
Generative and discriminative classification techniques

Machine Learning and Category Representation 2012-2013

Jakob Verbeek, December 7, 2012

Course website:

http://lear.inrialpes.fr/~verbeek/MLCR.12.13

Classification

Given: training images and their categories What are the categories
of these test images?

apple

pear

tomato

cow

dog

horse

Classification

 Goal is to predict for a test data input the corresponding class label.
– Data input x, eg. image but could be anything, format may be vector or other
– Class label y, can take one out of at least 2 discrete values, can be more

 In binary classification we often refer to one class as “positive”, and the
other as “negative”

 Classifier: function f(x) that assigns a class to x, or probabilities over the
classes.

 Training data: pairs (x,y) of inputs x, and corresponding class label y.

 Learning a classifier: determine function f(x) from some family of functions
based on the available training data.

 Classifier partitions the input space into regions where data is assigned to a
given class

– Specific form of these boundaries will depend on the family of classifiers used

Discriminative vs generative methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

 Discriminative (probabilistic) methods
► Directly estimate class probability given input: p(y|x)
► Some methods do not have probabilistic interpretation,

 eg. they fit a function f(x), and assign to class 1 if f(x)>0,

and to class 2 if f(x)<0

p (y∣x)=
p (y) p(x∣y)

p (x)
p (x)=∑y

p (y) p (x∣y)

Generative classification methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

1. Selection of model class:
– Parametric model: Gaussian (for continuous), Bernoulli (for binary), …
– Semi-parametric models: mixtures of Gaussian / Bernoulli / …
– Non-parametric models: histograms, nearest-neighbor method, …

2. Estimate parameters of density for each class to obtain p(x|y)
– Eg: run EM to learn Gaussian mixture on data of each class

3. Estimate prior probability of each class
– If data point is equally likely given each class, then assign to the most probable class.
– Prior probability might be different than the number of available examples !

p (y∣x)=
p (y) p(x∣y)

p (x)
p (x)=∑y

p (y) p (x∣y)

Generative classification methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to predict classes given input

 Given class conditional model, classification is trivial: just apply Bayes’ rule
– Compute p(x|class) for each class,
– multiply with class prior probability
– Normalize to obtain the class probabilities

 Adding new classes can be done by adding a new class conditional model
– Existing class conditional models stay as they are
– Just estimate p(x|new class) from training examples of new class
– Plug-in the new class model when using Bayes-rule to predict class

p (y∣x)=
p (y) p(x∣y)

p (x)
p (x)=∑y

p (y) p (x∣y)

Generative classification methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to predict classes given input

• Three-class example in 2d with parametric model
– Single Gaussian model per class, equal mixing weights
– Exercise: characterize the surface of equal class probability when the covariance matrices

are equal

p (y∣x)=
p (y) p(x∣y)

p (x)
p (x)=∑y

p (y) p (x∣y)

p(x|y) p(y|x)

Generative classification methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

1. Selection of model class:
– Parametric model: Gaussian (for continuous), Bernoulli (for binary), …
– Semi-parametric models: mixtures of Gaussian, mixtures of Bernoulli, …
– Non-parametric models: histograms, nearest-neighbor method, …

1. Estimate parameters of density for each class to obtain p(x|class)
– Eg: run EM to learn Gaussian mixture on data of each class

1. Estimate prior probability of each class
– If data point is equally likely given each class, then assign to the most probable class.
– Prior probability might be different than the number of available examples !

p (y∣x)=
p (y) p(x∣y)

p (x)
p (x)=∑y

p (y) p (x∣y)

Histogram density estimation

 Suppose we
– have N data points
– use a histogram with C cells

 How to set the density level in each cell ?
– Maximum likelihood estimator.
– Proportional to nr of points n in cell
– Inversely proportional to volume V of cell

► Exercise: derive this result

 Problems with histogram method:
– # cells scales exponentially with the dimension of the data
– Discontinuous density estimate
– How to choose cell size?

pc=
nc

NV c

The ‘curse of dimensionality’

 Number of bins increases exponentially with the dimensionality of the data.
– Fine division of each dimension: many empty bins
– Rough division of each dimension: poor density model

 The number of parameters may be reduced by assuming independence
between the dimensions of x: the naïve Bayes model

– For example, for histogram model: we estimate a histogram per dimension

– Still CD cells, but only D x C parameters to estimate, instead of CD

 Model is “naïve” since it assumes that all variables are independent…
► Unrealistic for high dimensional data, where variables tend to be dependent
► Typically poor density estimator for p(x|y)
► Classification performance may still be good using the derived p(y|x)

 Also applies to other distributions, eg multivariate Gaussian, instead of full
covariance matrix with D2 parameters, we estimate variance per dimension

p(x)=∏d=1

D
p (xd

)

Example of a naïve Bayes model

 Hand-written digit classification
– Input: binary 28x28 scanned digit images, collect in 784 long vector

– Desired output: class label of image

 Generative model over 28 x 28 pixel images (2784 possible images)
– Independent Bernoulli model for each class
– Probability per pixel per class
– Maximum likelihood estimator is average value

per pixel per class

 Classify using Bayes’ rule: p (y∣x)=
p (y) p(x∣y)

p (x)

p (x∣y=c)=∏d
p (xd∣y=c)

p (xd=1∣y=c)=θcd

p (xd=0∣y=c)=1−θcd

k-nearest-neighbor density estimation

 Idea: put a cell around the test sample we want to know p(x) for
– fix number of samples in the cell, find the right cell size.

 Probability to find a point in a sphere A centered on x
0
 with volume v is

 A smooth density is approximately constant in small region, and thus

 Alternatively: estimate P from the fraction of training data in A

– Total N data points, k in the sphere A

 Combine the above to obtain estimate

– Density estimates not guaranteed to integrate to one!

P(x∈A)=∫A
p(x)dx

P(x∈A)=∫A
p(x)dx≈v p (x0)

P(x∈A)≈
k
N

p(x0)≈
k
Nv

k-nearest-neighbor density estimation

 Procedure in practice:
– Choose k
– For given x, compute the volume v which contain k samples.
– Estimate density with

 Volume of a sphere with radius r in d dimensions is

 What effect does k have?
– Data sampled from mixture

of Gaussians plotted in green
– Larger k, larger region,

smoother estimate

 Selection of k typically by

cross validation

p(x)≈
k
Nv

v (r , d)=
2rdπd /2

Γ(d /2+1)

k-nearest-neighbor classification

 Use k-nearest neighbor density estimation to find p(x|y)
 Apply Bayes rule for classification: k-nearest neighbor classification

– Find sphere volume v to capture k data points for estimate

– Use the same sphere for each class for estimates

– Estimate class prior probabilities

– Calculate class posterior distribution

p(x∣y=c)=
k c

N c v

p(y=c)=
N c

N

p(y=c∣x)=
p(y=c) p(x∣y=c)

p(x)

=
1

p(x)

k c

Nv

=
k c

k

k-nearest-neighbor classification rule

 Effect of k on classification boundary
– Larger number of neighbors: Larger regions, smoother class boundaries

 Pros: Very simple
– just set k, and choose a distance measure, no learning
– Generic: applies to almost anything, as long as you have a distance

 Cons: Very costly when having large training data set
– Need to store all data (memory)

– Need to compute distances to all data (time)

Summary generative classification methods

 (Semi-) Parametric models, eg p(x|y) is Gaussian, or mixture of …
– Pros: no need to store training data, just the class conditional models
– Cons: may fit the data poorly, and might therefore lead to poor classification result

 Non-parametric models:
– Advantage is their flexibility: no assumption on shape of data distribution
– Histograms:

• Only practical in low dimensional space (<5 or so), application in high dimensional space
will lead to exponentially many cells, most of which will be empty

• Naïve Bayes modeling in higher dimensional cases

– K-nearest neighbor density estimation: simple but expensive at test time
• storing all training data (memory space)

• Computing nearest neighbors (computation)

Discriminative vs generative methods

 Generative probabilistic methods
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

 Discriminative (probabilistic) methods
► Directly estimate class probability given input: p(y|x)
► Some methods do not have probabilistic interpretation,

 eg. they fit a function f(x), and assign to class 1 if f(x)>0,

and to class 2 if f(x)<0

p (y∣x)=
p (y) p(x∣y)

p (x)
p (x)=∑y

p (y) p (x∣y)

1. Choose class of decision functions in feature space.

2. Estimate the function parameters from the training set.

3. Classify a new pattern on the basis of this decision rule.

Discriminant function

kNN classification
Needs to store all data

Separation using smooth curve
Only need to store curve parameters

Linear classifiers

 Decision function is linear in the features:

 Classification based on the sign of f(x)

 Orientation is determined by w
► w is the surface normal

 Offset from origin is determined by b

 Decision surface is (d-1) dimensional

hyper-plane orthogonal to w, given by

 Exercise: What happens in 3d with w=(1,0,0) and b = - 1?

w

f(x)=0
f (x)=wT x+b=b+∑i=1

d
w i xi

f (x)=wT x+b=0

Linear classifiers

 Decision surface for w=(1,0,0) and b = -1

w

f(x)=0

f (x)=wT x+b=b+∑i=1

d
w i xi=0

f (x)=wT x+b=0

x1−1=0

x1=1

Dealing with more than two classes

 First idea: construction from multiple binary classifiers
► Learn binary “base” classifiers independently

 One vs rest approach:
► 1 vs (2 & 3)
► 2 vs (1 & 3)
► 3 vs (1 & 2)

 Problem: Region claimed by several classes

Dealing with more than two classes

 First idea: construction from multiple binary classifiers
► Learn binary “base” classifiers independently

 One vs one approach:
► 1 vs 2
► 1 vs 3
► 2 vs 3

 Problem: conflicts in some regions

Dealing with more than two classes

 Alternative: define a separate linear score function for each class

 Assign sample to the class of the function with maximum value

 Exercise 1: give the expression for points

where two classes have equal score

 Exercise 2: show that the set of points

assigned to a class is convex
► If two points fall in the region, then also all points on connecting line

f k (x)=wk
T x+bk

y=argmaxk f k (x)

Logistic discriminant for two classes

 Map linear score function to class probabilities with sigmoid function

 For binary classification problem, we have by definition

 Exercise: show that

σ(z)=
1

1+exp(−z)

z

p(y=+1∣x)=σ(wT x+b)

p(y=−1∣x)=1−p (y=+1∣x)

p(y=−1∣x)=σ(−(wT x+b))

Logistic discriminant for two classes

 Map linear score function to class probabilities with sigmoid function
 The class boundary is obtained for p(y|x)=1/2, thus by setting linear

function in exponent to zero

w

p(y|x)=1/2

f(x)=-5

f(x)=+5

Multi-class logistic discriminant

 Map score function of each class to class probabilities with “soft-max” function

► The class probability estimates are non-negative, and sum to one.
► Relative probability of most likely class increases exponentially with the

difference in the linear score functions

► For any given pair of classes we find that they are

equally likely on a hyperplane in the feature space

p(y=c∣x)=
exp(f c (x))

∑k=1

K
exp(f k(x))

f k (x)=wk
T x+bk

p(y=c∣x)
p (y=k∣x)

=
exp(f c (x))

exp (f k (x))
=exp(f c(x)−f k (x))

Parameter estimation for logistic discriminant

 Maximize the (log) likelihood of predicting the correct class label for training data,
i.e. the sum log-likelihood of all training data

 Derivative of log-likelihood as intuitive interpretation

 No closed-form solution, use gradient-descent methods
► Note 1: log-likelihood is concave in parameters, hence no local optima
► Note 2: w is linear combination of data points

Expected number of
points from each class
should equal the actual

number.

Expected value of each
feature, weighting

points by p(y|x), should
equal empirical

expectation.

Indicator function
1 if y

n
=k, else 0

L=∑n=1

N
log p (yn∣xn)

∂L
∂bk

=∑n=1

N
[yn=k]− p(y=k∣xn)

∂L
∂wk

=∑n=1

N
([yn=k]− p(y=k∣xn)) xn=∑n=1

N
αn xn

	Slide 1
	Example of classification
	Classification
	Discriminative vs generative methods
	Generative classification methods
	Slide 6
	Slide 7
	Slide 8
	Histogram methods
	The ‘curse of dimensionality’
	Example of a naïve Bayes model
	Slide 12
	Slide 13
	k-nearest-neighbor classification rule
	Slide 15
	Summary generative classification methods
	Slide 17
	Discriminant function
	Linear classifiers
	Slide 20
	Dealing with more than two classes
	Slide 22
	Slide 23
	Logistic discriminant for two classes
	Slide 25
	Multi-class logistic discriminant
	Parameter estimation for logistic discriminant

