Fisher Vector image representation

Machine Learning and Category Representation 2013-2014 Jakob Verbeek, December 13, 2013

Course website:

http://lear.inrialpes.fr/~verbeek/MLCR.13.14

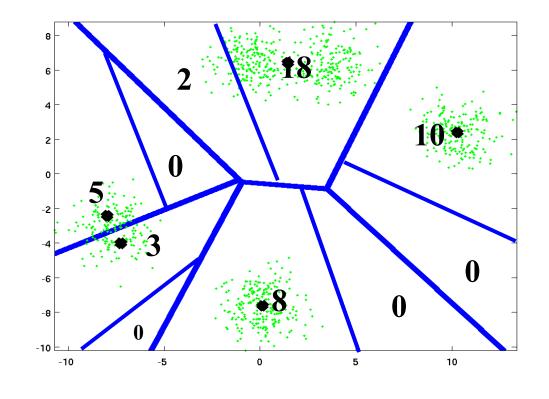
Fisher vector image representation

 An alternative to bag-of-words image representation introduced in Fisher kernels on visual vocabularies for image categorization F. Perronnin and C. Dance, CVPR 2007.

- FV in comparison to the BoW representation
 - Both FV and BoW are based on a visual vocabulary, with assignment of patches to visual words
 - FV based on Mixture of Gaussian clustering of patches, BoW based on k-means clustering
 - FV Extracts a larger image signature than the BoW representation for a given number of visual words

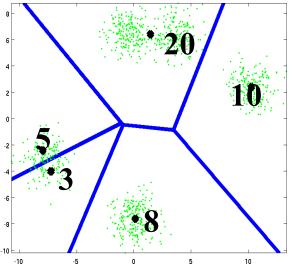
Fisher vector representation: Motivation

- Suppose we want to refine a given visual vocabulary
- Bag-of-word histogram stores # patches assigned to each word
 - Need more words to refine the representation
 - But this directly increases the computational cost
 - And leads to many empty bins: redundancy



Fisher vector representation: Motivation

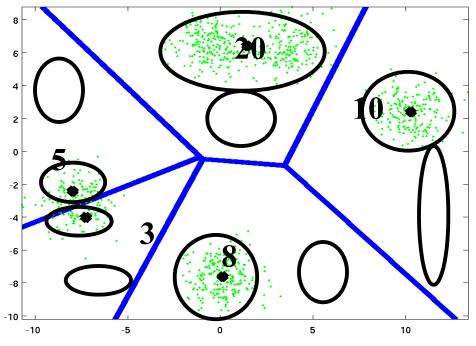
- Feature vector quantization is computationally expensive
- To extract visual word histogram for a new image
 - Compute distance of each local descriptor to each k-means center
 - run-time O(NKD) : linear in
 - N: nr. of feature vectors $\sim 10^4$ per image
 - K: nr. of clusters $\sim 10^3$ for recognition
 - D: nr. of dimensions $\sim 10^2$ (SIFT)
- So in total in the order of 10⁹ multiplications per image to obtain a histogram of size 1000
- Can this be done more efficiently ?!
 - Yes, extract more than just a visual word histogram



Fisher vector representation in a nutshell

- Instead, the Fisher Vector also records the mean and variance of the points per dimension in each cell
 - More information for same # visual words
 - Does not increase computational time significantly
 - Leads to high-dimensional feature vectors
- Even when the counts are the same,

the position and variance of the points in the cell can vary



Grenoble

ENSIMA

Image representation using Fisher kernels

- General idea of Fischer vector representation
 - Fit probabilistic model to data $p(X; \Theta)$
 - Represent data with derivative of data log-likelihood "How does the data want that the model changes?" $G(X,\Theta) = \frac{\partial \log p(x;\Theta)}{\partial \Theta}$

Jaakkola & Haussler. "Exploiting generative models in discriminative classifiers", in Advances in Neural Information Processing Systems 11, 1999.

• Mixture of Gaussians to model the local (SIFT) descriptors $X = \{x_n\}_{n=1}^N$

$$L(X,\Theta) = \sum_{n} \log p(x_{n})$$
$$p(x_{n}) = \sum_{k} \pi_{k} N(x_{n}; m_{k}, C_{k})$$

- Define mixing weights using the soft-max function ensures positiveness and sum to one constraint
- Diagonal co-variance matrices

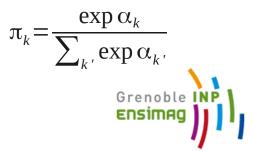


Image representation using Fisher kernels

- Mixture of Gaussians to model the local (SIFT) descriptors $L(\Theta) = \sum_{n} \log p(x_{n})$ $p(x_{n}) = \sum_{k} \pi_{k} N(x_{n}; m_{k}, C_{k})$
 - The parameters of the model are

$$\Theta = \{\alpha_k, m_k, C_k\}_{k=1}^K$$

where we use diagonal covariance matrices

Concatenate derivatives to obtain data representation

$$G(X,\Theta) = \left(\frac{\partial L}{\partial \alpha_1}, \dots, \frac{\partial L}{\partial \alpha_K}, \frac{\partial L}{\partial m_1}, \dots, \frac{\partial L}{\partial m_K}, \frac{\partial L}{\partial C_1^{-1}}, \dots, \frac{\partial L}{\partial C_K^{-1}}\right)^T$$

Image representation using Fisher kernels

Data representation

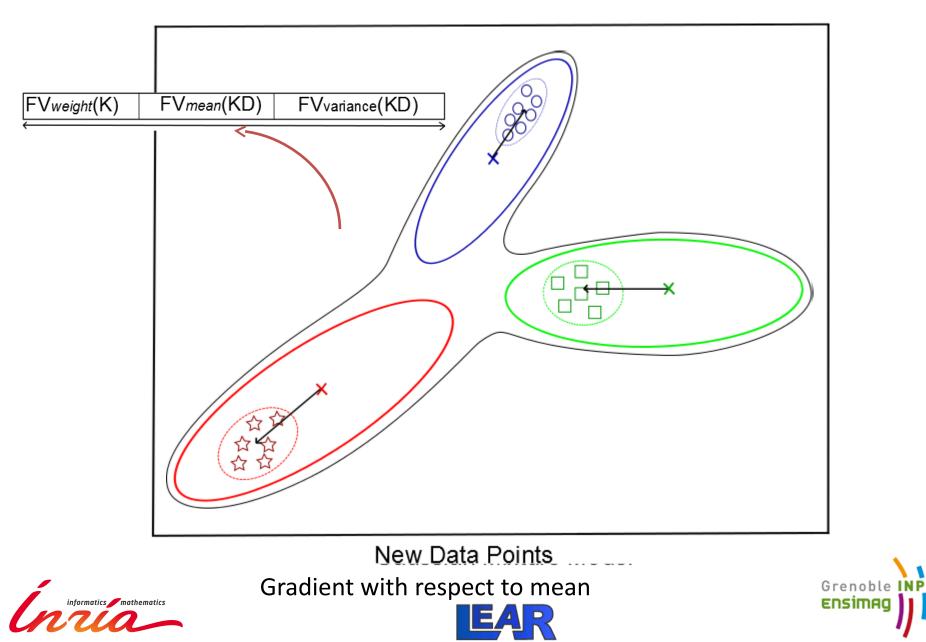
$$G(X,\Theta) = \left(\frac{\partial L}{\partial \alpha_1}, \dots, \frac{\partial L}{\partial \alpha_K}, \frac{\partial L}{\partial m_1}, \dots, \frac{\partial L}{\partial m_K}, \frac{\partial L}{\partial C_1^{-1}}, \dots, \frac{\partial L}{\partial C_K^{-1}}\right)^T$$

 In total K(1+2D) dimensional representation, since for each visual word / Gaussian we have

Count (1 dim):
$$\frac{\partial L}{\partial \alpha_k} = \sum_n (q_{nk} - \pi_k)$$

More/less patches assigned to visual word than usual?
Mean (D dims): $\frac{\partial L}{\partial m_k} = C_k^{-1} \sum_n q_{nk} (x_n - m_k)$
Center of assigned data relative to cluster center
Variance (D dims): $\frac{\partial L}{\partial C_k^{-1}} = \frac{1}{2} \sum_n q_{nk} (C_k - (x_n - m_k)^2)$
With the soft-assignments: $q_{nk} = p(k|x_n) = \frac{\pi_k p(x_n|k)}{p(x_n)}$
Grenoble of the soft-assignments: $q_{nk} = p(k|x_n) = \frac{\pi_k p(x_n|k)}{p(x_n)}$

Illustrative example in 2d



Function approximation view

- Suppose our local descriptors are 1 dimensional for simplicity
 - Vocabulary quantizes the real line
- Suppose we use a linear function, eg for image classification
 - BoW: locally constant function

$$f(x;w) = \sum_{k=1}^{K} x_k w_k$$

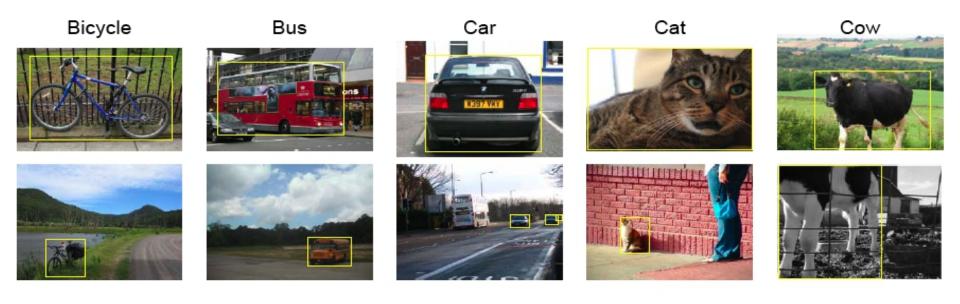
FV: locally constant + linear + quadratic function

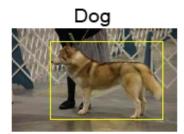
$$f(x;w) = \sum_{k=1}^{K} \left[\frac{\partial L}{\partial \alpha_k} \frac{\partial L}{\partial \mu_k} \frac{\partial L}{\partial C_k^{-1}} \right]^T w_k$$

Grenob

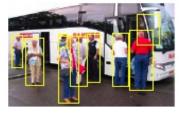
Images from categorization task PASCAL VOC

• Yearly evaluation from 2005 to 2012 for image classification

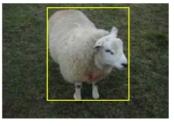




Person

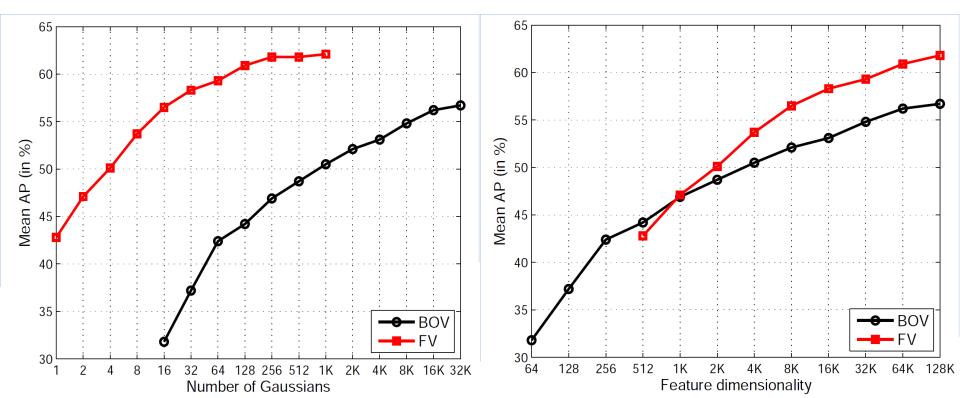


Sheep



Fisher vectors: classification performance VOC'07

- Fisher vector representation yields better performance for a given number of Gaussians / visual words than Bag-of-words.
- For a fixed dimensionality Fisher vectors perform better, and are more efficient to compute



Bag-of-words vs. Fisher vector image representation

- Bag-of-words image representation
 - Off-line: fit k-means clustering to local descriptors
 - Represent image with histogram of visual word counts: K dimensions
- Fischer vector image representation
 - Off-line: fit MoG model to local descriptors
 - Represent image with gradient of log-likelihood: K(2D+1) dimensions
- Computational cost similar:
 - Both compare N descriptors to K visual words (centers / Gaussians)
- Memory usage: higher for fisher vectors
 - Fisher vector is a factor (2D+1) larger, e.g. a factor 257 for SIFTs !
 - For 1000 visual words the FV has 257,000 dimensions
 - However, because we store more information per visual word, we can generally obtain same or better performance with far less visual words

FV normalization

- Normalization with Fisher information matrix $F = E_{p(x)}[G(X, \Theta)G(X, \Theta)^T]$
 - Invariance w.r.t. re-parametrization, e.g. does not matter if we use standard dev., variance, or inverse-variance parameter

$$\tilde{G}(X,\Theta) = F^{-1/2} \left(\frac{\partial L}{\partial \alpha_1}, \dots, \frac{\partial L}{\partial \alpha_K} , \frac{\partial L}{\partial m_1}, \dots, \frac{\partial L}{\partial m_K} , \frac{\partial L}{\partial C_1^{-1}}, \dots, \frac{\partial L}{\partial C_K^{-1}} \right)^T$$

- Power normalization to reduce sparseness
 - Element-wise signed-power $\tilde{z} = sign(z)|z|^{\rho}$
 - Typically power set to 1/2, i.e. signed-square-root
- L2 normalization to make scales comparable
 - Eliminates effect of the number of patches
 - Increase FV magnitude for "typical" images with small gradient
 - Divide FV by its L2 norm

FV normalization, effect on performance

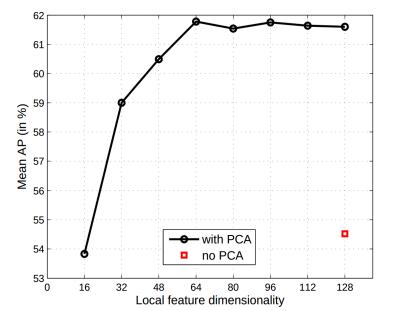
- Power normalization to reduce sparseness
- L2 normalization to make scales comparable
- Can also use Spatial Pyramids
 - compute FV per spatial cell, and concatenate
 - Here: 1x1, 2x2, 3x1 grid over image, 8 cells total

PN	ℓ_2	SP	SIFT	
No	No	No	49.6	
Yes	No	No	57.9	(+8.3)
No	Yes	No	54.2	(+4.6)
No	No	Yes	51.5	(+1.9)
Yes	Yes	No	59.6	(+10.0)
Yes	No	Yes	59.8	(+10.2)
No	Yes	Yes	57.3	(+7.7)
Yes	Yes	Yes	61.8	(+12.2)

- Power + L2 normalization most important
- Spatial Pyramid also helps, but increases FV size by a factor 8

PCA projection of local features

- We used diagonal variances
 - Assumes dimensions are de-correlated
 - Not true for most local descriptors, like SIFT
- Perform PCA on the descriptors to de-correlate them
 - Possibly also reduce the dimension too
- Effect on image classification performance



Grenoble

Ensima

Reading material

- A recent overview article on the Fisher Vector representation
 - Image Classification with the Fisher Vector: Theory and Practice Jorge Sanchez; Florent Perronnin; Thomas Mensink; Jakob Verbeek International Journal of Computer Vision, springer, 2013

