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Classification

Given: training images and their categories To which category does 
a new image belong?

apple

pear

tomato

cow

dog

horse

?



Classification

 Goal is to predict for a test data input the corresponding class label.
– Data input x, eg. image but could be anything, format may be vector or other
– Class label y, can take one out of at least 2 discrete values, can be more

► In binary classification we often refer to one class as “positive”, and the 
other as “negative”

 Classifier: function f(x) that assigns a class to x, or probabilities over the 
classes.

 Training data: pairs (x,y) of inputs x, and corresponding class label y.

 Learning a classifier: determine function f(x) from some family of functions 
based on the available training data.

 Classifier partitions the input space into regions where data is assigned to a 
given class

– Specific form of these boundaries will depend on the family of classifiers used



Discriminative vs generative methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

 Discriminative (probabilistic) methods
► Directly estimate class probability given input: p(y|x)
► Some methods do not have probabilistic interpretation, 

 eg. they fit a function f(x), and assign to class 1 if f(x)>0,

and to class 2 if f(x)<0

p ( y∣x)=
p ( y) p(x∣y)

p (x)
p (x)=∑y

p ( y) p (x∣y)



Generative classification methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

1. Selection of model class: 
– Parametric model: Gaussian (for continuous), Bernoulli (for binary), …
– Semi-parametric models: mixtures of Gaussian / Bernoulli / …
– Non-parametric models: histograms, nearest-neighbor method, …

2. Estimate parameters of density for each class to obtain p(x|y)
– Eg: run EM to learn Gaussian mixture on data of each class

3. Estimate prior probability of each class 
– If data point is equally likely given each class, then assign to the most probable class.
– Prior probability might be different than the number of available examples !

p ( y∣x)=
p ( y) p(x∣y)

p (x)
p (x)=∑y

p ( y) p (x∣y)



Generative classification methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to predict classes given input

 Given class conditional model, classification is trivial: just apply Bayes’ rule
– Compute p(x|class) for each class, 
– multiply with class prior probability
– Normalize to obtain the class probabilities

 Adding new classes can be done by adding a new class conditional model
► Existing class conditional models stay as they are
► Estimate p(x|new class) from training examples of new class
► Re-estimate class prior probabilities

p ( y∣x)=
p ( y) p(x∣y)

p (x)
p (x)=∑y

p ( y) p (x∣y)



Generative classification methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to predict classes given input

• Three-class example in 2d with parametric model
– Single Gaussian model per class, equal mixing weights
– Exercise: characterize surface of equal class probability when the covariance matrices are 

all equal            

p ( y∣x)=
p ( y) p(x∣y)

p (x)
p (x)=∑y

p ( y) p (x∣y)

p(x|y) p(y|x)



Generative classification methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

1. Selection of model class: 
– Parametric model: Gaussian (for continuous), Bernoulli (for binary), …
– Semi-parametric models: mixtures of Gaussian, mixtures of Bernoulli, …
– Non-parametric models: histograms, nearest-neighbor method, …

1. Estimate parameters of density for each class to obtain p(x|class)
– Eg: run EM to learn Gaussian mixture on data of each class

1. Estimate prior probability of each class 
– Fraction of points in training data for each class
– Assumes class proportions in train data are representative for test time (not always true)



Histogram density estimation

 Suppose we 
– have N data points
– use a histogram with C cells

 How to set the density level in each cell ?
– Maximum likelihood estimator.
– Proportional to nr of points n in cell
– Inversely proportional to volume V of cell

► Exercise: derive this result

 Problems with histogram method:
– # cells scales exponentially with the dimension of the data
– Discontinuous density estimate
– How to choose cell size?

pc=
nc

NV c



The ‘curse of dimensionality’

 Number of bins increases exponentially with the dimensionality of the data.
– Fine division of each dimension: many empty bins
– Rough division of each dimension: poor density model

 The number of parameters may be reduced by assuming independence 
between the dimensions of x: the naïve Bayes model 

– For example, for histogram model: we estimate a histogram per dimension

– Still CD cells, but only D x C parameters to estimate, instead of CD

 Model is “naïve” since it assumes that all variables are independent… 
► Unrealistic for high dimensional data, where variables tend to be dependent
► Typically poor density estimator for p(x|y)
► Classification performance may still be good using the derived p(y|x)

 Principle can be applied to estimation with any type of model

p( x)=∏d=1

D
p (xd

)



k-nearest-neighbor density estimation

 Instead of having fixed cells as in histogram method, put a cell around the 
test sample we want to know p(x) for 

– fix number of samples in the cell, find the right cell size.

 Probability to find a point in a sphere A centered on x
0
 with volume v is

 A smooth density is approximately constant in small region, and thus

 Alternatively: estimate P from the fraction of training data in A
– Total N data points, k in the sphere A

 Combine the above to obtain estimate

– Density estimates not guaranteed to integrate to one!

P(x∈A )=∫A
p( x)dx

P(x∈A )=∫A
p( x)dx≈v p (x0)

P(x∈A )≈
k
N

p( x0)≈
k

Nv



k-nearest-neighbor density estimation

 Procedure in practice: 
– Choose  k 
– For given x, compute the volume v which contain k samples.
– Estimate density with 

 Volume of a sphere with radius r in d dimensions is 

 What effect does k have?
– Data sampled from mixture 

of Gaussians plotted in green
– Larger k, larger region, 

smoother estimate

 Selection of k typically by 

cross validation

p( x)≈
k

Nv

v (r , d)=
2rd πd /2

Γ(d /2+ 1)



k-nearest-neighbor classification 

 Use k-nearest neighbor density estimation to find p(x|y)
 Apply Bayes rule for classification:  k-nearest neighbor classification

– Find sphere volume v to capture k data points for estimate

– Use the same sphere for each class for estimates

– Estimate class prior probabilities 

– Calculate class posterior distribution as fraction of k neighbors in class c

p(x∣y=c)=
kc

N c v

p( y=c)=
N c

N

p( y=c∣x)=
p( y=c ) p(x∣y=c)

p(x)

=
1

p(x)

k c

Nv

=
k c

k

p(x)=
k

N v



Summary generative classification methods

 (Semi-) Parametric models, eg p(x|y) is Gaussian, or mixture of …
– Pros: no need to store training data, just the class conditional models
– Cons: may fit the data poorly, and might therefore lead to poor classification result 

 Non-parametric models: 
– Advantage is their flexibility: no assumption on shape of data distribution
– Histograms:

• Only practical in low dimensional space (<5 or so), application in high dimensional space 
will lead to exponentially many cells, most of which will be empty 

• Naïve Bayes modeling in higher dimensional cases

– K-nearest neighbor density estimation: simple but expensive at test time
• storing all training data (memory space)

• Computing nearest neighbors (computation)



Discriminative vs generative methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

 Discriminative methods directly estimate class probability given input: p(y|x) 

► Choose class of decision functions in feature space
► Estimate function to maximize performance on the training set 
► Classify a new pattern on the basis of this decision rule.



Binary linear classifier

 Decision function is linear in the features:

 Classification based on the sign of f(x)

 Orientation is determined by w 
► w is the surface normal

 Offset from origin is determined by b

 Decision surface is (d-1) dimensional 

hyper-plane orthogonal to w, given by

 Exercise: What happens in 3d with w=(1,0,0) and b = - 1?

w

f(x)=0
f ( x)=wT x+ b=b+ ∑i=1

d
w i xi

f ( x)=wT x+ b=0



Binary linear classifier

 Decision surface for w=(1,0,0) and b = -1

w

f(x)=0

b+∑i=1

d
wi xi=0

f ( x)=wT x+ b=0

x1−1=0

x1=1



Dealing with more than two classes

 First idea: construction from multiple binary classifiers
► Learn binary “base” classifiers independently

 One vs rest approach: 
► 1 vs (2 & 3)
► 2 vs (1 & 3)
► 3 vs (1 & 2)

 Problem: Region claimed by several classes



Dealing with more than two classes

 First idea: construction from multiple binary classifiers
► Learn binary “base” classifiers independently

 One vs one approach: 
► 1 vs 2 
► 1 vs 3
► 2 vs 3

 Problem: conflicts in some regions



Dealing with more than two classes

 Instead: define a separate linear score function for each class

 Assign sample to the class of the function with maximum value 

 Exercise 1: give the expression for points

where two classes have equal score

 Exercise 2: show that the set of points 

assigned to a class is convex
► If two points fall in the region, then also all points on connecting line 

f k (x)=wk
T x+ bk

y=argmaxk f k (x )



Logistic discriminant for two classes

 Map linear score function to class probabilities with sigmoid function

► For binary classification problem, we have by definition

► Exercise: show that 

σ(z)=
1

1+ exp(−z)

z

p( y=+ 1∣x)=σ(wT x+ b)

p( y=−1∣x)=1−p ( y=+ 1∣x)

p( y=−1∣x)=σ(−(wT x+ b))



Logistic discriminant for two classes

 Map linear score function to class probabilities with sigmoid function
 The class boundary is obtained for p(y|x)=1/2, thus by setting linear 

function in exponent to zero

w

p(y|x)=1/2

f(x)=-5

f(x)=+5



Multi-class logistic discriminant

 Map score function of each class to class probabilities with “soft-max” function

► The class probability estimates are non-negative, and sum to one.
► Relative probability of most likely class increases exponentially with the 

difference in the linear score functions

► For any given pair of classes we find that they are 

equally likely on a hyperplane in the feature space

p( y=c∣x)=
exp( f c (x))

∑k=1

K
exp( f k( x))

f k (x)=wk
T x+ bk

p( y=c∣x)

p ( y=k∣x)
=

exp( f c (x))

exp ( f k (x))
=exp( f c( x)−f k (x ))



Maximum likelihood parameter estimation

 Maximize the log-likelihood of predicting the correct class label for training data
► Predictions are made independently, so sum log-likelihood of all training data

 Derivative of log-likelihood as intuitive interpretation

 No closed-form solution, use gradient-descent methods 
► log-likelihood is concave in parameters, hence no local optima
► w is linear combination of data points

Expected number of 
points from each class 
should equal the actual 

number.

Expected value of each 
feature, weighting 

points by p(y|x), should 
equal empirical 

expectation.

Indicator function
1 if y

n
=k, else 0

L=∑n=1

N
log p ( yn∣xn)

∂ L
∂bk

=∑n=1

N
[ yn=k ]− p( y=k∣xn)

∂ L
∂wk

=∑n=1

N
([ yn=k ]− p( y=k∣xn)) xn=∑n=1

N
αn xn



Support Vector Machines

 Find linear function (hyperplane) to separate positive and negative 
examples

Which hyperplane
is best?

yi=+ 1 : wT x+ b> 0

yi=−1 : wT x+ b< 0



Support vector machines

 Find maximum margin hyperplane between positive and negative examples
► Constrain points to be on correct side of boundary

► Define support vectors as the closest points to the boundary
► Then it follows that (exercise to show this) margin size is 
► To maximize margin, minimize the norm of w

Margin
Support vectors

y i(wT x+b)≥1

wT x+ b=y i

2/∥w∥

f(x)=+1

f(x)=0

f(x)=-1



Finding the maximum margin hyperplane

1. Minimize the norm of w 

2. Correctly classify all training data:

Quadratic optimization problem:

Minimize

Subject to  yi(w·xi+b) ≥ 1

1
2

wT w

yi=+ 1 : wT x+ b≥+ 1

yi=−1 : wT x+ b≤−1



Support vector machines

 For non-separable classes: pay a penalty for crossing the margin

– If on correct side of the margin: zero

– Otherwise, amount by which score violates the constraint of correct classification

ξi=max (0,1−y i f ( xi))

y i f ( xi)≥1



Finding the maximum margin hyperplane

● Minimize norm of w, plus penalties: 

● Optimization: still a quadratic-programming problem

● C: trades-off between large margin & small penalties
● Typically set by cross-validation

minw ,b
1
2

wT w + C∑i
max (0,1− yi(wT x+b))



SVM solution properties

 Optimal w is a linear combination of data points 

 Weights (alpha) are zero for all points on the correct side of the margin
► Points on the margin also have non-zero weight

 Classification function thus has form

► relies only on inner products between the test point x and data points 
with non-zero alpha's

 Solving the optimization problem also requires access to the data only in 
terms of inner products xi · xj between pairs of training points

w=∑n=1

N
αn yn xn

f ( x)=wT x+ b=∑n=1

N
αn yn xn

T x+ b



Relation SVM and logistic regression

 A classification error occurs when sign of the function does not match the 
sign of the class label: the zero-one loss

 Consider error minimized when training classifier:
– Non-separable SVM, hinge loss:
– Logistic  loss:

z= yi f (xi)≤0

ξi=max (0,1− y i f (x i))=max (0,1−z)

−log p ( yi∣xi)=−log σ( yi f (x i))=log(1+ exp(−z))

 Both hinge & logistic loss are convex 
bounds on zero-one loss which is 
non-convex and discontinuous

 Both lead to efficient optimization
► Hinge-loss is piece-wise linear: 

quadratic programming
► Logistic loss is smooth: gradient 

descent methods

Loss

z



Summary of discriminative linear classification

 Two most widely used linear classifiers in practice:
► Logistic discriminant (supports more than 2 classes directly)
► Support vector machines (multi-class extensions possible) 

 For both, in the case of binary classification 
► Criterion that is minimized is a convex bound on zero-one loss
► weight vector w is a linear combination of the data points

 This means that we only need the inner-products between data points to 
calculate the linear functions

► The “kernel” function k( , ) computes the inner products 

w=∑n=1

N
αn xn

f ( x)=wT x+ b

=∑n=1

N
αn xn

T x+ b

=∑n=1

N
αn k (xn , x)+ b



• 1 dimensional data that is linearly separable 

• But what if the data is not linearly seperable? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear Classification

Slide credit: Andrew Moore



Φ:  x → φ(x)

Kernels for non-linear classification

 General idea: map the original input space to some higher-dimensional 
feature space where the training set is separable

 Exercise: find features that could separate the 2d data linearly 

Slide credit: Andrew Moore



Nonlinear classification with kernels

 The kernel trick: instead of explicitly computing the feature transformation 
φ(x), define a kernel function K such that

       K(xi , xj) = φ(xi ) · φ(xj)

 Conversely, if a kernel satisfies Mercer’s condition then it computes an inner 
product in some feature space, possibly with large or infinite # of dimensions

► Mercer's Condition: The square N x N matrix with kernel evaluations for 
any arbitrary N data points should always be a positive definite matrix.

 This gives a nonlinear decision boundary in the original space:

f ( x) = b+ wT
ϕ( x)

= b+ ∑i
αi ϕ( xi)

T ϕ( x)

= b+ ∑i
αi k (xi , x)



Kernels for non-linear classification

 What is the kernel function that corresponds to this feature mapping ?

Φ:  x → φ(x)

ϕ(x)=(
x1

2

x2
2

√2 x1 x2
)

k ( x , y)=ϕ( x)
T
ϕ( y )=?

=x1
2 y1

2
+ x2

2 y2
2
+ 2x1 x2 y1 y2

=(x1 y1+ x2 y2)
2

=( xT y )
2



Kernels for non-linear classification

 Suppose we also want to keep the original features to be able to still 
implement linear functions

Φ:  x → φ(x)

ϕ(x )=(
1

√2 x1

√2 x2

x1
2

x2
2

√2 x1 x2

)
k ( x , y)=ϕ( x)

T
ϕ( y )=?

=1+ 2xT y+ ( xT y )
2

=( xT y+ 1)
2



Kernels for non-linear classification

 What happens if we use the same kernel for higher dimensional data
► Which feature vector            corresponds to it ?

► First term, encodes an additional 1 in each feature vector
► Second term, encodes scaling of the original features by sqrt(2)
► Let's consider the third term

► In total we have 1 + 2D + D(D-1)/2 features ! 
► But the kernel is computed as efficiently as dot-product in original space

( xT y )
2
=( x1 y1+ ...+ xD yD)

2

k ( x , y)=( xT y+ 1 )
2
=1+ 2xT y+ (xT y )

2

=∑d=1

D
( xd yd)

2
+ 2∑d=1

D

∑i=d+ 1

D
( xd yd)(xi yi)

=∑d=1

D
xd

2 yd
2
+ 2∑d=1

D

∑i=d+ 1

D
( xd xi)( yd yi)

ϕ(x )=(1 ,√2 x1 ,√2 x2, ... ,√2 xD , x1
2 , x2

2 , ... , xD
2 ,√2 x1 x2 , ... ,√2 x1 xD , ... ,√2 xD−1 xD )

T

Original features Squares Products of two distinct elements

ϕ(x )



Popular kernels for bags of features

 Hellinger kernel:

 Histogram intersection kernel:

► Exercise: find the feature transformation ?

 Generalized Gaussian kernel:

► d can be Euclidean distance, χ2 distance, Earth Mover’s Distance, etc.

See also:
J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,
Local features and kernels for classification of texture and object categories: a 
comprehensive study. Int. Journal of Computer Vision, 2007

k (h1 ,h2)=∑d
min(h1(d ) ,h2(d ))

k (h1 ,h2)=exp(− 1
A

d (h1(i) ,h2(i)))

k (h1 ,h2)=∑d √h1(i)×√h2(i)



Summary linear classification & kernels

 Linear classifiers learned by minimizing convex cost functions
– Logistic discriminant: smooth objective, minimized using gradient descend
– Support vector machines: piecewise linear objective, quadratic programming
– Both require only computing inner product between data points

 Non-linear classification can be done with linear classifiers over new 
features that are non-linear functions of the original features
► Kernel functions efficiently compute inner products in (very) high-dimensional 

spaces, can even be infinite dimensional in some cases.

 Using kernel functions non-linear classification has drawbacks
– Requires storing the support vectors, may cost lots of memory in practice
– Computing kernel between new data point and support vectors may be 

computationally expensive (at least more expensive than linear classifier)

 Kernel functions also work for other linear data analysis techniques
– Principle component analysis, k-means clustering, ….



Reading material

 A good book that covers all machine learning aspects of the course is 
► Pattern recognition & machine learning

Chris Bishop, Springer, 2006

 For clustering with k-means & mixture of Gaussians read
► Section 2.3.9
► Chapter 9, except 9.3.4 
► Optionally, Section 1.6 on information theory

 For classification read
► Section 2.5, except 2.5.1 
► Section 4.1.1 & 4.1.2
► Section 4.2.1 & 4.2.2
► Section 4.3.2 & 4.3.4
► Section 6.2
► Section 7.1 start + 7.1.1 & 7.1.2
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