#### **Generative and discriminative classification techniques**

Machine Learning and Category Representation 2013-2014 Jakob Verbeek, December 13+20, 2013

Course website:

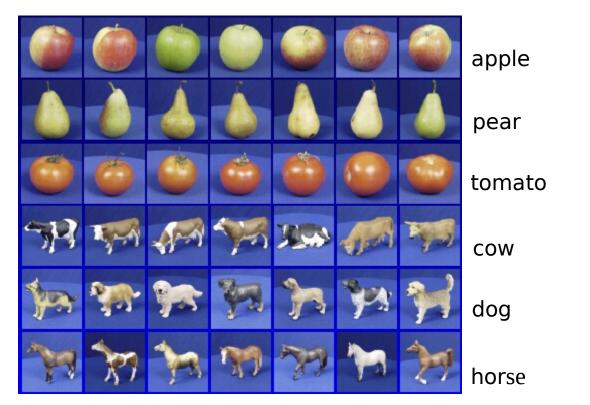
http://lear.inrialpes.fr/~verbeek/MLCR.13.14







## Classification





?

Given: training images and their categories

To which category does a new image belong?





## Classification

- Goal is to predict for a test data input the corresponding class label.
  - Data input x, eg. image but could be anything, format may be vector or other
  - Class label y, can take one out of at least 2 discrete values, can be more
  - In binary classification we often refer to one class as "positive", and the other as "negative"
- Classifier: function f(x) that assigns a class to x, or probabilities over the classes.
- Training data: pairs (x,y) of inputs x, and corresponding class label y.
- Learning a classifier: determine function f(x) from some family of functions based on the available training data.
- Classifier partitions the input space into regions where data is assigned to a given class
  - Specific form of these boundaries will depend on the family of classifiers used

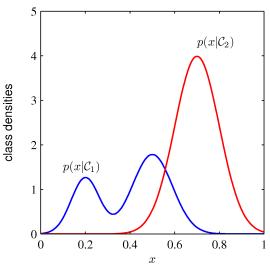
Grenoble Ensimad



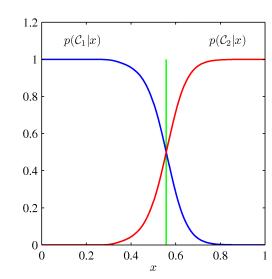
## **Discriminative vs generative methods**

- Generative probabilistic methods
  - Model the density of inputs x from each class p(x|y)
  - Estimate class prior probability p(y)
  - Use Bayes' rule to infer distribution over class given input

$$p(y|x) = \frac{p(y) p(x|y)}{p(x)} \qquad p(x) = \sum_{y} p(y) p(x|y)^{\frac{1}{2}}$$



- Discriminative (probabilistic) methods
  - Directly estimate class probability given input: p(y|x)
  - Some methods do not have probabilistic interpretation,
    - eg. they fit a function f(x), and assign to class 1 if f(x)>0, and to class 2 if f(x)<0</li>

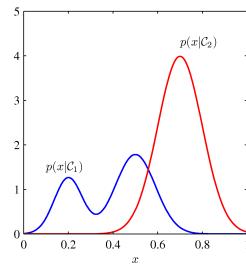




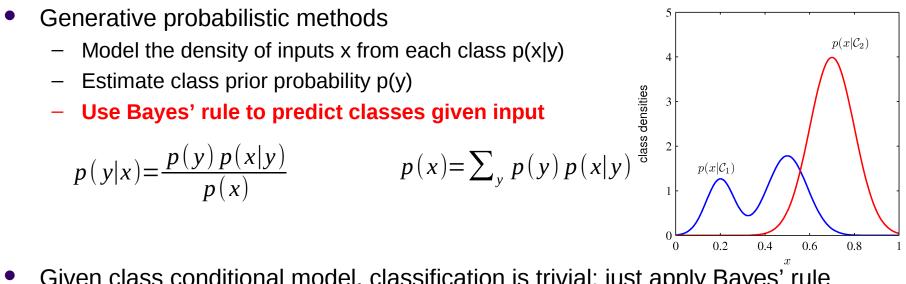
- Generative probabilistic methods
  - Model the density of inputs x from each class p(x|y)
  - Estimate class prior probability p(y)
  - Use Bayes' rule to infer distribution over class given input

$$p(y|x) = \frac{p(y) p(x|y)}{p(x)} \qquad p(x) = \sum_{y} p(y) p(x|y)^{\frac{2}{3}}$$

- 1. Selection of model class:
  - Parametric model: Gaussian (for continuous), Bernoulli (for binary), ...
  - Semi-parametric models: mixtures of Gaussian / Bernoulli / ...
  - Non-parametric models: histograms, nearest-neighbor method, ...
- 2. Estimate parameters of density for each class to obtain p(x|y)
  - Eg: run EM to learn Gaussian mixture on data of each class
- 3. Estimate prior probability of each class
  - If data point is equally likely given each class, then assign to the most probable class.
  - Prior probability might be different than the number of available examples !



Grenobl Ensima



- Given class conditional model, classification is trivial: just apply Bayes' rule
  - Compute p(x|class) for each class,
  - multiply with class prior probability
  - Normalize to obtain the class probabilities
- Adding new classes can be done by adding a new class conditional model
  - Existing class conditional models stay as they are
  - Estimate p(x|new class) from training examples of new class ►
  - Re-estimate class prior probabilities

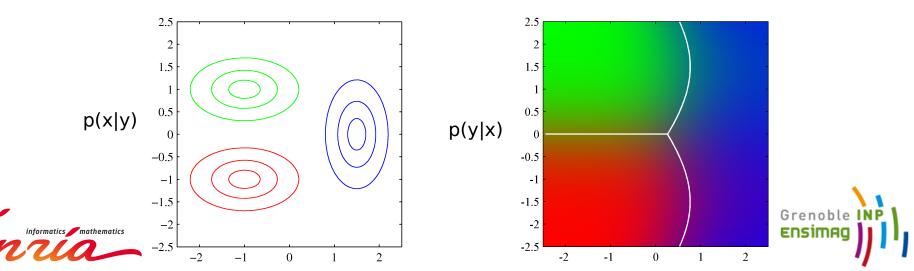


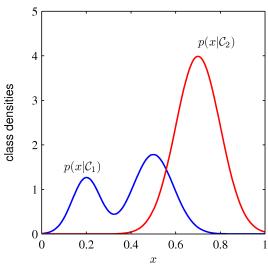
- Generative probabilistic methods
  - Model the density of inputs x from each class p(x|y)
  - Estimate class prior probability p(y)
  - Use Bayes' rule to predict classes given input

$$p(y|x) = \frac{p(y) p(x|y)}{p(x)} \qquad p(x) = \sum_{y} p(y) p(x|y)$$

#### Three-class example in 2d with parametric model

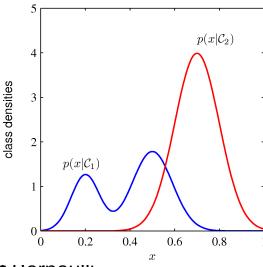
- Single Gaussian model per class, equal mixing weights
- Exercise: characterize surface of equal class probability when the covariance matrices are all equal





- Generative probabilistic methods
  - Model the density of inputs x from each class p(x|y)
  - Estimate class prior probability p(y)
  - Use Bayes' rule to infer distribution over class given input

- 1. Selection of model class:
  - Parametric model: Gaussian (for continuous), Bernoulli (fo
  - Semi-parametric models: mixtures of Gaussian, mixtures of Bernoulli, ...
  - Non-parametric models: histograms, nearest-neighbor method, ...
- 1. Estimate parameters of density for each class to obtain p(x|class)
  - Eg: run EM to learn Gaussian mixture on data of each class
- 1. Estimate prior probability of each class
  - Fraction of points in training data for each class
  - Assumes class proportions in train data are representative for test time (not always true)



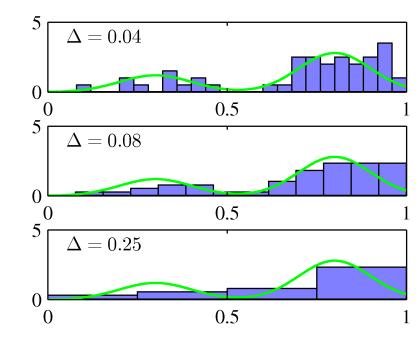
Grenob Ensima

# **Histogram density estimation**

- Suppose we
  - have *N* data points
  - use a histogram with C cells
- How to set the density level in each cell ?
  - Maximum likelihood estimator.
  - Proportional to nr of points *n* in cell
  - Inversely proportional to volume V of cell

$$p_c = \frac{n_c}{NV_c}$$

- Exercise: derive this result
- Problems with histogram method:
  - # cells scales exponentially with the dimension of the data
  - Discontinuous density estimate
  - How to choose cell size?





## The 'curse of dimensionality'

- Number of bins increases exponentially with the dimensionality of the data.
  - Fine division of each dimension: many empty bins
  - Rough division of each dimension: poor density model
- The number of parameters may be reduced by assuming independence between the dimensions of *x*: the naïve Bayes model

$$p(x) = \prod_{d=1}^{D} p(x^d)$$

- For example, for histogram model: we estimate a histogram per dimension
- Still  $C^{D}$  cells, but only D x C parameters to estimate, instead of  $C^{D}$
- Model is "naïve" since it assumes that all variables are independent...
  - Unrealistic for high dimensional data, where variables tend to be dependent
  - Typically poor density estimator for p(x|y)
  - Classification performance may still be good using the derived p(y|x)
- Principle can be applied to estimation with any type of model





#### k-nearest-neighbor density estimation

- Instead of having fixed cells as in histogram method, put a cell around the test sample we want to know p(x) for
  - fix number of samples in the cell, find the right cell size.
- Probability to find a point in a sphere **A** centered on  $x_o$  with volume **v** is  $P(x \in A) = \int_A p(x) dx$
- A smooth density is approximately constant in small region, and thus

$$P(x \in A) = \int_{A} p(x) dx \approx v p(x_0)$$

- Alternatively: estimate **P** from the fraction of training data in **A** 
  - Total N data points, k in the sphere A
- Combine the above to obtain estimate

$$p(x_0) \approx \frac{k}{Nv}$$

 $P(x \in A) \approx \frac{k}{N}$ 

Grenoble

Density estimates not guaranteed to integrate to one!

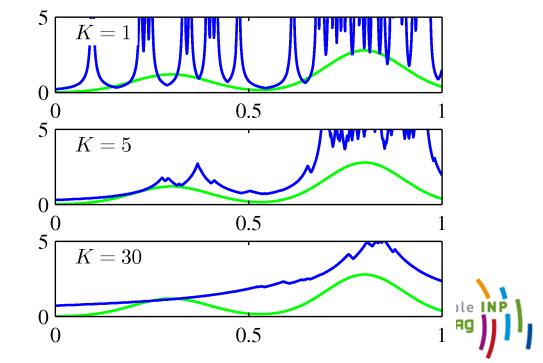


#### k-nearest-neighbor density estimation

- Procedure in practice:
  - Choose **k**
  - For given  $\boldsymbol{x}$ , compute the volume  $\boldsymbol{v}$  which contain  $\boldsymbol{k}$  samples.
  - Estimate density with
- $p(x) \approx \frac{k}{Nv}$
- Volume of a sphere with radius *r* in *d* dimensions is

$$v(r,d) = \frac{2r^d \pi^{d/2}}{\Gamma(d/2+1)}$$

- What effect does *k* have?
  - Data sampled from mixture of Gaussians plotted in green
  - Larger k, larger region, smoother estimate
- Selection of k typically by cross validation

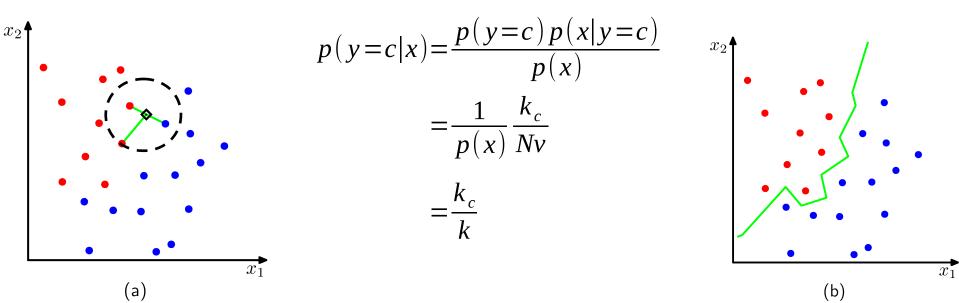


#### k-nearest-neighbor classification

- Use k-nearest neighbor density estimation to find p(x|y)
- Apply Bayes rule for classification: *k*-nearest neighbor classification
  - Find sphere volume v to capture  $\boldsymbol{k}$  data points for estimate
  - stimate  $p(x) = \frac{k}{Nv}$  $p(x|y=c) = \frac{k_c}{Nv}$ Use the same sphere for each class for estimates
  - Estimate class prior probabilities

$$p(y=c) = \frac{N_c}{N}$$

Calculate class posterior distribution as fraction of k neighbors in class c



## **Summary generative classification methods**

- (Semi-) Parametric models, eg p(x|y) is Gaussian, or mixture of ...
  - Pros: no need to store training data, just the class conditional models
  - Cons: may fit the data poorly, and might therefore lead to poor classification result
- Non-parametric models:
  - Advantage is their flexibility: no assumption on shape of data distribution
  - Histograms:
    - Only practical in low dimensional space (<5 or so), application in high dimensional space will lead to exponentially many cells, most of which will be empty

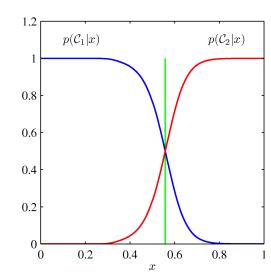
Grenob

- Naïve Bayes modeling in higher dimensional cases
- K-nearest neighbor density estimation: simple but expensive at test time
  - storing all training data (memory space)
  - Computing nearest neighbors (computation)



## **Discriminative vs generative methods**

- Generative probabilistic methods
  - Model the density of inputs x from each class p(x|y)
  - Estimate class prior probability p(y)
  - Use Bayes' rule to infer distribution over class given input
- **Discriminative methods** directly estimate class probability given input: p(y|x)
  - Choose class of decision functions in feature space
  - Estimate function to maximize performance on the training set
  - Classify a new pattern on the basis of this decision rule.



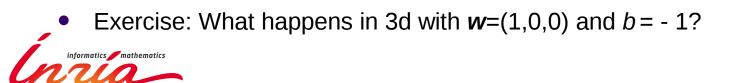


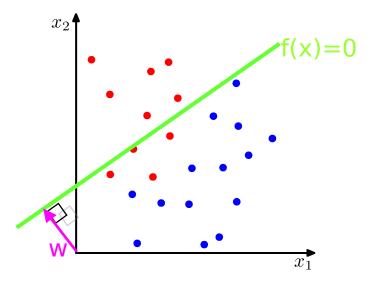
## **Binary linear classifier**

• Decision function is linear in the features:

$$f(x) = w^T x + b = b + \sum_{i=1}^d w_i x_i$$

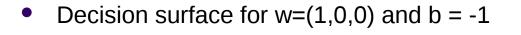
- Classification based on the sign of f(x)
- Orientation is determined by **w** 
  - **w** is the surface normal
- Offset from origin is determined by *b*
- Decision surface is (d-1) dimensional hyper-plane orthogonal to **w**, given by  $f(x)=w^{T}x+b=0$







## **Binary linear classifier**



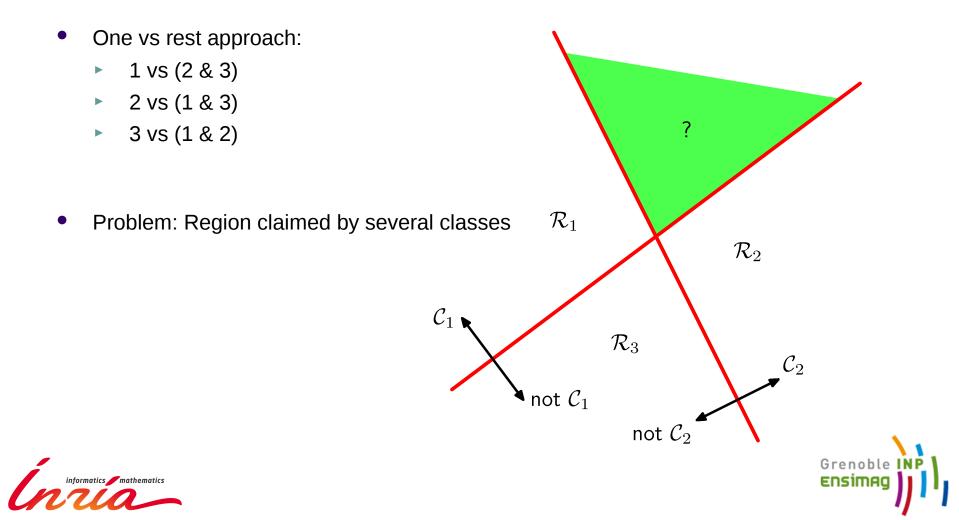
$$f(x) = w^{T} x + b = 0$$
  
$$b + \sum_{i=1}^{d} w_{i} x_{i} = 0$$
  
$$x_{1} - 1 = 0$$
  
$$x_{1} = 1$$





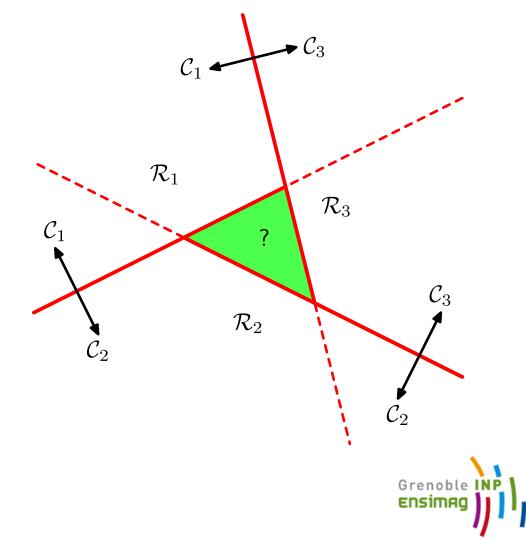
## **Dealing with more than two classes**

- First idea: construction from multiple binary classifiers
  - Learn binary "base" classifiers independently



## **Dealing with more than two classes**

- First idea: construction from multiple binary classifiers
  - Learn binary "base" classifiers independently
- One vs one approach:
  - 1 vs 2
  - 1 vs 3
  - 2 vs 3
- Problem: conflicts in some regions





#### **Dealing with more than two classes**

• Instead: define a separate linear score function for each class

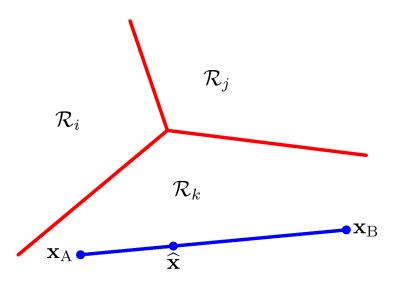
 $f_k(x) = w_k^T x + b_k$ 

• Assign sample to the class of the function with maximum value

$$y = arg max_k f_k(x)$$

• Exercise 1: give the expression for points where two classes have equal score

- Exercise 2: show that the set of points assigned to a class is convex
  - If two points fall in the region, then also all points on connecting line



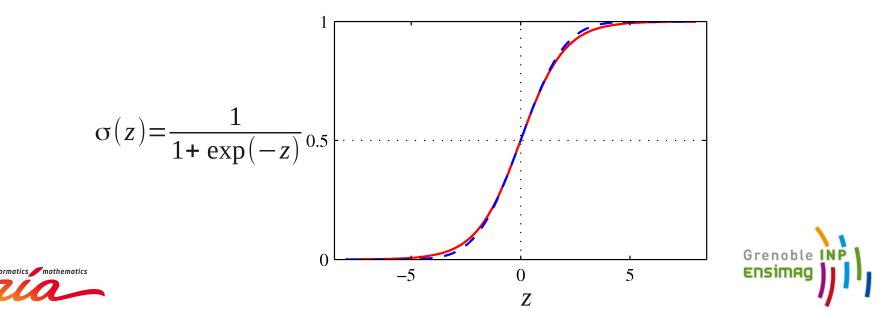
#### Logistic discriminant for two classes

- Map linear score function to class probabilities with sigmoid function  $p(y=+1|x)=\sigma(w^Tx+b)$ 
  - For binary classification problem, we have by definition

$$p(y=-1|x)=1-p(y=+1|x)$$

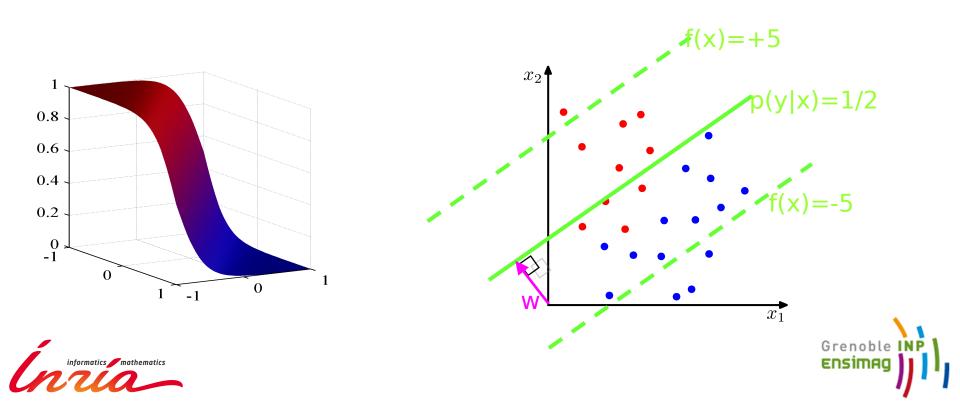
Exercise: show that

$$p(y=-1|x)=\sigma(-(w^{T}x+b))$$



#### Logistic discriminant for two classes

- Map linear score function to class probabilities with sigmoid function
- The class boundary is obtained for p(y|x)=1/2, thus by setting linear function in exponent to zero



## **Multi-class logistic discriminant**

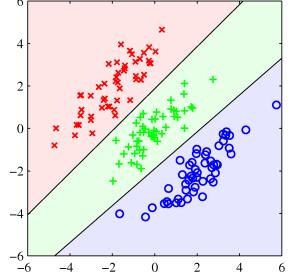
• Map score function of each class to class probabilities with "soft-max" function

$$f_{k}(x) = w_{k}^{T} x + b_{k} \qquad p(y = c | x) = \frac{\exp(f_{c}(x))}{\sum_{k=1}^{K} \exp(f_{k}(x))}$$

- The class probability estimates are non-negative, and sum to one.
- Relative probability of most likely class increases exponentially with the difference in the linear score functions

$$\frac{p(y=c|x)}{p(y=k|x)} = \frac{\exp(f_c(x))}{\exp(f_k(x))} = \exp(f_c(x) - f_k(x))$$

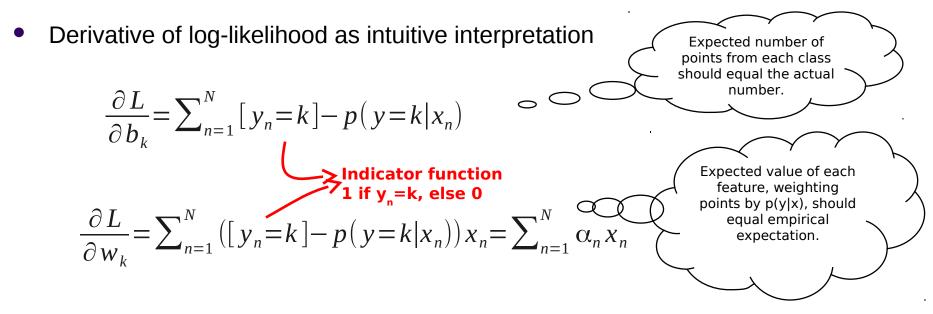
 For any given pair of classes we find that they are equally likely on a hyperplane in the feature space





## **Maximum likelihood parameter estimation**

- Maximize the log-likelihood of predicting the correct class label for training data
  - Predictions are made independently, so sum log-likelihood of all training data  $L = \sum_{n=1}^{N} \log p(y_n | x_n)$

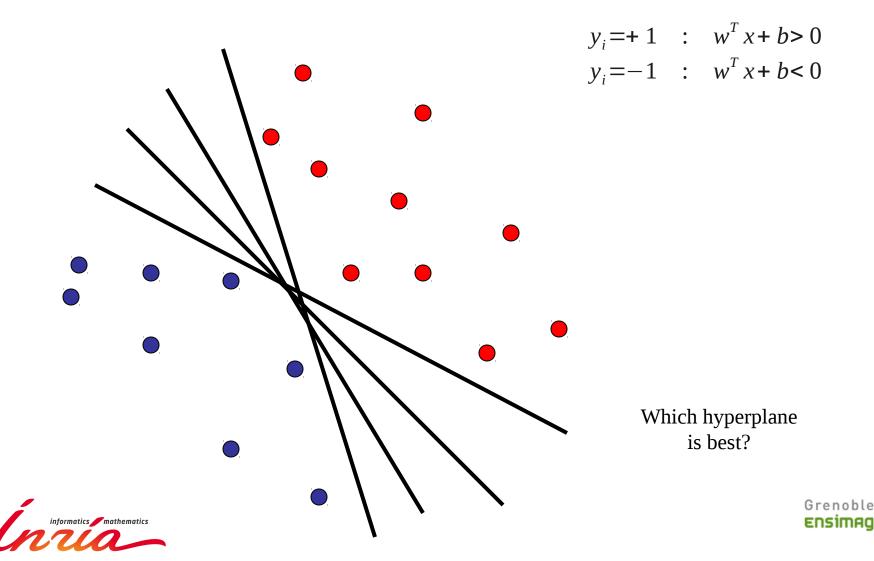


Grenobl Ensima

- No closed-form solution, use gradient-descent methods
  - log-likelihood is concave in parameters, hence no local optima
  - w is linear combination of data points

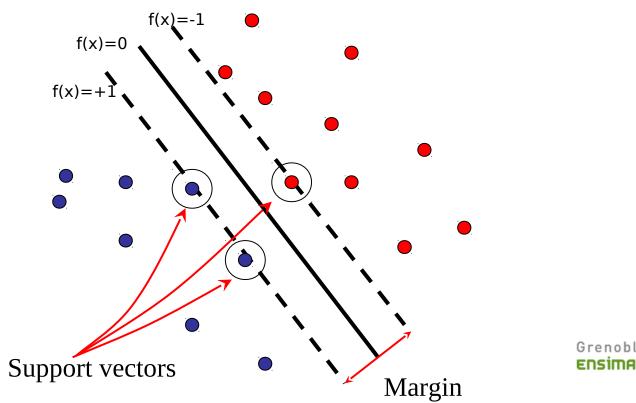
#### **Support Vector Machines**

• Find linear function (*hyperplane*) to separate positive and negative examples



#### **Support vector machines**

- Find maximum margin hyperplane between positive and negative examples
  - Constrain points to be on correct side of boundary  $y_i(w^T x + b) \ge 1$
  - Define support vectors as the closest points to the boundary  $w^T x + b = y_i$
  - Then it follows that (exercise to show this) margin size is 2/||w||
  - ► To maximize margin, minimize the norm of w



## **Finding the maximum margin hyperplane**

- 1. Minimize the norm of w
- 2. Correctly classify all training data:

 $y_i = +1$  :  $w^T x + b \ge +1$  $y_i = -1$  :  $w^T x + b \le -1$ 

Quadratic optimization problem:

Minimize  $\frac{1}{2} w^T w$ Subject to  $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$ 



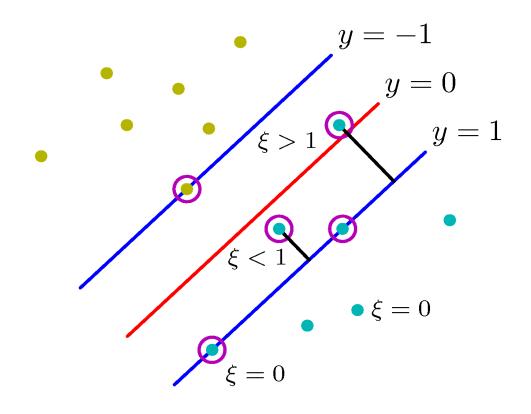


#### **Support vector machines**

- For non-separable classes: pay a penalty for crossing the margin  $\xi_i = max(0, 1 y_i f(x_i))$ 
  - If on correct side of the margin: zero
  - Otherwise, amount by which score violates the constraint of correct classification

 $y_i f(x_i) \ge 1$ 

Grenob Ensime





#### **Finding the maximum margin hyperplane**

Grenob Ensime

• Minimize norm of w, plus penalties:

$$min_{w,b} = \frac{1}{2}w^Tw + C\sum_i max(0,1-y_i(w^Tx+b))$$

- Optimization: still a quadratic-programming problem
- C: trades-off between large margin & small penalties
  - Typically set by cross-validation



# **SVM solution properties**

• Optimal w is a linear combination of data points

 $w = \sum_{n=1}^{N} \alpha_n y_n x_n$ 

- Weights (alpha) are zero for all points on the correct side of the margin
  - Points on the margin also have non-zero weight
- Classification function thus has form  $f(x) = w^T x + b = \sum_{n=1}^{N} \alpha_n y_n x_n^T x + b$ 
  - relies only on inner products between the test point x and data points with non-zero alpha's
- Solving the optimization problem also requires access to the data only in terms of inner products  $x_i \cdot x_j$  between pairs of training points





#### **Relation SVM and logistic regression**

- A classification error occurs when sign of the function does not match the sign of the class label: the zero-one loss  $z = y_i f(x_i) \le 0$
- Consider error minimized when training classifier:
  - Non-separable SVM, hinge loss:  $\xi_i = max(0, 1 y_i f(x_i)) = max(0, 1 z)$ 
    - Logistic loss:  $-\log p(y_i|x_i) = -\log \sigma(y_i f(x_i)) = \log(1 + \exp(-z))$



- Both hinge & logistic loss are convex bounds on zero-one loss which is non-convex and discontinuous
- Both lead to efficient optimization
  - Hinge-loss is piece-wise linear: quadratic programming
  - Logistic loss is smooth: gradient descent methods

Grenoble

Ensimag

# **Summary of discriminative linear classification**

- Two most widely used linear classifiers in practice:
  - Logistic discriminant (supports more than 2 classes directly)
  - Support vector machines (multi-class extensions possible)
- For both, in the case of binary classification
  - Criterion that is minimized is a convex bound on zero-one loss
  - weight vector **w** is a linear combination of the data points  $w = \sum_{n=1}^{N} \alpha_n x_n$

• This means that we only need the inner-products between data points to calculate the linear functions  $f(x) = w^T x + b$ 

$$= \sum_{n=1}^{N} \alpha_n x_n^T x + b$$
$$= \sum_{n=1}^{N} \alpha_n k(x_n, x) + b$$

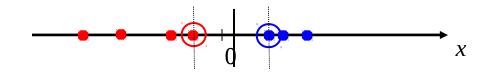
Grenob

The "kernel" function k(,) computes the inner products

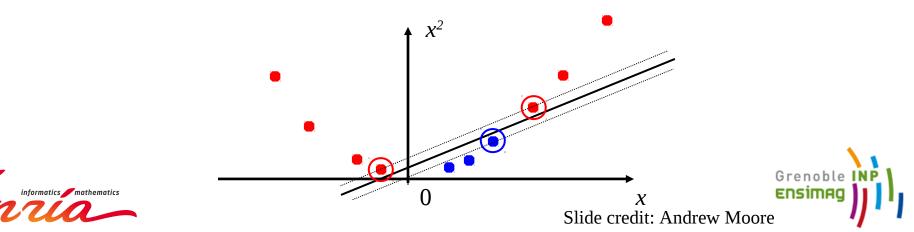


## **Nonlinear Classification**

• 1 dimensional data that is linearly separable

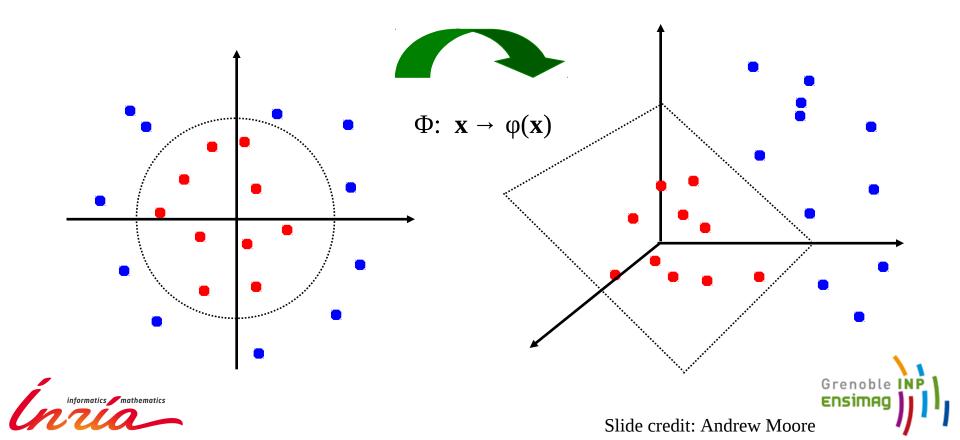


- But what if the data is not linearly seperable? 0
- We can map it to a higher-dimensional space:



X

- General idea: map the original input space to some higher-dimensional feature space where the training set is separable
- Exercise: find features that could separate the 2d data linearly



#### **Nonlinear classification with kernels**

• The kernel trick: instead of explicitly computing the feature transformation  $\varphi(\mathbf{x})$ , define a kernel function K such that

 $K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$ 

- Conversely, if a kernel satisfies Mercer's condition then it computes an inner product in some feature space, possibly with large or infinite # of dimensions
  - Mercer's Condition: The square N x N matrix with kernel evaluations for any arbitrary N data points should always be a positive definite matrix.

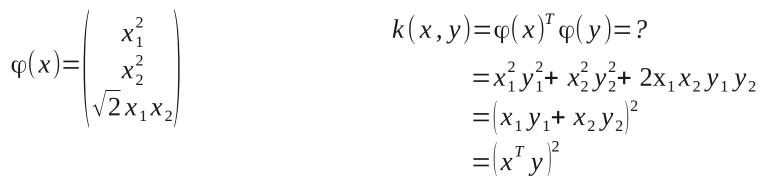
Grenobl

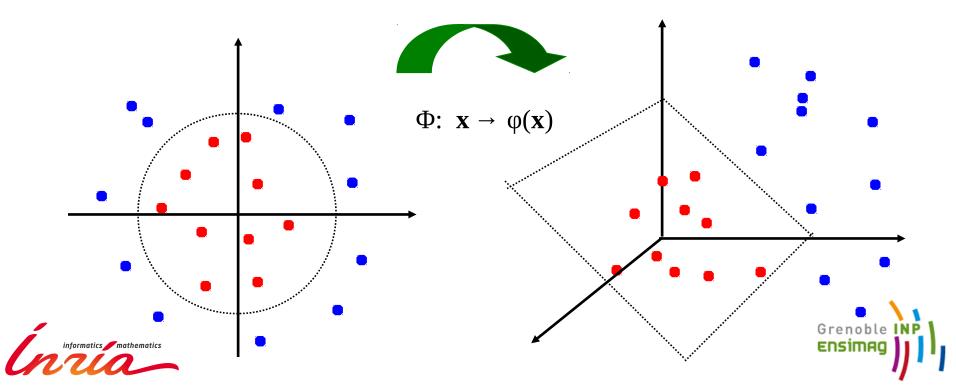
• This gives a **nonlinear decision boundary** in the original space:

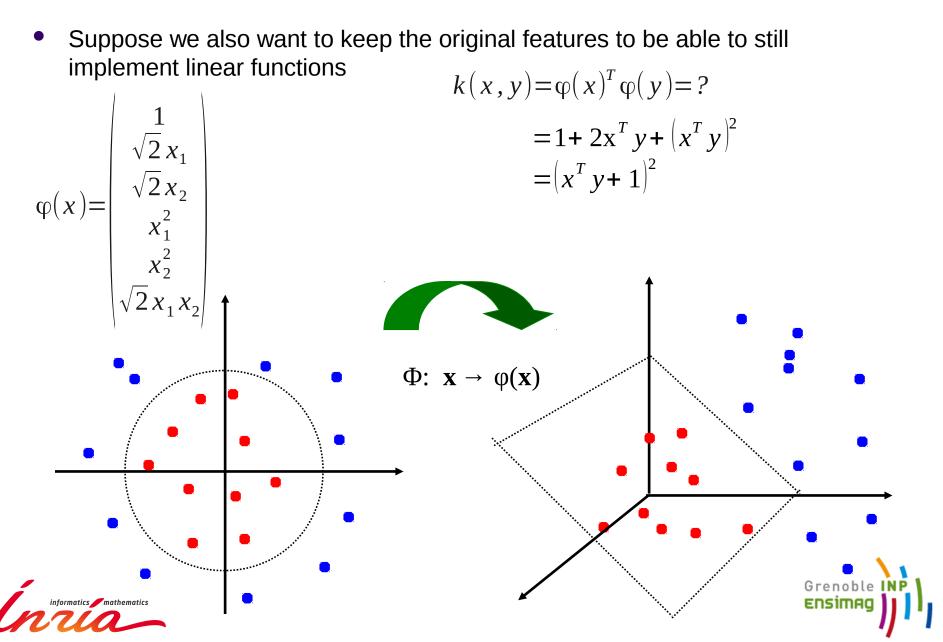
$$f(x) = b + w^{T} \varphi(x)$$
  
=  $b + \sum_{i} \alpha_{i} \varphi(x_{i})^{T} \varphi(x)$   
=  $b + \sum_{i} \alpha_{i} k(x_{i}, x)$ 



• What is the kernel function that corresponds to this feature mapping ?







- What happens if we use the same kernel for higher dimensional data
  - Which feature vector  $\varphi(x)$  corresponds to it ?

$$k(x, y) = (x^{T} y + 1)^{2} = 1 + 2x^{T} y + (x^{T} y)^{2}$$

- First term, encodes an additional 1 in each feature vector
- Second term, encodes scaling of the original features by sqrt(2)
- Let's consider the third term  $(x^T y)^2 = (x_1 y_1 + ... + x_D y_D)^2$

$$= \sum_{d=1}^{D} (x_{d} y_{d})^{2} + 2 \sum_{d=1}^{D} \sum_{i=d+1}^{D} (x_{d} y_{d})(x_{i} y_{i})$$
$$= \sum_{d=1}^{D} x_{d}^{2} y_{d}^{2} + 2 \sum_{d=1}^{D} \sum_{i=d+1}^{D} (x_{d} x_{i})(y_{d} y_{i})$$

Products of two distinct elements

In total we have 1 + 2D + D(D-1)/2 features !

**Original features** 

But the kernel is computed as efficiently as dot-product in original space

$$\varphi(x) = \left(1, \sqrt{2} x_1, \sqrt{2} x_2, \dots, \sqrt{2} x_D, x_1^2, x_2^2, \dots, x_D^2, \sqrt{2} x_1 x_2, \dots, \sqrt{2} x_1 x_D, \dots, \sqrt{2} x_{D-1} x_D\right)^T$$

Squares

#### **Popular kernels for bags of features**

• Hellinger kernel:

 $k(h_1,h_2) = \sum_d \sqrt{h_1(i)} \times \sqrt{h_2(i)}$ 

• Histogram intersection kernel:

 $k(h_1,h_2) = \sum_d min(h_1(d),h_2(d))$ 

- Exercise: find the feature transformation ?
- Generalized Gaussian kernel:

$$k(h_1,h_2) = \exp\left(-\frac{1}{A}d(h_1(i),h_2(i))\right)$$

• *d* can be Euclidean distance,  $\chi^2$  distance, Earth Mover's Distance, etc.

See also: J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local features and kernels for classification of texture and object categories: a comprehensive study. Int. Journal of Computer Vision, 2007



## **Summary linear classification & kernels**

- Linear classifiers learned by minimizing convex cost functions
  - Logistic discriminant: smooth objective, minimized using gradient descend
  - Support vector machines: piecewise linear objective, quadratic programming
  - Both require only computing inner product between data points
- Non-linear classification can be done with linear classifiers over new features that are non-linear functions of the original features
  - Kernel functions efficiently compute inner products in (very) high-dimensional spaces, can even be infinite dimensional in some cases.
- Using kernel functions non-linear classification has drawbacks
  - Requires storing the support vectors, may cost lots of memory in practice
  - Computing kernel between new data point and support vectors may be computationally expensive (at least more expensive than linear classifier)
- Kernel functions also work for other linear data analysis techniques
  - Principle component analysis, k-means clustering, ....



## **Reading material**

- A good book that covers all machine learning aspects of the course is
  - Pattern recognition & machine learning
    Chris Bishop, Springer, 2006

- For clustering with k-means & mixture of Gaussians read
  - Section 2.3.9
  - Chapter 9, except 9.3.4
  - Optionally, Section 1.6 on information theory
- For classification read
  - Section 2.5, except 2.5.1
  - Section 4.1.1 & 4.1.2
  - Section 4.2.1 & 4.2.2
  - Section 4.3.2 & 4.3.4
  - Section 6.2
  - Section 7.1 start + 7.1.1 & 7.1.2

