [Romdhani et al, 2001]
 - Number of features
 - Two-layer approach

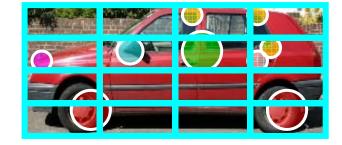
- [Viola & Jones, 2001]
- [Harzallah et al, 2009]

Summary: Sliding Window Detection

 Can convert any image classifier into an object detector by sliding window. Efficient search methods available.

• Requirements for invariance are reduced by searching over e.g. translation and scale

• Spatial correspondence can be "engineered in" by spatial tiling

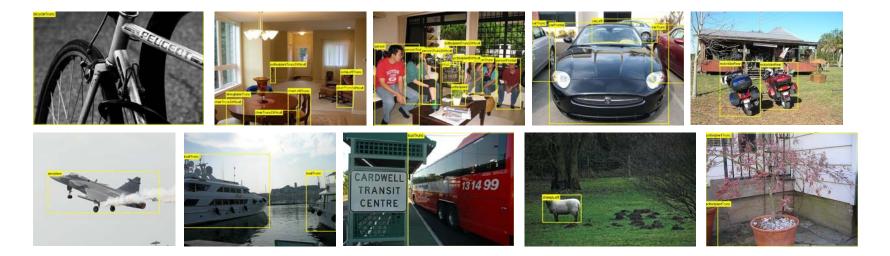


Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. HOG + linear SVM classifier
- 4. State of the art algorithms and PASCAL VOC

PASCAL VOC dataset - Content

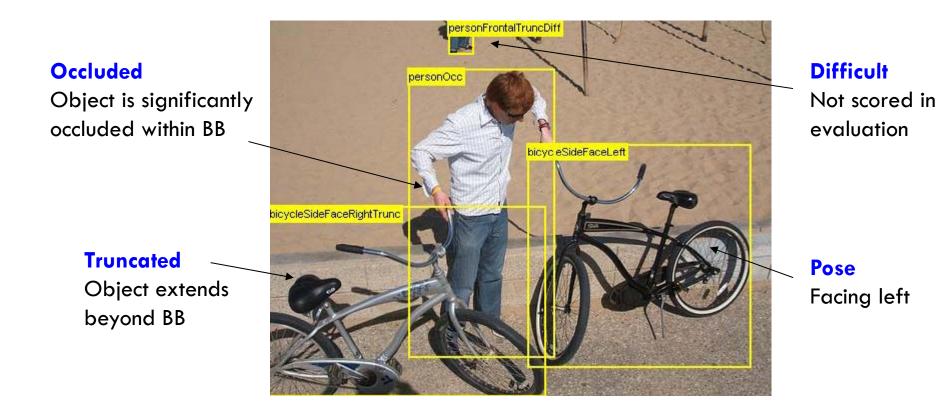
- 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, train, TV
- Real images downloaded from flickr, not filtered for "quality"



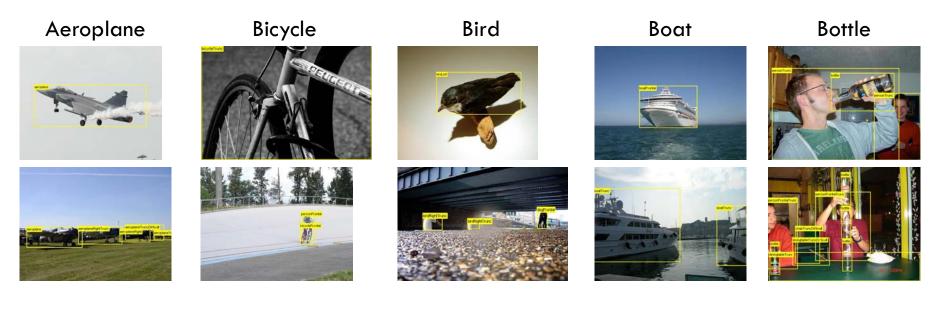
• Complex scenes, scale, pose, lighting, occlusion, ...

Annotation

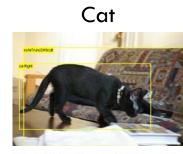
- Complete annotation of all objects
- Annotated in one session with written guidelines



Examples

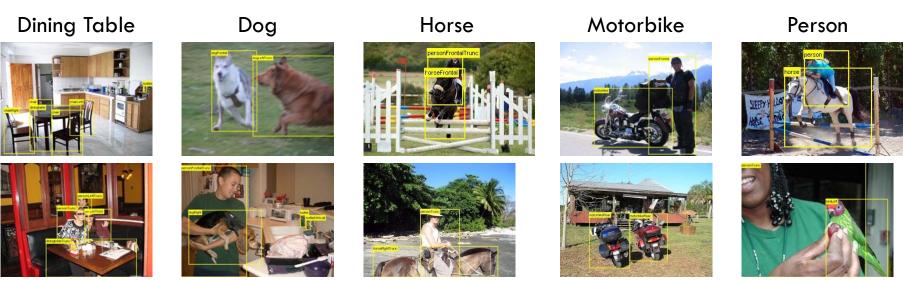


Bus

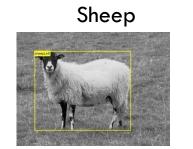




Examples



Potted Plant



TV/Monitor

Sofa

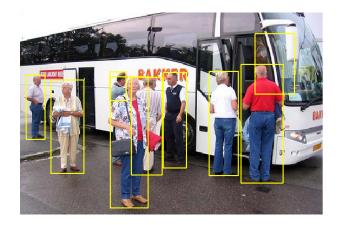
Main Challenge Tasks

Classification

- Is there a dog in this image?
- Evaluation by precision/recall

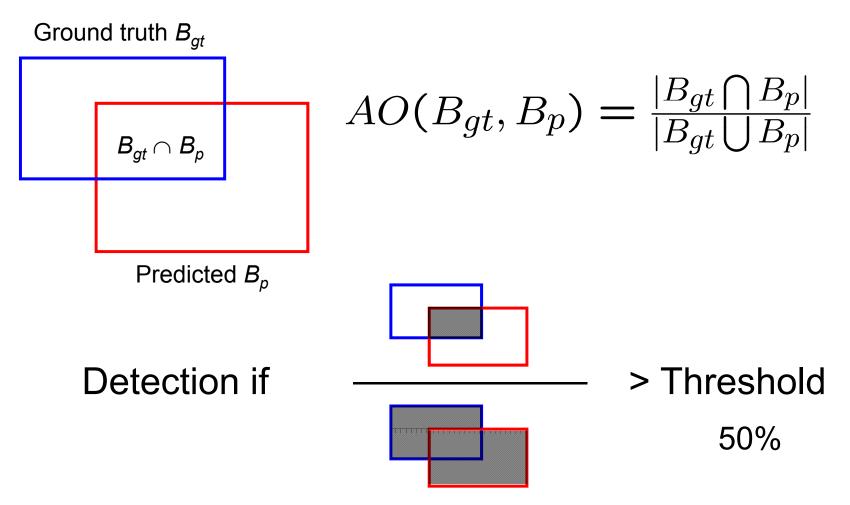
Detection

- Localize all the people (if any) in this image
- Evaluation by precision/recall based on bounding box overlap



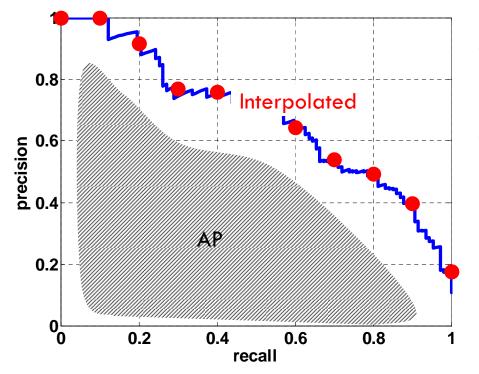
Detection: Evaluation of Bounding Boxes

• Area of Overlap (AO) Measure



Classification/Detection Evaluation

- Average Precision [TREC] averages precision over the entire range of recall
 - Curve interpolated to reduce influence of "outliers"



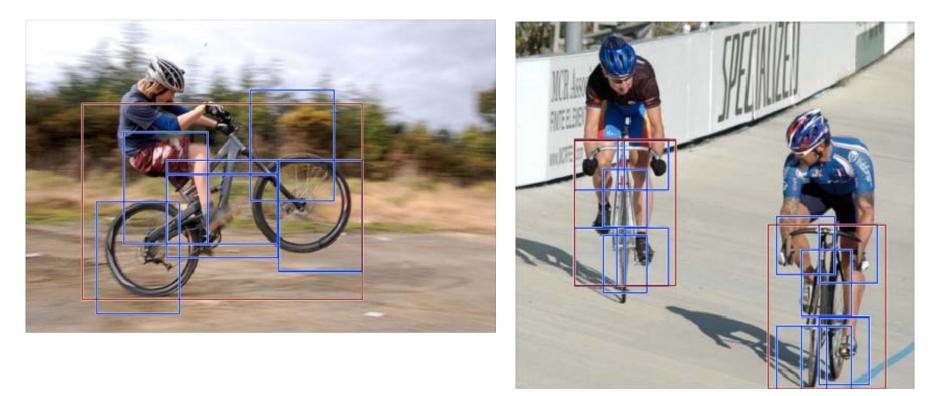
- A good score requires both high recall and high precision
- Application-independent
- Penalizes methods giving high precision but low recall

Object Detection with Discriminatively Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester, Deva Ramanan, Ross Girshick PAMI 2010

Matlab code available online: http://www.cs.brown.edu/~pff/latent/

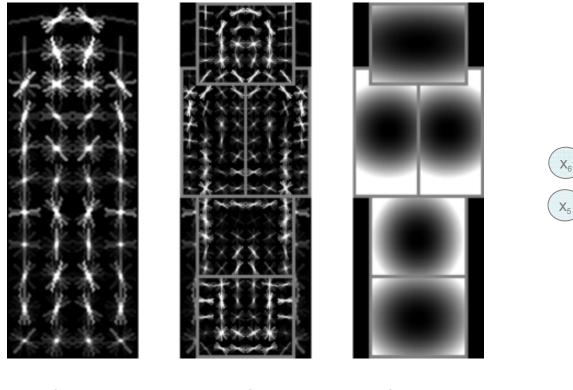
Approach



- Mixture of deformable part-based models
 - One component per "aspect" e.g. front/side view
- Each component has global template + deformable parts
- Discriminative training from bounding boxes alone

Example Model

• One component of person model

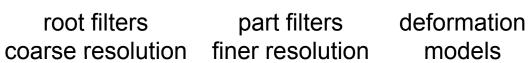


X₁

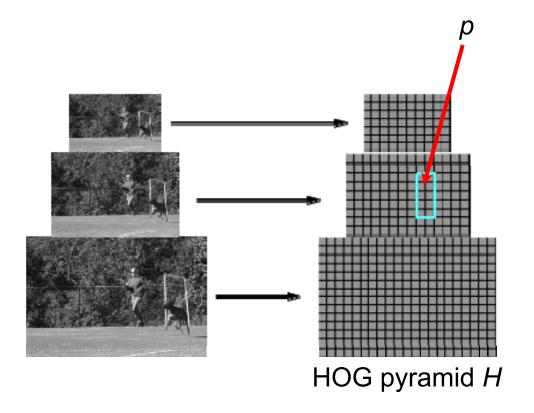
X₂

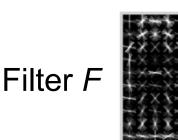
X₃

X₆



Starting Point: HOG Filter





Score of *F* at position *p* is $F \cdot \varphi(p, H)$

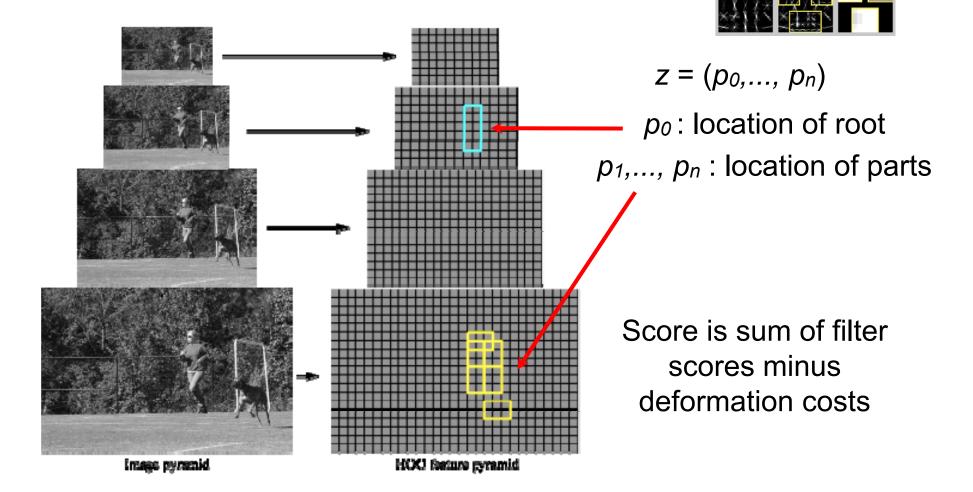
 $\varphi(p, H)$ = concatenation of HOG features from subwindow specified by *p*

- Search: sliding window over position and scale
- Feature extraction: HOG Descriptor
- Classifier: Linear SVM

Dalal & Triggs [2005]

Object Hypothesis

- Position of root + each part
- Each part: HOG filter (at higher resolution)



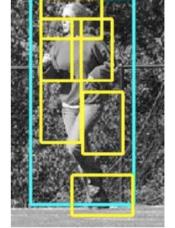
Score of a Hypothesis

Appearance term Spatial prior

$$score(p_0, \dots, p_n) = \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) - \sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2)$$

$$\underset{filters}{\overset{i=1}{\underset{filters}{}}} d_i splacements$$

$$displacements$$

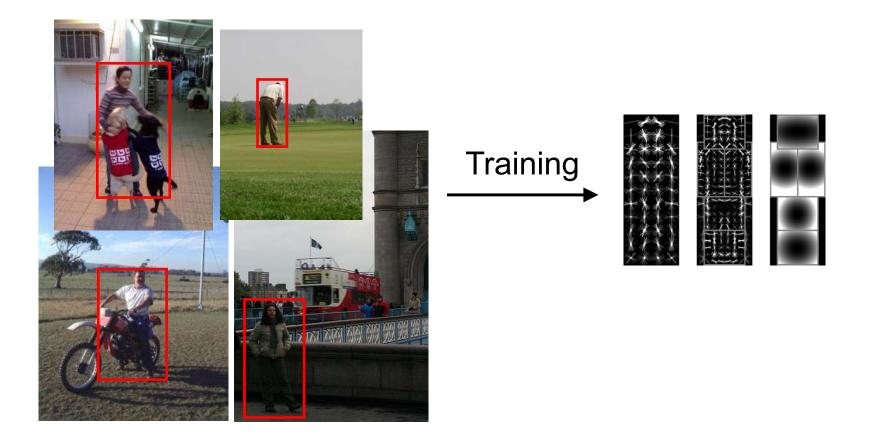


 $\begin{array}{lll} \textbf{score}(\textbf{z}) = \textbf{\beta} \cdot \Psi(H, \textbf{z}) \\ \textbf{1} & \textbf{1} \\ \textbf{1} & \textbf{1} \\ \textbf{2} \\ \textbf{3} \\ \textbf{4} \\ \textbf{3} \\ \textbf{4} \\ \textbf{3} \\ \textbf{3}$

• Linear classifier applied to feature subset defined by hypothesis

Training

- Training data = images + bounding boxes
- Need to learn: model structure, filters, deformation costs



Latent SVM (MI-SVM)

Classifiers that score an example *x* using

$$f_{\beta}(x) = \max_{x \in Z(x)} \beta \cdot \Phi(x, z)$$

$$\beta \text{ are model parameters}$$

$$z \text{ are latent values}$$

$$\bullet \text{ Which component?}$$

$$\bullet \text{ Where are the parts?}$$

Training data $D = (\langle x_1, y_1 \rangle, \dots, \langle x_n, y_n \rangle)$ $y_i \in \{-1, 1\}$ We would like to find β such that: $y_i f_\beta(x_i) > 0$

Minimize Regularizer "Hinge loss" on one training example

$$L_D(\beta) = \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^n \max(0, 1 - y_i f_\beta(x_i))$$
SVM objective

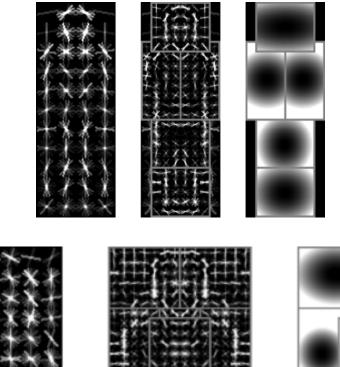
Latent SVM Training

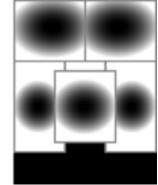
$$L_D(eta) = rac{1}{2} ||eta||^2 + C \sum_{i=1}^n \max(0, 1 - y_i f_eta(x_i))$$

- Convex if we fix z for positive examples
- Optimization:
 - Initialize β and iterate:
 - Pick best *z* for each positive example
 Strategy
 - Optimize β with z fixed

- Local minimum: needs good initialization
 - Parts initialized heuristically from root

Person Model

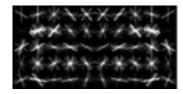


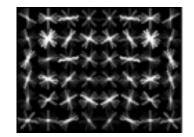


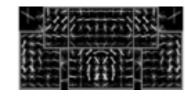
root filters part filters deformation coarse resolution finer resolution models

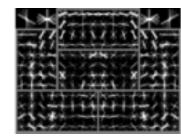
Handles partial occlusion/truncation

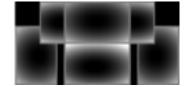
Car Model

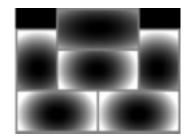












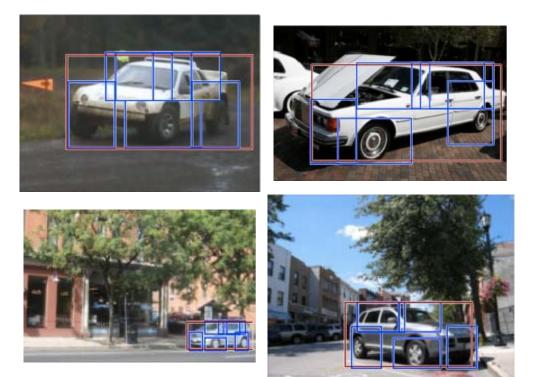
root filters coarse resolution

part filters finer resolution

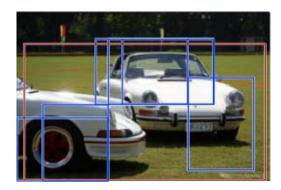
deformation models

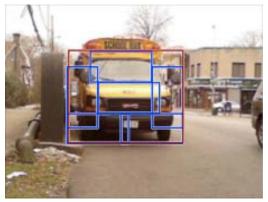
Car Detections

high scoring true positives



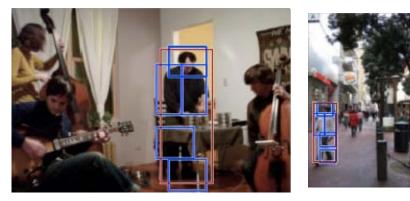
high scoring false positives

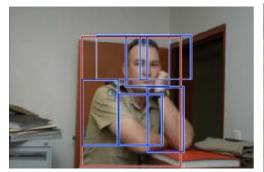




Person Detections

high scoring true positives







high scoring false positives (not enough overlap)



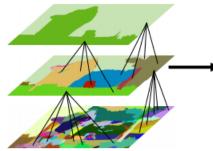
Segmentation Driven Object Detection with Fisher Vectors

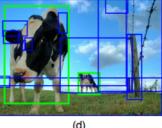
Ramazan Gokberk Cinbis, Jakob Verbeek, Cordelia Schmid ICCV 2013

student presentation

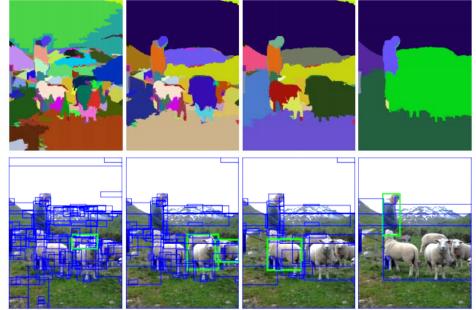
Approach

• Pre-select class*independent* candidate image windows using image segmentation [van de Sande et al., Segmentation as selective search for object recognition, ICCV'11]





(d)



Approach

- Local features + feature re-weighting based on object segmentation masks
- Represent windows with Fisher Vector (FV) encoding
- Compressed FV descriptors for efficiency
- Linear SVM classifier with hard negative mining

