Bag-of-features
for category classification

Cordelia Schmid
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Car: present

Cow: present
Bike: not present
Horse: not present




Car: present

Cow: present
Bike: not present
Horse: not present

* Object localization: define the location and the category

Location

Category




Set of

Images

Variability; Camera position, Illumination,Internal parameters

::> Within-object variations
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* Robust image description
— Appropriate descriptors for categories

« Statistical modeling and machine learning for vision
— Use and validation of appropriate techniques



Why machine learning?

e Early approaches: simple features + handcrafted models
e Can handle only few images, simples tasks

L. G. Roberts, Machine Perception of Three Dimensional Solids,
Ph.D. thesis, MIT Department of Electrical Engineering, 1963.
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e Early approaches: manual programming of rules
e Tedious, limited and does not take into accout the data

(SCERE) scens
object
BUILDING (SKY) e
aae Lz patch
=propeRty-of it
(a) Bottom-up process (b) Top-down process (c) Result

Figure 3. A system developed in 1978 by Ohta. Kanade and Sakai [33, 32] for knowledge-based interpretation of outdoor natural scenes.
The system is able to label an image (c) into semantic classes: S-sky, T-tree, R-road, B-building, U-unknown.

Y. Ohta, T. Kanade, and T. Sakai, ““An Analysis System for Scenes Containing objects with Substructures,” International Joint Conference on Pattern Recognition, 1978.
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 Today lots of data, complex tasks

Internet images,

Movies, news, Sports
personal photo albums P

* Instead of trying to encode rules directly, learn them
from examples of inputs and desired outputs
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Supervised
— Classification
— Regression

Unsupervised
Semi-supervised
Active learning
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« Given training examples of inputs and corresponding
outputs, produce the “correct” outputs for new inputs

e TwO main scenarios:

— Classification: outputs are discrete variables (category labels).
Learn a decision boundary that separates one class from the other.

— Regression: also known as “curve fitting” or “function
approximation.” Learn a continuous input-output mapping from
examples (possibly noisy).
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e Given only unlabeled data as input, learn some sort of
structure.

 The objective is often more vague or subjective than in
supervised learning. This is more an exploratory/descriptive
data analysis.
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Quantization
— Map a continuous input to a discrete (more compact) output

P s :




Unsu

Unsupervised Learning

Dimensionality reduction, manifold learning

— Discover a lower-dimensional surface on which the data lives
15-
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« Semi-supervised learning: lots of data is available, but
only small portion is labeled (e.g. since labeling is
expensive)
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« Semi-supervised learning: lots of data is available, but
only small portion is labeled (e.g. since labeling is
expensive)

— Why is learning from labeled and unlabeled data better than
learning from labeled data alone?
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« Active learning: the learning algorithm can choose its
own training examples, or ask a “teacher” for an answer
on selected inputs

Annotators
Current P ”
»| category ssue request:
models “Get a full
§egmentation on

Partially and weakly Labeled data
labeled data |

Unlabeled data
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* Image classification: assigning a class label to the image

Car: present

Cow: present
Bike: not present
Horse: not present

e Supervised scenario: given a set of training images
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 Given
Positive training images containing an object class

o Classify

A test image as to whether it contains the object class or not




Baa-of-features for imaae classification
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« Origin: texture recognition

» Texture is characterized by the repetition of basic elements or
textons

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003
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Texture recognition
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* Orderless document representation: frequencies of words

from a dictionary
» Classification to determine document categories

Bag-of-words

Common
People
Sculpture

dl d2 d3 d4
common
common people sculpture common
sculpture
sculpture common
people people
common sculpture people
people common
2 0 1 3
3 0 0 2
0 1 3 0

~—+
N
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[Nowak,Jurie&Triggs,ECCV’06], [Zhang,Marszalek,Lazebnik&Schmid,|JCV’07]
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Extract regions Compute Find clusters Compute distance  Classification
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[Nowak,Jurie&Triggs,ECCV’06], [Zhang,Marszalek,Lazebnik&Schmid,|JCV’07]
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Scale-invariant image regions + SIFT (see lecture 2)
— Affine invariant regions give “to0” much invariance

— Rotation invariance for many realistic collections “too” much
Invariance

Dense descriptors
— Improve results in the context of categories (for most categories)
— Interest points do not necessarily capture “all” features

Color-based descriptors

Shape-based descriptors
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- Multi-scale dense grid: extraction of small overlapping patches at multiple scales
-Computation of the SIFT descriptor for each grid cells
-Exp.: Horizontal/vertical step size 3-6 pixel, scaling factor of 1.2 per level
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Step 2:Quantization

Clustering



Step 2: Quantization

|| Visual vocabulary

Clustering




Examples for visual words

Airplanes |}

Motorbikes | §¥

Faces

Wild Cats

Leaves

People

Bikes




Ste

e Cluster descriptors
— K-means
— Gaussian mixture model

« Assign each visual word to a cluster
— Hard or soft assignment

« Build frequency histogram
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 Minimizing sum of squared Euclidean distances
between points x; and their nearest cluster centers

e Algorithm:
— Randomly initialize K cluster centers
— Iterate until convergence:

e Assign each data point to the nearest center

 Recompute each cluster center as the mean of
all points assigned to it

e Local minimum, solution dependent on initialization

 [nitialization important, run several times, select best
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o Mixture of Gaussians: weighted sum of Gaussians
K

p(x) = m N(X; g Tp)

k=1

where N (x;p.X) = (2m) "2 |2 exp (;(x — ) T (x — ,u_))

p(x)y
(@)

0.5

0.5 1 0 0.5
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Hard or soft
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 K-means - hard assignment
— Assign to the closest cluster center
— Count number of descriptors assigned to a center

e Gaussian mixture model = soft assignment
— Estimate distance to all centers
— Sum over number of descriptors

 Represent image by a frequency histogram



Image representation

frequency
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codewords

v

« Each image is represented by a vector, typically 1000-4000 dimension
* fine grained — represent model instances
 coarse grained — represent object categories
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Step 3: Classification

* Learn a decision rule (classifier) assigning bag-of-
features representations of images to different classes
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Training data
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Vectors are histograms, one from each training image

positive negative
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Train classifier,e.g.SVM



Nearest Neighbor Classifier

» Assign label of nearest training data point to each
test data point

Voronoi partitioning of feature space
for 2-category 2-D and 3-D data
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For a new point, find the k closest points from training data

Labels of the k points “vote” to classify
Works well provided there is lots of data and the distance function is

good

.. k=5
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|l iInear classifiers

* Find linear function (hyperplane) to separate positive and
negative examples

@
° X; positive: X, w+b=>0
® o X; negative: X, -w+b<0

@
@
© 0 e o
O © \
@
© O
O

Which hyperplane
O IS best?



e Generalization is not
good in this case:

e Better if a margin
IS Introduced:

X, (roundness)



Support vector machin
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* Find hyperplane that maximizes the margin between the
positive and negative examples
\ ® X; positive (Y, =1): X.-w+b>1

x; negative(y, =—1): x,-w+b<-1

@ For support, vectors, X; W + b==+1

O The margin is 2/ ||w||

Support vectors
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« Datasets that are 11near1y separable work out great:

- ~@ 16 @H -
« But what if the dataset 1s just too hard?

@ & *—0— -0—@ *—o -
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* We can map it to a higher-dimensional space:




Nonlinear SVMs
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 General idea: the original input space can always be
mapped to some higher-dimensional feature space
where the training set is separable:
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« The kernel trick: instead of explicitly computing the lifting
transformation ¢(x), define a kernel function K such that

K(xi, X5) = 0(x;) - 9(X;)

 This gives a nonlinear decision boundary in the original
feature space:

ZaiyiK(xi,x) +b
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Hellinger kernel K(h,,h,) = ZN:\/hl(i)hz(i)

N
Histogram intersection kernel 1 (h,,h,) = Zmin(hl(i), h,(1))

)

=1
Generalized Gaussian kernel K(h,,h,) = exp(

D can be Euclidean distance, y? distance etc.

(h,()—h,())
P (oh) = ; (i) + (1)

|
_K D(hphz)



Combining features

*SVM with multi-channel chi-square kernel

K(Hi, Hj) = exp ( — Z Aic Dc(Hi, H;))

ceC
Channel c is a combination of detector, descriptor

D.(H,H;) is the chi-square distance between histograms
l <m
D.(H,,H,)= EZizl[(hli - hzi)z/(hli T hZi)]
A is the mean value of the distances between all training sample

Extension: learning of the weights, for example with Multiple
Kernel Learning (MKL)

J. Zhang, M. Marszalek, S. Lazebnik and C. Schmid. Local features and kernels for
classification of texture and object categories: a comprehensive study, IJCV 2007.



Combining features
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e For linear SVMs

— Early fusion: concatenation the descriptors
— Late fusion: learning weights to combine the classification scores

e Theoretically no clear winner

 In practice late fusion give better results
— In particular if different modalities are combined



Multi-class SVMs
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Various direct formulations exist, but they are not widely
used in practice. It is more common to obtain multi-class
SVMs by combining two-class SVMs in various ways.

One versus all:

— Training: learn an SVM for each class versus the others

— Testing: apply each SVM to test example and assign to it the
class of the SVM that returns the highest decision value

One versus one:
— Training: learn an SVM for each pair of classes

— Testing: each learned SVM *“votes” for a class to assign to the test
example



W h does SVM Ipnrnln a work?

® Learns foreground and background visual words

0~
i >~ foreground words — high weight
,E. \

:;: >~ background words — low weight



lllustration

Localization according to visual word probability

Correct — Ilmage: 35 Correct — Ilmage: 37

50 100 150 200 50 100 150 200

Correct — Image: 38 Correct — Image: 39

200 50 100 150 200

O foreground word more probable

O background word more probable



lllustration

A linear SVM trained from positive and negative window descriptors

A few of the hlghest Welghed descrlptor vector dimensions (= 'PAS + tile")
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+ lie on object boundary (= local shape structures common to many training exemplars)






Cars- misclassified into uildings, phones, phones
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 Advantages:
— largely unaffected by position and orientation of object in image
— fixed length vector irrespective of number of detections

— very successful in classifying images according to the objects they
contain

 Disadvantages:
— no explicit use of configuration of visual word positions
— poor at localizing objects within an image
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« PASCAL VOC [05-10] datasets

« PASCAL VOC 2007

— Training and test dataset available

— Used to report state-of-the-art results

— Collected January 2007 from Flickr

— 500 000 images downloaded and random subset selected
— 20 classes

— Class labels per image + bounding boxes

— 5011 training images, 4952 test images

« Evaluation measure: average precision



PASCAL 2007 dataset

Aeroplane Bicycle i Bottle
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" Average Precision [TREC] averages precision over
the entire range of recall

Curve interpolated to reduce influence of “outliers”

A good score requires
both high recall and high
precision

Application-independent

precision

" Penalizes methods giving
high precision but low
recall

0 0.2 0.4 0.6 0.8 1
recall
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 Ranked list for category A :

A C,B,A B, C,C, A ; intotal four images with category A

>




Resuylts

I \ 1%

—th
e

r PASCA

7 \ 7 VL

2007

Winner of PASCAL 2007 [Marszalek et al.] : mAP 59.4

— Combination of several different channels (dense + interest
points, SIFT + color descriptors, spatial grids)

— Non-linear SVM with Gaussian kernel

Multiple kernel learning [Yang et al. 2009] : mAP 62.2
— Combination of several features
— Group-based MKL approach

Combining object localization and classification
[Harzallah et al.’09] : mAP 63.5

— Use detection results to improve classification

Adding objectness boxes [Sanchez at al.’12] : mAP 66.3
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e Add spatial information to the bag-of-features

e Perform matching in 2D image space

[Lazebnik, Schmid & Ponce, CVPR 2006]
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Similar approaches:
Subblock description [Szummer & Picard, 1997]
SIFT [Lowe, 1999]
GIST [Torralba et al., 2003]

SIFT Gist
o= p /ii K L
- R ZIAN
Text ‘T\ | RIXT

Szummer & Picard (1997) Lowe (1999, 2004) Torralba et al. (2003)
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representation at
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Locally orderless
representation at
several levels of
spatial resolution
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Locally orderless
representation at
several levels of
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« Combination of spatial levels with pyramid match kernel
[Grauman & Darell’'05]

 Intersect histograms, more weight to finer grids
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Scene dataset [Labzenik et al.'06]

4385 images
15 categories

Industrial
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0(1x1) 72.2+0.6
1(2x2) 77.9+£0.6 79.0 £0.5
2(4x4) 79.4+£0.3 81.1 +0.3
3(8x8) 77.2£0.4 80.7 £0.3
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L Single-level Pyramid

0(1x1) 41.2+1.2

1(2x2) | 55.9+0.9 57.0 +0.8

2(4x4) | 63.6+0.9 64.6 0.8

3(8x8) | 60.3+0.9 64.6 +0.7

Bag-of-features approach by Zhang et al.’07: 54 %
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cougar bod (27.6%)

"~ beaver (27.5%) N

e Sources of difficulty:
— Lack of texture

— Camouflage
— Thin, articulated limbs
— Highly deformable shape

crocodile (25.0%)

" ant (25.0%)




Evaluation BoF — spatial
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Image classification results on PASCAL'07 train/val set

(SH, Lap, MSD) x (SIFT,SIFTC) AP
spatial layout
1 0.53
2X2
3x1
1,2x2,3x1
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Image classification results on PASCAL'07 train/val set

(SH, Lap, MSD) x (SIFT,SIFTC) AP
spatial layout

1 0.53

2X2 0.52

3x1 0.52

1,2x2,3x1 0.54

Spatial layout not dominant for PASCAL'07 dataset

Combination improves average results, i.e., it Is appropriate for

some classes
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Image classification results on PASCAL'07 train/val set
for individual categories

1 3x1
Sheep 0.339 0.256
Bird 0.539 0.484
DiningTable 0.455 0.502
Train 0.724 0.745

Results are category dependent!
=» Combination helps somewhat
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e Summary

— Spatial pyramid representation: appearance of local image
patches + coarse global position information

— Substantial improvement over bag of features
— Depends on the similarity of image layout

 Recent extensions
— Flexible, object-centered grid
e Shape masks [Marszalek’12] => additional annotations
— Weakly supervised localization of objects
* [Russakovsky et al.’12]
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e Linear Spatial Pyramid Matching Using Sparse Coding for
Image Classification. J. Yang et al., CVPR’09.

— Local coordinate coding, linear SVM, excellent results in 2009
PASCAL challenge

« Learning Mid-level features for recognition, Y. Boureau et al.,
CVPR’10.

— Use of sparse coding techniques and max pooling
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« Efficient Additive Kernels via Explicit Feature Maps, A.
Vedaldi and Zisserman, CVPR’10.

— approximation by linear kernels

* Improving the Fisher Kernel for Large-Scale Image
Classification, Perronnin et al., ECCV’'10
— More discriminative descriptor, power normalization, linear SVM

 Excellent results of the Fisher vector in a recent
evaluation, Chatfield et al. BMVC 2011



Fisher vector Image representation

e Mixture of Gaussian/ k-means stores nr of

points per cell

 Fisher vector adds 1st & 2nd order moments

— More precise description of regions
assigned to cluster

— Fewer clusters needed for same accuracy

— Per cluster store: mean and variance of
data in cell

— Representation 2D times larger, at same
computational cost

— High dimensional, robust representation
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X = {ux,t = 1...T} isthesetof Tiid. D-dim local descriptors (e.g.
SIFT) extracted from an image:

uy(x) = Ef‘ | wii(x) is a Gaussian Mixture Model (GMM)

with parameters A = {w;, p1;, 2,4 = 1... N} trained on a large set of
local descriptors: a visual vocabulary

FV formulas:

e
Gy i

7¢(1) = soft-assignment of patch '+ to Gaussian i



Relation to BOF

FV formulas: Soft BOV formula:
T 1 T .
KL (e 3T )
9!?.! TVFZ |'?tl.'ll}( f:]"- ) T
.
] - (2t — ;)
'l,‘llll o - .: T_ I;.II -
Goi = T ; (i) { 3 1]

Like the (original) BOV the FV is an average of local statistics.

The FV extends the BOV and includes higher-order statistics (up to 2™ order)

Results on VOC 2007: BOV =43.6% —FV=577% —>VFV=621%
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* Image classification: assigning a class label to the image

Car: present

Cow: present
Bike: not present
Horse: not present

 What makes it large-scale?
— number of images
— number of classes
— dimensionality of descriptor

IMAGENET has 14M images from 22k classes
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* Image descriptors
— Fisher vector (high dimensional)
— Normalization: square-rooting or latent MOG+ L2 normalization

[Image categorization using Fisher kernels of non-iid image
models, Cinbis, Verbeek, Schmid, CVPR’12] [Perronnin’10]

« Classification approach
— Linear classifiers
— One versus rest classifier
— Stochastic gradient descent optimization

[Towards good practice in large-scale learning for image
classification, Perronnin, Akata, Harchaoui, Schmid, CVPR’12]
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« Comparing on PASCAL VOC'07 linear classifiers with

— Fisher vector

— Sqgrt transformation of Fisher vector
— Latent GMM of Fisher vector

o Sqrt transform + latent MOG
models lead to improvement

« State-of-the-art performance
obtained with linear classifier

mAP

e '
S S i """ "7 77| == SqrtMoG
1 | B ey LatMoG
PR I I m— SPM+MoG
S0r =" = S ¥ 77| ——SPM+SqrtMoG |
: : : —SPM+LalMoG
32 64 128 256 512 1024

Vocabulary Size
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Fisher versus BOF vector + linear classifier on Pascal Voc'07

SPM Method 64 128 256 512 1024
No BoW 20,1 | 29.0 | 36.2 | 407 | 44.1
No SqrtBoWw 21.0 | 295 | 374 | 4.3 | 46.1
No LatBoW 229 | 30.1 | 389 | 412 | 445
Yes BoW 37.1 | 40.1 | 424 | 464 | 489
Yes SqrtBoW 37.8 | 412 | 446 | 47.8 | 516
Yes LatBoW 39.3 | 41.7 | 453 | 487 52.2
| SPM | Method || 32 | 64 | 128 | 256 | 512 | 1024 |
No MoG 492 | 515 | 53.0 | 544 | 55.0 | 559
No SqrtMoG 519 | 547 | 56.2 | 582 | 588 | 60.2
No LatMoG 523 | 553 | 56.5 | 38.6 | 59.5 | 60.3
Yes MoG 532 | 554 | 562 | 570 | 573 57.6
Yes SqrtMoG 56.1 | 57.7 | 589 | 604 | 60.5 60.8
Yes LatMoG 573 | 588 | 594 | 604 | 606 | 60.7

*Fisher improves over BOF
*Fisher comparable to BOF +
non-linear classifier
sLimited gain due to SPM
on PASCAL
*Sqrt helps for Fisher and BOF
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e Datasets
— ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC)
e 1000 classes and 1.4M images

— ImageNet1lOK dataset
* 10184 classes and ~ 9 M images

(a) Star Anise (92.45%) (b) Geyser (85.45%) Ld) Carrycot (81.48%)

o S SES

¢) European gallinule .00% Sea Snake : () g) Paintbrush (4.68 % ountain Tent (0.00%
() Europ gallinule (15.00% Sea Snake (10.00 %) g) Paintbrush (4.68 %) {h}M Tent (0.00°%




