
Generative and discriminative classification techniques

Machine Learning and Category Representation 2013-2014

Jakob Verbeek, December 13+20, 2013

Course website:

http://lear.inrialpes.fr/~verbeek/MLCR.13.14

Classification

Given: training images and their categories To which category does
a new image belong?

apple

pear

tomato

cow

dog

horse

?

Classification

 Goal is to predict for a test data input the corresponding class label.
– Data input x, eg. image but could be anything, format may be vector or other
– Class label y, can take one out of at least 2 discrete values, can be more

► In binary classification we often refer to one class as “positive”, and the
other as “negative”

 Classifier: function f(x) that assigns a class to x, or probabilities over the
classes.

 Training data: pairs (x,y) of inputs x, and corresponding class label y.

 Learning a classifier: determine function f(x) from some family of functions
based on the available training data.

 Classifier partitions the input space into regions where data is assigned to a
given class

– Specific form of these boundaries will depend on the family of classifiers used

Discriminative vs generative methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

 Discriminative (probabilistic) methods
► Directly estimate class probability given input: p(y|x)
► Some methods do not have probabilistic interpretation,

 eg. they fit a function f(x), and assign to class 1 if f(x)>0,

and to class 2 if f(x)<0

p (y∣x)=
p (y) p(x∣y)

p (x)
p (x)=∑y

p (y) p (x∣y)

Generative classification methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

1. Selection of model class:
– Parametric model: Gaussian (for continuous), Bernoulli (for binary), …
– Semi-parametric models: mixtures of Gaussian / Bernoulli / …
– Non-parametric models: histograms, nearest-neighbor method, …

2. Estimate parameters of density for each class to obtain p(x|y)
– Eg: run EM to learn Gaussian mixture on data of each class

3. Estimate prior probability of each class
– If data point is equally likely given each class, then assign to the most probable class.
– Prior probability might be different than the number of available examples !

p (y∣x)=
p (y) p(x∣y)

p (x)
p (x)=∑y

p (y) p (x∣y)

Generative classification methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to predict classes given input

 Given class conditional model, classification is trivial: just apply Bayes’ rule
– Compute p(x|class) for each class,
– multiply with class prior probability
– Normalize to obtain the class probabilities

 Adding new classes can be done by adding a new class conditional model
► Existing class conditional models stay as they are
► Estimate p(x|new class) from training examples of new class
► Re-estimate class prior probabilities

p (y∣x)=
p (y) p(x∣y)

p (x)
p (x)=∑y

p (y) p (x∣y)

Generative classification methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to predict classes given input

• Three-class example in 2d with parametric model
– Single Gaussian model per class, equal mixing weights
– Exercise: characterize surface of equal class probability when the covariance matrices are

all equal

p (y∣x)=
p (y) p(x∣y)

p (x)
p (x)=∑y

p (y) p (x∣y)

p(x|y) p(y|x)

Generative classification methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

1. Selection of model class:
– Parametric model: Gaussian (for continuous), Bernoulli (for binary), …
– Semi-parametric models: mixtures of Gaussian, mixtures of Bernoulli, …
– Non-parametric models: histograms, nearest-neighbor method, …

1. Estimate parameters of density for each class to obtain p(x|class)
– Eg: run EM to learn Gaussian mixture on data of each class

1. Estimate prior probability of each class
– Fraction of points in training data for each class
– Assumes class proportions in train data are representative for test time (not always true)

Histogram density estimation

 Suppose we
– have N data points
– use a histogram with C cells

 How to set the density level in each cell ?
– Maximum likelihood estimator.
– Proportional to nr of points n in cell
– Inversely proportional to volume V of cell

► Exercise: derive this result

 Problems with histogram method:
– # cells scales exponentially with the dimension of the data
– Discontinuous density estimate
– How to choose cell size?

pc=
nc

NV c

The ‘curse of dimensionality’

 Number of bins increases exponentially with the dimensionality of the data.
– Fine division of each dimension: many empty bins
– Rough division of each dimension: poor density model

 The number of parameters may be reduced by assuming independence
between the dimensions of x: the naïve Bayes model

– For example, for histogram model: we estimate a histogram per dimension

– Still CD cells, but only D x C parameters to estimate, instead of CD

 Model is “naïve” since it assumes that all variables are independent…
► Unrealistic for high dimensional data, where variables tend to be dependent
► Typically poor density estimator for p(x|y)
► Classification performance may still be good using the derived p(y|x)

 Principle can be applied to estimation with any type of model

p(x)=∏d=1

D
p (xd

)

k-nearest-neighbor density estimation

 Instead of having fixed cells as in histogram method, put a cell around the
test sample we want to know p(x) for

– fix number of samples in the cell, find the right cell size.

 Probability to find a point in a sphere A centered on x
0
 with volume v is

 A smooth density is approximately constant in small region, and thus

 Alternatively: estimate P from the fraction of training data in A
– Total N data points, k in the sphere A

 Combine the above to obtain estimate

– Density estimates not guaranteed to integrate to one!

P(x∈A)=∫A
p(x)dx

P(x∈A)=∫A
p(x)dx≈v p (x0)

P(x∈A)≈
k
N

p(x0)≈
k

Nv

k-nearest-neighbor density estimation

 Procedure in practice:
– Choose k
– For given x, compute the volume v which contain k samples.
– Estimate density with

 Volume of a sphere with radius r in d dimensions is

 What effect does k have?
– Data sampled from mixture

of Gaussians plotted in green
– Larger k, larger region,

smoother estimate

 Selection of k typically by

cross validation

p(x)≈
k

Nv

v (r , d)=
2rd πd /2

Γ(d /2+ 1)

k-nearest-neighbor classification

 Use k-nearest neighbor density estimation to find p(x|y)
 Apply Bayes rule for classification: k-nearest neighbor classification

– Find sphere volume v to capture k data points for estimate

– Use the same sphere for each class for estimates

– Estimate class prior probabilities

– Calculate class posterior distribution as fraction of k neighbors in class c

p(x∣y=c)=
kc

N c v

p(y=c)=
N c

N

p(y=c∣x)=
p(y=c) p(x∣y=c)

p(x)

=
1

p(x)

k c

Nv

=
k c

k

p(x)=
k

N v

Summary generative classification methods

 (Semi-) Parametric models, eg p(x|y) is Gaussian, or mixture of …
– Pros: no need to store training data, just the class conditional models
– Cons: may fit the data poorly, and might therefore lead to poor classification result

 Non-parametric models:
– Advantage is their flexibility: no assumption on shape of data distribution
– Histograms:

• Only practical in low dimensional space (<5 or so), application in high dimensional space
will lead to exponentially many cells, most of which will be empty

• Naïve Bayes modeling in higher dimensional cases

– K-nearest neighbor density estimation: simple but expensive at test time
• storing all training data (memory space)

• Computing nearest neighbors (computation)

Discriminative vs generative methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

 Discriminative methods directly estimate class probability given input: p(y|x)

► Choose class of decision functions in feature space
► Estimate function to maximize performance on the training set
► Classify a new pattern on the basis of this decision rule.

Binary linear classifier

 Decision function is linear in the features:

 Classification based on the sign of f(x)

 Orientation is determined by w
► w is the surface normal

 Offset from origin is determined by b

 Decision surface is (d-1) dimensional

hyper-plane orthogonal to w, given by

 Exercise: What happens in 3d with w=(1,0,0) and b = - 1?

w

f(x)=0
f (x)=wT x+ b=b+ ∑i=1

d
w i xi

f (x)=wT x+ b=0

Binary linear classifier

 Decision surface for w=(1,0,0) and b = -1

w

f(x)=0

b+∑i=1

d
wi xi=0

f (x)=wT x+ b=0

x1−1=0

x1=1

Dealing with more than two classes

 First idea: construction from multiple binary classifiers
► Learn binary “base” classifiers independently

 One vs rest approach:
► 1 vs (2 & 3)
► 2 vs (1 & 3)
► 3 vs (1 & 2)

 Problem: Region claimed by several classes

Dealing with more than two classes

 First idea: construction from multiple binary classifiers
► Learn binary “base” classifiers independently

 One vs one approach:
► 1 vs 2
► 1 vs 3
► 2 vs 3

 Problem: conflicts in some regions

Dealing with more than two classes

 Instead: define a separate linear score function for each class

 Assign sample to the class of the function with maximum value

 Exercise 1: give the expression for points

where two classes have equal score

 Exercise 2: show that the set of points

assigned to a class is convex
► If two points fall in the region, then also all points on connecting line

f k (x)=wk
T x+ bk

y=argmaxk f k (x)

Logistic discriminant for two classes

 Map linear score function to class probabilities with sigmoid function

► For binary classification problem, we have by definition

► Exercise: show that

σ(z)=
1

1+ exp(−z)

z

p(y=+ 1∣x)=σ(wT x+ b)

p(y=−1∣x)=1−p (y=+ 1∣x)

p(y=−1∣x)=σ(−(wT x+ b))

Logistic discriminant for two classes

 Map linear score function to class probabilities with sigmoid function
 The class boundary is obtained for p(y|x)=1/2, thus by setting linear

function in exponent to zero

w

p(y|x)=1/2

f(x)=-5

f(x)=+5

Multi-class logistic discriminant

 Map score function of each class to class probabilities with “soft-max” function

► The class probability estimates are non-negative, and sum to one.
► Relative probability of most likely class increases exponentially with the

difference in the linear score functions

► For any given pair of classes we find that they are

equally likely on a hyperplane in the feature space

p(y=c∣x)=
exp(f c (x))

∑k=1

K
exp(f k(x))

f k (x)=wk
T x+ bk

p(y=c∣x)

p (y=k∣x)
=

exp(f c (x))

exp (f k (x))
=exp(f c(x)−f k (x))

Maximum likelihood parameter estimation

 Maximize the log-likelihood of predicting the correct class label for training data
► Predictions are made independently, so sum log-likelihood of all training data

 Derivative of log-likelihood as intuitive interpretation

 No closed-form solution, use gradient-descent methods
► log-likelihood is concave in parameters, hence no local optima
► w is linear combination of data points

Expected number of
points from each class
should equal the actual

number.

Expected value of each
feature, weighting

points by p(y|x), should
equal empirical

expectation.

Indicator function
1 if y

n
=k, else 0

L=∑n=1

N
log p (yn∣xn)

∂ L
∂bk

=∑n=1

N
[yn=k]− p(y=k∣xn)

∂ L
∂wk

=∑n=1

N
([yn=k]− p(y=k∣xn)) xn=∑n=1

N
αn xn

Support Vector Machines

 Find linear function (hyperplane) to separate positive and negative
examples

Which hyperplane
is best?

yi=+ 1 : wT x+ b> 0

yi=−1 : wT x+ b< 0

Support vector machines

 Find maximum margin hyperplane between positive and negative examples
► Constrain points to be on correct side of boundary

► Define support vectors as the closest points to the boundary
► Then it follows that (exercise to show this) margin size is
► To maximize margin, minimize the norm of w

Margin
Support vectors

y i(wT x+b)≥1

wT x+ b=y i

2/∥w∥

f(x)=+1

f(x)=0

f(x)=-1

Finding the maximum margin hyperplane

1. Minimize the norm of w

2. Correctly classify all training data:

Quadratic optimization problem:

Minimize

Subject to yi(w·xi+b) ≥ 1

1
2

wT w

yi=+ 1 : wT x+ b≥+ 1

yi=−1 : wT x+ b≤−1

Support vector machines

 For non-separable classes: pay a penalty for crossing the margin

– If on correct side of the margin: zero

– Otherwise, amount by which score violates the constraint of correct classification

ξi=max (0,1−y i f (xi))

y i f (xi)≥1

Finding the maximum margin hyperplane

● Minimize norm of w, plus penalties:

● Optimization: still a quadratic-programming problem

● C: trades-off between large margin & small penalties
● Typically set by cross-validation

minw ,b
1
2

wT w + C∑i
max (0,1− yi(wT x+b))

SVM solution properties

 Optimal w is a linear combination of data points

 Weights (alpha) are zero for all points on the correct side of the margin
► Points on the margin also have non-zero weight

 Classification function thus has form

► relies only on inner products between the test point x and data points
with non-zero alpha's

 Solving the optimization problem also requires access to the data only in
terms of inner products xi · xj between pairs of training points

w=∑n=1

N
αn yn xn

f (x)=wT x+ b=∑n=1

N
αn yn xn

T x+ b

Relation SVM and logistic regression

 A classification error occurs when sign of the function does not match the
sign of the class label: the zero-one loss

 Consider error minimized when training classifier:
– Non-separable SVM, hinge loss:
– Logistic loss:

z= yi f (xi)≤0

ξi=max (0,1− y i f (x i))=max (0,1−z)

−log p (yi∣xi)=−log σ(yi f (x i))=log(1+ exp(−z))

 Both hinge & logistic loss are convex
bounds on zero-one loss which is
non-convex and discontinuous

 Both lead to efficient optimization
► Hinge-loss is piece-wise linear:

quadratic programming
► Logistic loss is smooth: gradient

descent methods

Loss

z

Summary of discriminative linear classification

 Two most widely used linear classifiers in practice:
► Logistic discriminant (supports more than 2 classes directly)
► Support vector machines (multi-class extensions possible)

 For both, in the case of binary classification
► Criterion that is minimized is a convex bound on zero-one loss
► weight vector w is a linear combination of the data points

 This means that we only need the inner-products between data points to
calculate the linear functions

► The “kernel” function k(,) computes the inner products

w=∑n=1

N
αn xn

f (x)=wT x+ b

=∑n=1

N
αn xn

T x+ b

=∑n=1

N
αn k (xn , x)+ b

• 1 dimensional data that is linearly separable

• But what if the data is not linearly seperable?

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear Classification

Slide credit: Andrew Moore

Φ: x → φ(x)

Kernels for non-linear classification

 General idea: map the original input space to some higher-dimensional
feature space where the training set is separable

 Exercise: find features that could separate the 2d data linearly

Slide credit: Andrew Moore

Nonlinear classification with kernels

 The kernel trick: instead of explicitly computing the feature transformation
φ(x), define a kernel function K such that

 K(xi , xj) = φ(xi) · φ(xj)

 Conversely, if a kernel satisfies Mercer’s condition then it computes an inner
product in some feature space, possibly with large or infinite # of dimensions

► Mercer's Condition: The square N x N matrix with kernel evaluations for
any arbitrary N data points should always be a positive definite matrix.

 This gives a nonlinear decision boundary in the original space:

f (x) = b+ wT
ϕ(x)

= b+ ∑i
αi ϕ(xi)

T ϕ(x)

= b+ ∑i
αi k (xi , x)

Kernels for non-linear classification

 What is the kernel function that corresponds to this feature mapping ?

Φ: x → φ(x)

ϕ(x)=(
x1

2

x2
2

√2 x1 x2
)

k (x , y)=ϕ(x)
T
ϕ(y)=?

=x1
2 y1

2
+ x2

2 y2
2
+ 2x1 x2 y1 y2

=(x1 y1+ x2 y2)
2

=(xT y)
2

Kernels for non-linear classification

 Suppose we also want to keep the original features to be able to still
implement linear functions

Φ: x → φ(x)

ϕ(x)=(
1

√2 x1

√2 x2

x1
2

x2
2

√2 x1 x2

)
k (x , y)=ϕ(x)

T
ϕ(y)=?

=1+ 2xT y+ (xT y)
2

=(xT y+ 1)
2

Kernels for non-linear classification

 What happens if we use the same kernel for higher dimensional data
► Which feature vector corresponds to it ?

► First term, encodes an additional 1 in each feature vector
► Second term, encodes scaling of the original features by sqrt(2)
► Let's consider the third term

► In total we have 1 + 2D + D(D-1)/2 features !
► But the kernel is computed as efficiently as dot-product in original space

(xT y)
2
=(x1 y1+ ...+ xD yD)

2

k (x , y)=(xT y+ 1)
2
=1+ 2xT y+ (xT y)

2

=∑d=1

D
(xd yd)

2
+ 2∑d=1

D

∑i=d+ 1

D
(xd yd)(xi yi)

=∑d=1

D
xd

2 yd
2
+ 2∑d=1

D

∑i=d+ 1

D
(xd xi)(yd yi)

ϕ(x)=(1 ,√2 x1 ,√2 x2, ... ,√2 xD , x1
2 , x2

2 , ... , xD
2 ,√2 x1 x2 , ... ,√2 x1 xD , ... ,√2 xD−1 xD)

T

Original features Squares Products of two distinct elements

ϕ(x)

Popular kernels for bags of features

 Hellinger kernel:

 Histogram intersection kernel:

► Exercise: find the feature transformation ?

 Generalized Gaussian kernel:

► d can be Euclidean distance, χ2 distance, Earth Mover’s Distance, etc.

See also:
J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,
Local features and kernels for classification of texture and object categories: a
comprehensive study. Int. Journal of Computer Vision, 2007

k (h1 ,h2)=∑d
min(h1(d) ,h2(d))

k (h1 ,h2)=exp(− 1
A

d (h1(i) ,h2(i)))

k (h1 ,h2)=∑d √h1(i)×√h2(i)

Summary linear classification & kernels

 Linear classifiers learned by minimizing convex cost functions
– Logistic discriminant: smooth objective, minimized using gradient descend
– Support vector machines: piecewise linear objective, quadratic programming
– Both require only computing inner product between data points

 Non-linear classification can be done with linear classifiers over new
features that are non-linear functions of the original features
► Kernel functions efficiently compute inner products in (very) high-dimensional

spaces, can even be infinite dimensional in some cases.

 Using kernel functions non-linear classification has drawbacks
– Requires storing the support vectors, may cost lots of memory in practice
– Computing kernel between new data point and support vectors may be

computationally expensive (at least more expensive than linear classifier)

 Kernel functions also work for other linear data analysis techniques
– Principle component analysis, k-means clustering, ….

Reading material

 A good book that covers all machine learning aspects of the course is
► Pattern recognition & machine learning

Chris Bishop, Springer, 2006

 For clustering with k-means & mixture of Gaussians read
► Section 2.3.9
► Chapter 9, except 9.3.4
► Optionally, Section 1.6 on information theory

 For classification read
► Section 2.5, except 2.5.1
► Section 4.1.1 & 4.1.2
► Section 4.2.1 & 4.2.2
► Section 4.3.2 & 4.3.4
► Section 6.2
► Section 7.1 start + 7.1.1 & 7.1.2

	Slide 1
	Example of classification
	Classification
	Discriminative vs generative methods
	Generative classification methods
	Slide 6
	Slide 7
	Slide 8
	Histogram methods
	The ‘curse of dimensionality’
	Slide 12
	Slide 13
	k-nearest-neighbor classification rule
	Summary generative classification methods
	Slide 17
	Linear classifiers
	Slide 19
	Dealing with more than two classes
	Slide 21
	Slide 22
	Logistic discriminant for two classes
	Slide 24
	Multi-class logistic discriminant
	Parameter estimation for logistic discriminant
	Support Vector Machines
	Support vector machines
	Finding the maximum margin hyperplane
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Summary Linear discriminant analysis
	Nonlinear SVMs
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Kernels for bags of features
	SVMs vs Logisitic discriminants
	Slide 45

