Support Vector Machines & Fisher Vector image representation

Machine Learning and Category Representation 2012-2013

Jakob Verbeek, December 14, 2012

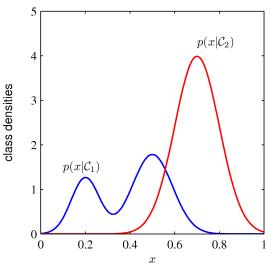
Course website:

http://lear.inrialpes.fr/~verbeek/MLCR.12.13

Discriminative vs generative methods

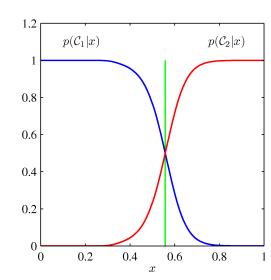
- Generative probabilistic methods
 - Model the density of inputs x from each class p(x|y)
 - Estimate class prior probability p(y)
 - Use Bayes' rule to infer distribution over class given input

$$p(y|x) = \frac{p(y) p(x|y)}{p(x)} \qquad p(x) = \sum_{y} p(y) p(x|y)^{\frac{1}{2}}$$



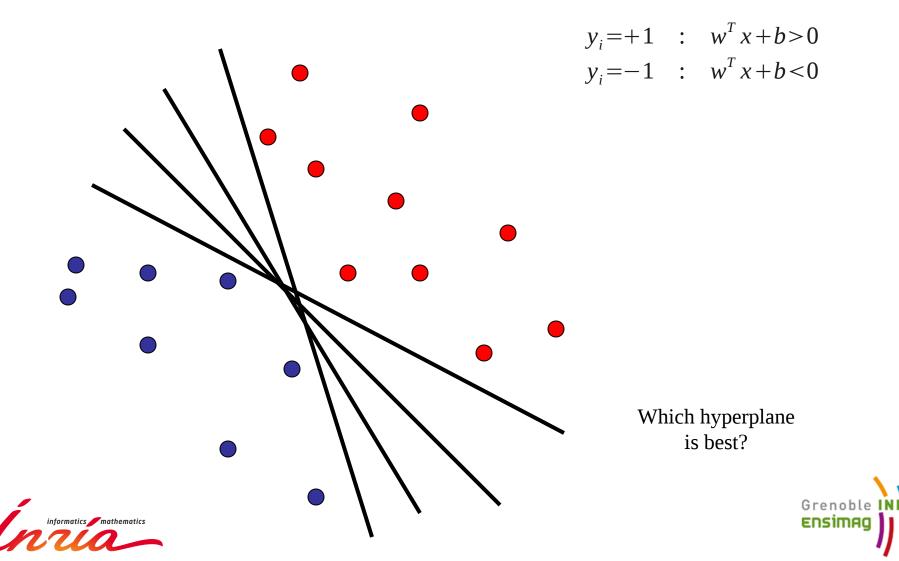
• Discriminative (probabilistic) methods

- Directly estimate class probability given input: p(y|x)
- Some methods do not have probabilistic interpretation,
 - eg. they fit a function f(x), and assign to class 1 if f(x)>0, and to class 2 if f(x)<0



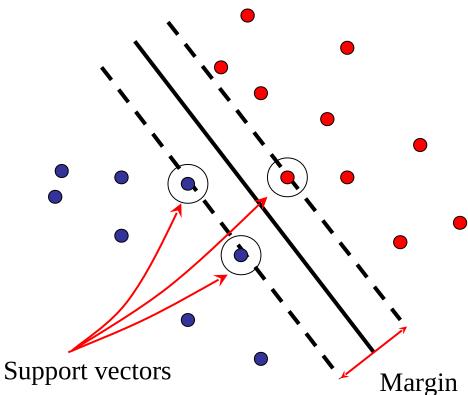
Support Vector Machines

• Find linear function (*hyperplane*) to separate positive and negative examples



Support vector machines

• Find hyperplane that maximizes the *margin* between the positive and negative examples



$$y_i = +1$$
 : $w^T x + b \ge +1$
 $y_i = -1$: $w^T x + b \le -1$

For support vectors

$$w^T x + b = y_i$$

Distance between point and hyperplane:

$$\frac{\left|w^{T}x+b\right|}{\|w\|}$$

Grenobl Ensima

Therefore, the margin is Exercise: show this

Support vector machines

- Let's consider a support vector x from the positive class $f(x) = w^T x + b = 1$
- Let z be its projection on the decision plane
 - Since w is normal vector to the decision plane, we have $z = x \alpha w$

Support vectors

Margin

Grenoble Ensimag

• and since z is on the decision plane $f(z) = w^T(x - \alpha w) + b = 0$

• Solve for alpha
$$w^{T}(x-\alpha w)+b=0$$

 $w^{T}x+b-\alpha w^{T}w=0$
 $1-\alpha w^{T}w=0$
 $\alpha=\frac{1}{w^{T}w}=\frac{1}{\|w\|^{2}}$

Margin is twice distance from x to z

$$||x-z|| = ||x-(x-\alpha w)||$$

$$||\alpha w|| = \alpha ||w||$$

$$\frac{||w||}{||w||^{2}} = \frac{1}{||w||}$$

Finding the maximum margin hyperplane

- 1. Maximize margin 2/||w||
- 2. Correctly classify all training data:

 $y_i = +1$: $w^T x + b \ge +1$ $y_i = -1$: $w^T x + b \le -1$

Quadratic optimization problem:

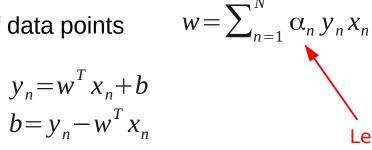
Minimize $\frac{1}{2} w^T w$ Subject to $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$

Finding the maximum margin hyperplane

• Solution has properties

• w linear combination of data points

For support vectors $y_n = b_n$

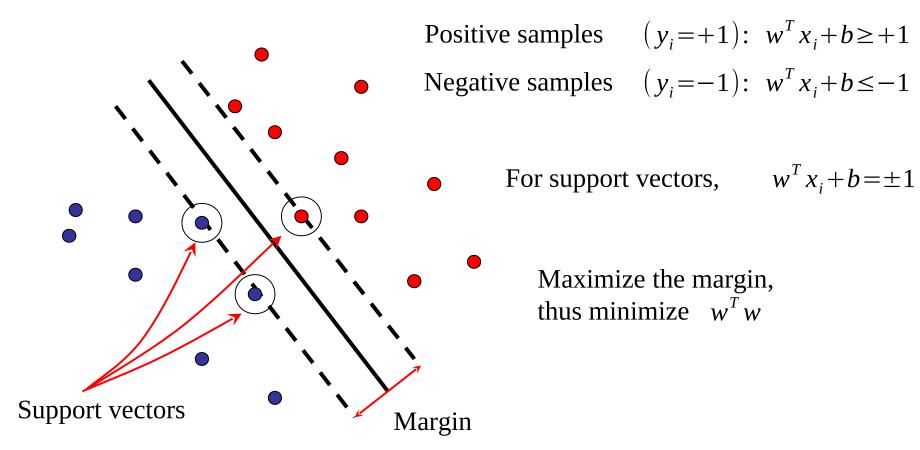


Learned weights Non-zero only for Support vectors

- Classification function thus has form $f(x) = w^{T} x + b = \sum_{n=1}^{N} \alpha_{n} y_{n} x_{n}^{T} x + b$
 - relies only on inner products between the test point x and data points with non-zero alpha's
- Solving the optimization problem also requires evaluation of the inner products $x_i \cdot x_j$ between all pairs of training points

Support vector machines

• For separable classes: Find hyperplane that maximizes the *margin* between the positive and negative examples



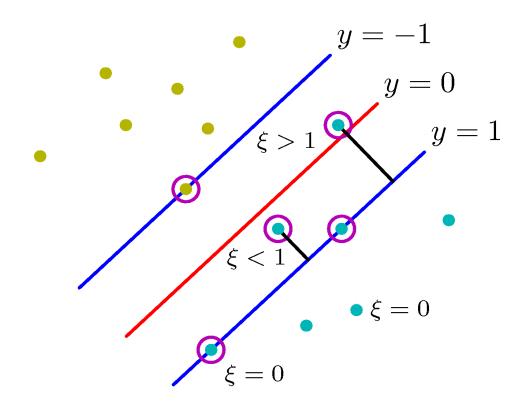
Grenob Ensime

Support vector machines

- For non-separable classes: pay a penalty for crossing the margin $\xi_i = max(0, 1 y_i f(x_i))$
 - If on correct side of the margin: zero
 - Otherwise, amount by which score violates the constraint of correct classification

 $y_i f(x_i) \ge 1$

Grenob Ensime



Finding the maximum margin hyperplane

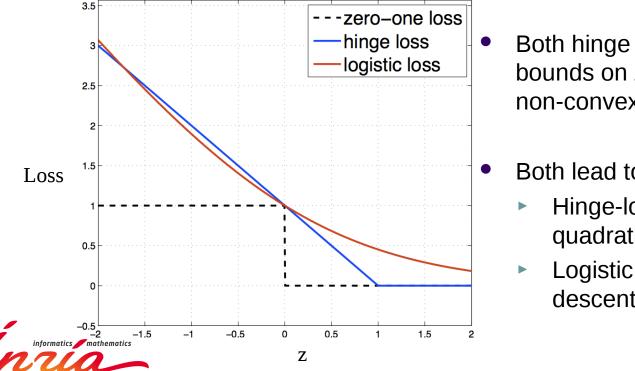
- Minimize norm of w, plus penalties: $min_{w,\xi_i} = \frac{1}{2}w^Tw + C\sum_i \xi_i$
- Constraints to correctly classify training data, up to penalties :

$$y_i f(x_i) = y_i (w^T x_i + b) \ge 1 - \xi_i$$

- Optimization: still a quadratic-programming problem
 - $-\xi_i$: "slack variables", loosening the margin constraint
 - C: trade-off between large margin & small penalties
 - Typically set by cross-validation, i.e. learn with part of data set using various C values, evaluate classification on held-out data. Repeat for several train-validation splits to pick the optimal C value.

Relation SVM and logistic regression

- A classification error occurs when sign of the function does not match the sign of the class label: the zero-one loss $z = y_i f(x_i) \le 0$
- Consider error minimized when training classifier:
 - Non-separable SVM, hinge loss: $\xi_i = max(0, 1 y_i f(x_i)) = max(0, 1 z)$
 - Logistic loss: $-\log p(y_i|x_i) = -\log \sigma(y_i f(x_i)) = \log(1 + \exp(-z))$



- Both hinge & logistic loss are convex bounds on zero-one loss which is non-convex and discontinuous
- Both lead to efficient optimization
 - Hinge-loss is piece-wise linear: quadratic programming
 - Logistic loss is smooth: gradient descent methods

Grenoble

ENSIMA

Summary of discriminative linear classification

- Two most widely used linear classifiers in practice:
 - Logistic discriminant (supports more than 2 classes directly)
 - Support vector machines (multi-class extensions recently developed)
- In both cases
 - Criterion that is minimized is a convex bound on zero-one loss
 - weight vector **w** is a linear combination of the data points $w = \sum_{n=1}^{N} \alpha_n x_n$
- This means that we only need the inner-products between data points to calculate the linear functions $f(x) = w^T x + b$

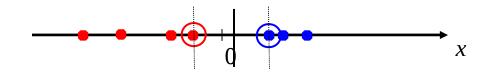
$$= \sum_{n=1}^{N} \alpha_n x_n^T x + b$$
$$= \sum_{n=1}^{N} \alpha_n k(x_n, x) + b$$

Grenobl

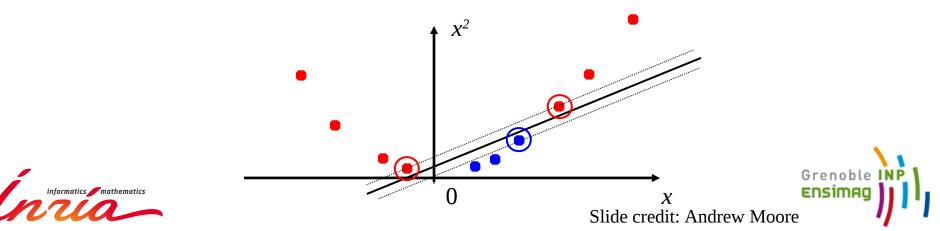
The "kernel" function k(,) computes the inner products

Nonlinear Classification

• 1 dimensional data that is linearly separable

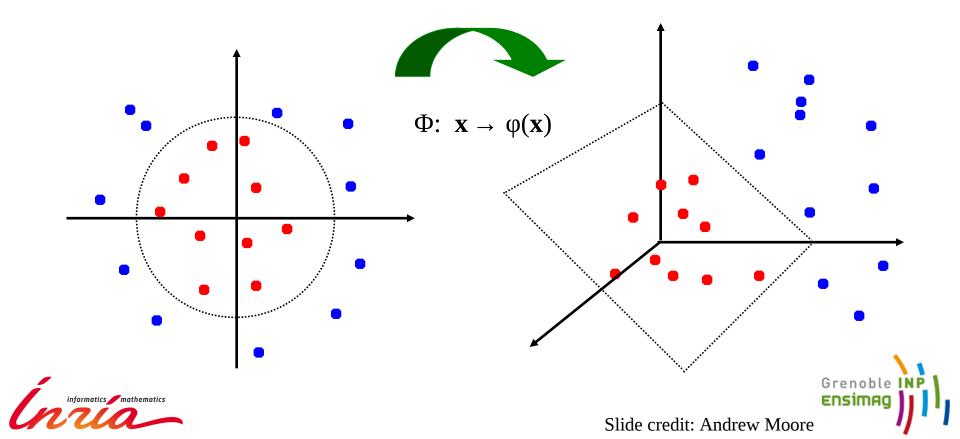


- But what if the data is not linearly seperable? 0
- We can map it to a higher-dimensional space:



X

- General idea: map the original input space to some higher-dimensional feature space where the training set is separable
- Exercise: find features that could separate this data linearly



Nonlinear SVMs

• The kernel trick: instead of explicitly computing the feature transformation $\varphi(\mathbf{x})$, define a kernel function K such that

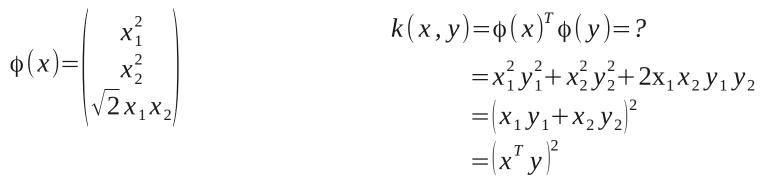
 $K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$

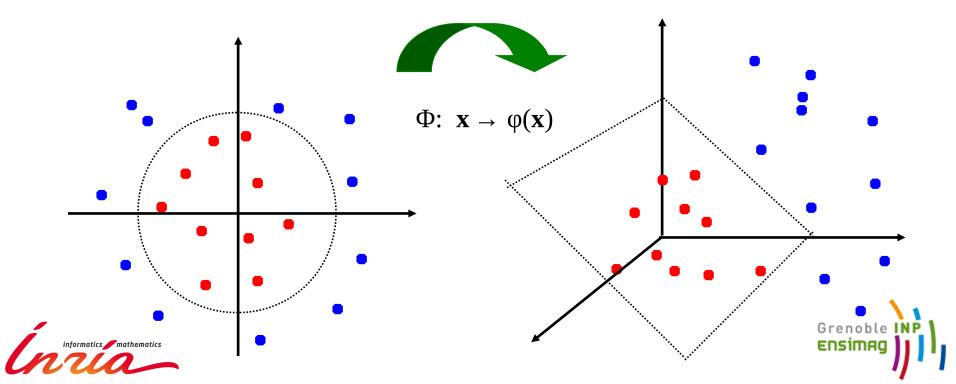
- If a kernel satisfies Mercer's condition then it computes an inner product in some feature space (possibly infinite nr of dimensions!)
 - Mercer's Condition: The square N x N matrix with kernel evaluations for any arbitrary N data points should always be a positive definite matrix.
- This gives a **nonlinear decision boundary** in the original space:

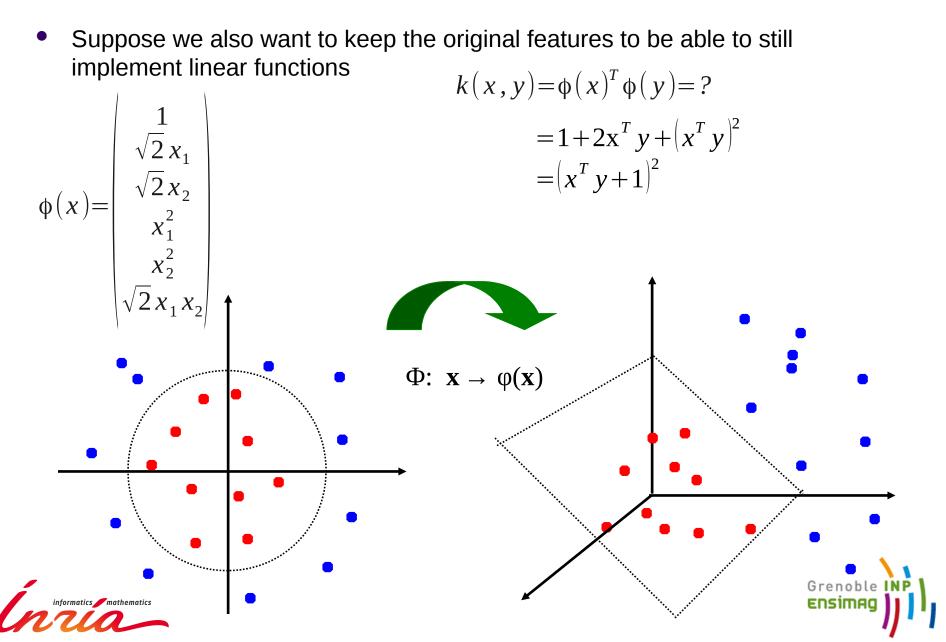
$$f(x) = b + w^{T} \phi(x)$$

= $b + \sum_{i} \alpha_{i} \phi(x_{i})^{T} \phi(x)$
= $b + \sum_{i} \alpha_{i} k(x_{i}, x)$

• What is the kernel function that corresponds to this feature mapping ?







• What happens if we use the same kernel for higher dimensional data vectors? Which feature vector $\phi(x)$ corresponds to it ?

$$k(x, y) = (x^T y + 1)^2 = 1 + 2x^T y + (x^T y)^2$$

- First term, encodes an additional 1 in each feature vector
- Second term, encodes scaling of the original features by sqrt(2)
- Let's consider the third term $(x^T y)^2 = (x_1 y_1 + ... + x_D y_D)^2$ $= \sum_{d=1}^{D} (x_d y_d)^2 + 2 \sum_{d=1}^{D} \sum_{i=d+1}^{D} (x_d y_d) (x_i y_i)$ $= \sum_{d=1}^{D} x_d^2 y_d^2 + 2 \sum_{d=1}^{D} \sum_{i=d+1}^{D} (x_d x_i) (y_d y_i)$

Products of two distinct elements

Ensima

In total we have 1 + 2D + D(D+1)/2 features !

Original features

But the inner product did not get any harder to compute

$$\phi(x) = \left(1, \sqrt{2} x_1, \sqrt{2} x_2, \dots, \sqrt{2} x_D, x_1^2, x_2^2, \dots, x_D^2, \sqrt{2} x_1 x_2, \dots, \sqrt{2} x_1 x_D, \dots, \sqrt{2} x_{D-1} x_D\right)^T$$

Squares

Popular kernels for bags of features

• Hellinger kernel:

 $k(h_1,h_2) = \sum_d \sqrt{h_1(i)} \times \sqrt{h_2(i)}$

• Histogram intersection kernel:

 $k(h_1,h_2) = \sum_d min(h_1(d),h_2(d))$

- Exercise: find the feature transformation ?
- Generalized Gaussian kernel:

$$k(h_1,h_2) = \exp\left(-\frac{1}{A}d(h_1(i),h_2(i))\right)$$

• *d* can be Euclidean distance, χ^2 distance, Earth Mover's Distance, etc.

See also: J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local features and kernels for classification of texture and object categories: a comprehensive study. Int. Journal of Computer Vision, 2007

Summary linear classification & kernels

- Linear classifiers learned by minimizing convex cost functions
 - Logistic discriminant: smooth objective, minimized using gradient descend
 - Support vector machines: piecewise linear objective, quadratic programming
 - Both require only computing inner product between data points
- Non-linear classification can be done with linear classifiers over new features that are non-linear functions of the original features
 - Kernel functions efficiently compute inner products in (very) high-dimensional spaces, can even be infinite dimensional in some cases.
- Using kernel functions non-linear classification has drawbacks
 - Requires storing the support vectors, may cost lots of memory in practice
 - Computing kernel between new data point and support vectors may be computationally expensive (at least more expensive than linear classifier)
- Kernel functions also work for other linear data analysis techniques
 - Principle component analysis, k-means clustering,

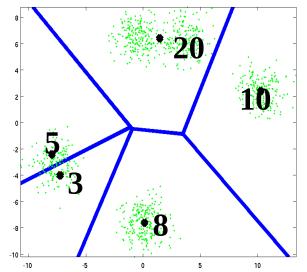
Fisher vector image representation

 An alternative to bag-of-words image representation introduced in Fisher kernels on visual vocabularies for image categorization
 F. Perronnin and C. Dance, CVPR 2007.

- FV in comparison to the BoW representation
 - Both FV and BoW are based on a visual vocabulary, with assignment of patches to visual words
 - FV based on Mixture of Gaussian clustering of patches, BoW based on k-means clustering
 - FV Extracts a larger image signature than the BoW representation for a given number of visual words
 - Leads to good classification results using linear classifiers, where BoW representations require non-linear classifiers.

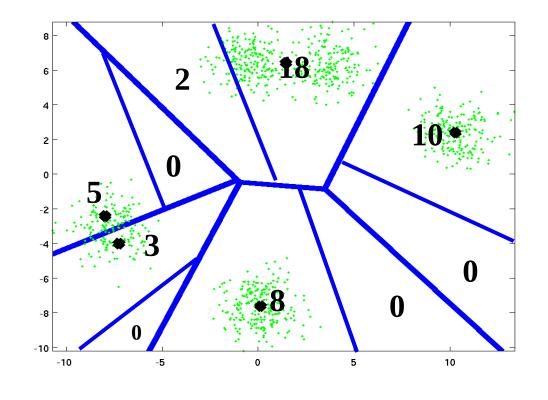
Fisher vector representation: Motivation 1

- Suppose we use a bag-of-words image representation
 - Visual vocabulary trained offline
- Feature vector quantization is computationally expensive in practice
- To extract visual word histogram for a new image
 - Compute distance of each local descriptor to each k-means center
 - run-time O(NKD) : linear in
 - N: nr. of feature vectors $\sim 10^4$ per image
 - K: nr. of clusters $\sim 10^3$ for recognition
 - D: nr. of dimensions ~ 10^2 (SIFT)
- So in total in the order of 10⁹ multiplications per image to obtain a histogram of size 1000
- Can this be done more efficiently ?!
 - Yes, extract more than just a visual word histogram !



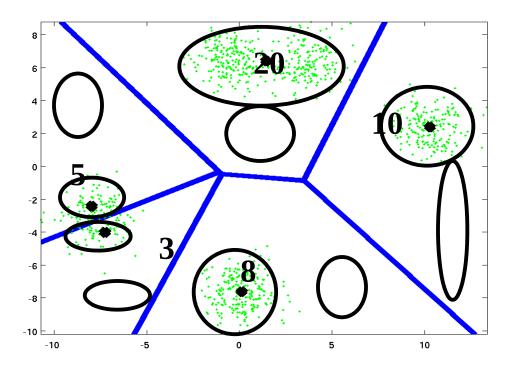
Fisher vector representation: Motivation 2

- Suppose we want to refine a given visual vocabulary
- Bag-of-word histogram stores # patches assigned to each word
 - Need more words to refine the representation
 - But this directly increases the computational cost
 - And leads to many empty bins: redundancy



Fisher vector representation in a nutshell

- Instead, the Fisher Vector also records the mean and variance of the points per dimension in each cell
 - More information for same # visual words
 - Does not increase computational time significantly
 - Leads to high-dimensional feature vectors
- Even when the counts are the same the position and variance of the points in the cell can vary



Grenoble

ENSIMA

Image representation using Fisher kernels

- General idea of Fischer vector representation
 - Fit probabilistic model to data $p(X; \Theta)$
 - Represent data with derivative of data log-likelihood "How does the data want that the model changes?" $G(X,\Theta) = \frac{\partial \log p(x;\Theta)}{\partial \Theta}$

Jaakkola & Haussler. "Exploiting generative models in discriminative classifiers", in Advances in Neural Information Processing Systems 11, 1999.

• Mixture of Gaussians to model the local (SIFT) descriptors $X = \{x_n\}_{n=1}^N$

$$L(X,\Theta) = \sum_{n} \log p(x_{n})$$
$$p(x_{n}) = \sum_{k} \pi_{k} N(x_{n}; m_{k}, C_{k})$$

 Define mixing weights using the soft-max function ensures positiveness and sum to one constraint

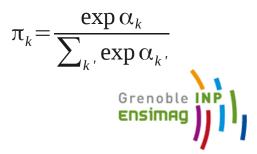


Image representation using Fisher kernels

- Mixture of Gaussians to model the local (SIFT) descriptors $L(\Theta) = \sum_{n} \log p(x_{n})$ $p(x_{n}) = \sum_{k} \pi_{k} N(x_{n}; m_{k}, C_{k})$
 - The parameters of the model are

$$\Theta = \{\alpha_k, m_k, C_k\}_{k=1}^K$$

where we use diagonal covariance matrices

Concatenate derivatives to obtain data representation

$$G(X,\Theta) = \left(\frac{\partial L}{\partial \alpha_1}, \dots, \frac{\partial L}{\partial \alpha_K}, \frac{\partial L}{\partial m_1}, \dots, \frac{\partial L}{\partial m_K}, \frac{\partial L}{\partial C_1^{-1}}, \dots, \frac{\partial L}{\partial C_K^{-1}}\right)^T$$

Image representation using Fisher kernels

• Data representation

$$G(X,\Theta) = \left(\frac{\partial L}{\partial \alpha_1}, \dots, \frac{\partial L}{\partial \alpha_K}, \frac{\partial L}{\partial m_1}, \dots, \frac{\partial L}{\partial m_K}, \frac{\partial L}{\partial C_1^{-1}}, \dots, \frac{\partial L}{\partial C_K^{-1}}\right)^T$$

 In total K(1+2D) dimensional representation, since for each visual word / Gaussian we have

Count (1 dim):
$$\frac{\partial L}{\partial \alpha_k} = \sum_n (q_{nk} - \pi_k)$$

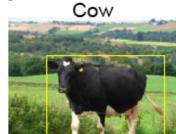
More/less patches assigned to visual word than usual?
Mean (D dims): $\frac{\partial L}{\partial m_k} = C_k^{-1} \sum_n q_{nk} (x_n - m_k)$
Center of assigned data relative to cluster center
Variance (D dims): $\frac{\partial L}{\partial C_k^{-1}} = \frac{1}{2} \sum_n q_{nk} (C_k - (x_n - m_k)^2)$
With the soft-assignments: $q_{nk} = p(k|x_n) = \frac{\pi_k p(x_n|k)}{p(x_n)}$
Grenoble price

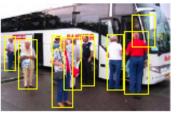
Bag-of-words vs. Fisher vector image representation

- Bag-of-words image representation
 - Off-line: fit k-means clustering to local descriptors
 - Represent image with histogram of visual word counts: K dimensions
- Fischer vector image representation
 - Off-line: fit MoG model to local descriptors
 - Represent image with gradient of log-likelihood: K(2D+1) dimensions
- Computational cost similar:
 - Both compare N descriptors to K visual words (centers / Gaussians)
- Memory usage: higher for fisher vectors
 - Fisher vector is a factor (2D+1) larger, e.g. a factor 257 for SIFTs !
 - For 1000 visual words the FV has 257,000 dimensions
 - However, because we store more information per visual word, we can generally obtain same or better performance with far less visual words

Images from categorization task PASCAL VOC

Yearly evaluation from 2005 to 2012 for image classification Bicycle Bus Car

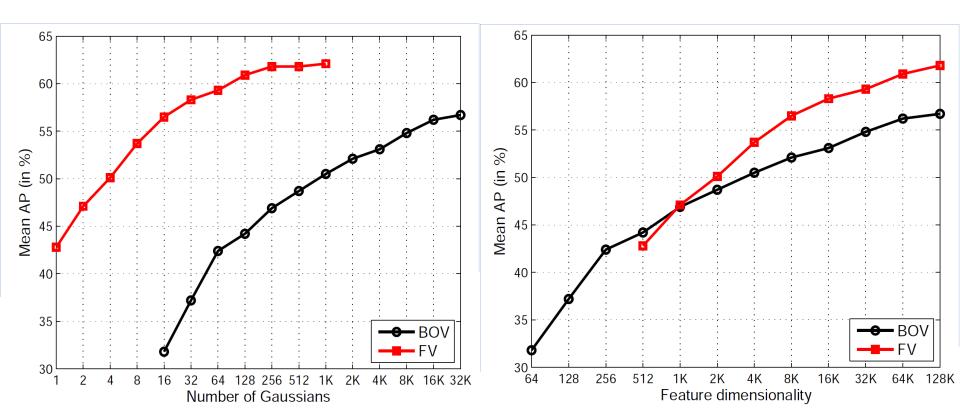




Sheep

Fisher vectors: classification performance VOC'07

- Fisher vector representation yields much better performance for a given number of Gaussians / visual words than Bag-of-words.
- For a fixed dimensionality Fisher vectors
 - perform better
 - Are much cheaper to compute



Reading material

- A good book that covers all machine learning aspects of the course is
 - Pattern recognition & machine learning

Chris Bishop, Springer, 2006

Buy it if you are interested in machine learning!

- For clustering with k-means & mixture of Gaussians read
 - Section 2.3.9
 - Chapter 9, except 9.3.4
 - Optionally, Section 1.6 on information theory
- For classification read
 - Section 2.5, except 2.5.1
 - Section 4.1.1 & 4.1.2
 - Section 4.2.1 & 4.2.2
 - Section 4.3.2 & 4.3.4
 - Section 6.2
 - Section 7.1 start + 7.1.1 & 7.1.2

Fisher vector image representation

"Fisher Kernels on Visual Vocabularies for Image Categorization"

F. Perronnin and C. Dance, in CVPR '07

