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Abstract

We address image classification on a large-scale, i.e.

when a large number of images and classes are involved.

First, we study classification accuracy as a function of the

image signature dimensionality and the training set size.

We show experimentally that the larger the training set, the

higher the impact of the dimensionality on the accuracy. In

other words, high-dimensional signatures are important to

obtain state-of-the-art results on large datasets. Second, we

tackle the problem of data compression on very large signa-

tures (on the order of 105 dimensions) using two lossy com-

pression strategies: a dimensionality reduction technique

known as the hash kernel and an encoding technique based

on product quantizers. We explain how the gain in storage

can be traded against a loss in accuracy and / or an increase

in CPU cost. We report results on two large databases – Im-

ageNet and a dataset of 1M Flickr images – showing that we

can reduce the storage of our signatures by a factor 64 to

128 with little loss in accuracy. Integrating the decompres-

sion in the classifier learning yields an efficient and scalable

training algorithm. On ILSVRC2010 we report a 74.3%

accuracy at top-5, which corresponds to a 2.5% absolute

improvement with respect to the state-of-the-art. On a

subset of 10K classes of ImageNet we report a top-1 ac-

curacy of 16.7%, a relative improvement of 160% with

respect to the state-of-the-art.

1. Introduction

Scaling-up image classification systems is a problem

which is receiving an increasing attention as larger labeled

image datasets are becoming available. For instance, Ima-

geNet (www.image-net.org) consists of more than 12M im-

ages of 17K concepts [7] and Flickr contains thousands of

groups (www.flickr.com/groups) – some of which with hun-

dreds of thousands of pictures – which can be readily used

to learn object classifiers [31, 22].

The focus in the image classification community was ini-

tially on developing systems which would yield the best

possible accuracy fairly independently of their cost. The

winners of the PASCAL VOC 2007 [8] and 2008 [9] com-

petitions used a similar paradigm: many types of low-level

local features are extracted (referred to as “channels”), one

bag-of-visual-words (BOV) histogram is computed for each

channel and non-linear kernel classifiers such as SVMs are

used to perform classification [38, 29]. The use of many

channels and costly non-linear SVMs was made possible

by the modest size of the available databases.

In recent years only has the computational cost become

a central issue in image classification / object detection. In

[19], Maji et al. showed that the runtime cost of an inter-

section kernel (IK) SVM could be made independent of

the number of support vectors. Maji and Berg [18] and

Wang et al. [31] then proposed efficient algorithms to learn

IKSVMs. Vedaldi and Zisserman [30] and Perronnin et al.

[21] subsequently generalized this principle to any additive

classifier. Another line of research consists in computing

image representations which are directly amenable to cost-

less linear classification. Yang et al. [36], Wang et al. [32]

and Boureau et al. [4] showed that replacing the average

pooling stage in the BOV computation by a max-pooling

yielded excellent results. To go beyond the BOV, i.e. be-

yond counting, it has been proposed to include higher order

statistics in the image signature. This includes modeling

an image by a probability distribution [17, 35] or using the

Fisher kernel framework [20]. Especially, it was shown that

the Fisher Vector (FV) could yield high accuracy with linear

classifiers [22].

If one wants to stick to efficient linear classifiers, the

image representations should be high-dimensional to en-

sure linear separability of the classes. Therefore, we ar-

gue that the storage/memory cost is becoming a central is-

sue in large-scale image classification. As an example, in

this paper we consider almost dense image representations

– based on the improved FV of [22] – with up to 524K
dimensions. Using a 4 byte floating point representation,

a single signature requires 2MB of storage. Storing the

ILSVRC2010 dataset [2] would take approximately 2.8TBs

and storing the full ImageNet dataset around 23TBs. Ob-

viously, these numbers have to be multiplied by the num-

ber of channels, i.e. feature types. As another example, the
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PASCAL VOC 2009 winners mention in [10] (slide 27) that

their GMM-based [39] and sparse-coding-based [37] rep-

resentations have respectively 655K and 2M dimensions.

Handling TBs of data makes experimentation very difficult

if not impractical. Indeed, much more time can be spent

writing / reading data than performing calculations.

In this paper we address the compression of high-

dimensional image signatures (on the order of 105 dimen-

sions) for large-scale image classification. The gain in stor-

age has to be traded against a loss in accuracy and / or an

increase in CPU cost. Most previous works on image sig-

nature compression (c.f. section 2) have considered much

smaller signatures and have focused on retrieval. Compar-

atively, compression is relatively unexplored in the classifi-

cation domain (beyond nearest neighbor approaches).

Our contributions are the following ones:

• We study image classification accuracy as a function of

the signature dimensionality and the training set size.

This study is conducted on two large datasets contain-

ing roughly 1M training images each. A key conclu-

sion is that, with linear classifiers, high-dimensional

signatures are necessary to obtain state-of-the-art re-

sults on large datasets. This justifies the use of

high-dimensional signatures in large-scale classifica-

tion and, therefore, the need for data compression.

• We first tackle data compression with dimensionality

reduction using the Hash Kernel (HK) which has re-

cently been shown to yield state-of-the-art results on

very high-dimensional data [26, 33]. However, we

show experimentally that even when reducing the di-

mensionality by a small (< 10) factor, the HK leads to

a significant decrease in accuracy.

• Second, we use product quantization [11] for data

compression. It is shown to be particularly well

suited to such high-dimensional signatures as it en-

ables to balance classification accuracy, computational

cost and storage cost. We will show that, in combina-

tion with a FV-specific sparsity encoding, we can re-

duce the storage cost by a factor 64-128 with little loss

in accuracy and at reasonable CPU cost. Also, by inte-

grating the decompression in the classifier learning we

obtain a very efficient and scalable training algorithm.

The remainder of this article is organized as follows. In

the next section, we discuss related work. In section 3, we

briefly review the high-dimensional image signature we will

use throughout this paper. In section 4 we study the im-

age classification accuracy as a function of the training set

size. In section 5, we explore the compression of very high-

dimensional signatures for large-scale image classification.

In section 6, we report compression experiments.

2. Related Work

We review related work on large-scale image classifica-

tion, dimensionality reduction and data compression.

Large-Scale Classification. Li et al. [16] study land-

mark classification on a collection of 500 landmarks and

2 million images. On a small subset of 10 classes, they

could improve BOV classification by increasing the visual

vocabulary up to 80K visual words. However, for practical

reasons, a much smaller number of visual words was used

for larger-scale experiments. Perronnin et al. [22] use up to

350K Flickr group images and a signature similar to the one

we employ in this work. In our experience, it is difficult to

handle significantly more signatures without compression.

Deng et al. [6] report experiments with up to 10K classes

and 10M images. While data compression is mentioned in

the appendix, standard strategies based on sparse encoding

and scalar quantization were employed. A major difference

between [6] and our work is that we advocate for signifi-

cantly higher-dimensional image signatures (our signatures

are an order of magnitude larger andmuch denser) andmore

elaborate compression schemes. High-dimensional signa-

tures enable us to stick to costless linear classifiers.

Dimensionality Reduction. Among the most popular

techniques are those based on dense projections such as

Principal ComponentAnalysis (PCA), Partial Least Squares

(PLS) or Gaussian Random Projections (RPs). Since the

projection cost is proportional to the number of input and

output dimensions, this is computationally tractable for

high-dimensional input data only if the number of output di-

mensions is tiny. For instance Schwartz et al. [24] managed

to reduce the dimensionality of their features from 170K to

as little as 20. A small output dimensionality is sufficient

for a small number of classes (e.g. 2 in [24]) but should de-

teriorate performance for a large number of classes. Hash

kernels [26, 33] , which are closely related to the “database-

friendly” sparse RPs of Achlioptas [1], were recently pro-

posed to address this issue. They have shown excellent per-

formance in the compression of text features [26, 33] and

faces [25]. Other works have proposed to perform a seman-

tic dimensionality reduction [31, 28]. An image is scored

against a set of concepts and the vector of concept scores is

then used as input to the classifiers. However, in our opin-

ion, such an approach does not solve our problem. Indeed,

we now need to learn classifiers for the concepts which can

be more costly than learning the original classifiers. For in-

stance, in [28], the problem of learning 256 classes is turned

into one of learning 2,659 concepts. More generally, it is

unclear how the number of concepts should scale with the

number of classes.

Data Compression. Image signature compression has

received a lot of attention since Torralba et al. showed that

small codes enable efficient image retrieval and k-NN clas-

sification on a large scale [27]. However, this work as well
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as many subsequent ones [34, 12, 23, 5, 14] focused on

small image signatures (typically GIST or BOV) with a few

hundreds or a few thousands of dimensions. This is two

to three orders of magnitude smaller than the signatures we

employ in this work. Such small signatures do not contain

enough information for highly accurate image annotation

(c.f. section 4). Moreover the techniques which are pro-

posed in these papers are typically too costly to be applied

to our high-dimensional signatures. For instance, [23] re-

quires dense projections and [34, 5, 14] require a global

PCA. Recently Jégou et al. [13] proposed product quan-

tizers (PQ) for NN-search of SIFT vectors. Although PQ

had only been applied to fairly small dimensional vectors

[13, 14], it is scalable and enables the balancing of classifi-

cation accuracy, computational cost and storage cost.

3. The Fisher Vector

We only provide a brief introduction to the FV. More de-

tails can be found in [20, 22]. The FV extends the BOV by

going beyond counting (0-order statistics) and by encoding

statistics (up to the second order) about the distribution of

descriptors assigned to each visual word. A significant ad-

vantage with respect to the BOV is that high-dimensional

discriminative signatures can be obtained even with small

vocabularies, and therefore at a low CPU cost.

The FV GX
λ characterizes a sample X by its deviation

from a distribution uλ (with parameters λ):

GX
λ = LλGX

λ . (1)

GX
λ is the gradient of the log-likelihood with respect to λ:

GX
λ =

1

T
∇λ log uλ(X). (2)

Lλ is the Cholesky decomposition of the inverse of the

Fisher information matrix Fλ of uλ, i.e. F
−1

λ = L′

λLλ. In

our case, X = {xt, t = 1 . . . T} is the set of T local de-

scriptors extracted from an image and uλ =
∑N

i=1
wiui is

a GMM (with diagonal covariance matrices) which mod-

els the generation process of local descriptors. λ =
{wi, µi, σi, i = 1 . . . N} where wi, µi and σi are respec-

tively the mixture weight, mean vector and standard devia-

tion vector of Gaussian ui. Let γt(i) be the soft assignment

of descriptor xt to Gaussian i. Assuming that the descrip-

tors xt are iid we obtain the following formulas for the gra-

dients with respect to µi and σi
1:

GX
µ,i =

1

T
√

wi

T
∑

t=1

γt(i)

(

xt − µi

σi

)

, (3)

GX
σ,i =

1

T
√

2wi

T
∑

t=1

γt(i)

[

(xt − µi)
2

σ2

i

− 1

]

. (4)

1Following [20, 22] we discard the partial derivatives with respect to

the mixture weights as they carry little discriminative information.

The FV GX
λ is the concatenation of the GX

µ,i and GX
σ,i vectors.

As shown in [22], square-rooting and L2-normalizing the

FV can greatly enhance the classification accuracy. Also,

following the pyramidmatching approach of Lazebnik et al.

[15], one can split an image into several regions, compute

one FV per region and concatenate the per-region FVs.

Let D be the dimensionality of the local descriptors, N
be the number of Gaussians and R be the number of image

regions. The resulting vector is E = 2DNR dimensional.

4. Large Signatures Make a Large Difference

The goal of this first set of experiments is to study the

joint influence of the training set size and signature com-

plexity (i.e. dimensionality) on the classification accuracy

when no compression is applied to image signatures. The

training set size depends on two factors: the number of

classes and the (average) number of images per class. This

study complements a recent work by [16] (a difference is

that [16] considers only the number of classes, not the num-

ber of images per class).

Datasets. We use two databases with similar training

set sizes (roughly 1M images) but different class statistics.

The first dataset, ILSVRC2010 [2], contains a large num-

ber of classes (1K) but a relatively small number of images

per class. The training set consists of 1.26M images (i.e.

on average 1.26K images per class). We use the valida-

tion set (50K images) for validation purposes and the accu-

racy is evaluated on the test set (150K images). Accuracy

is reported as the percentage of images whose correct tag is

in the top-5 predicted tags2. The second dataset – dubbed

FLICKR1M – was inspired by [31, 22]. We downloaded

close to 1M images from 18 Flickr groups corresponding

to 18 of the 20 PASCAL VOC classes (the only classes for

which we did not find large enough groups were “sofa” and

“tv”). Hence, this dataset contains a small number of classes

but a large number of images per class: 50K on average

with a minimum of 2.8K for “diningtable” and a maximum

of 136K for “car”. We use as validation set the trainval set

of VOC 2007 and accuracy is evaluated on the VOC 2007

test set (we remove from the training set of Flickr group im-

ages all overlapping test images). Accuracy is reported as

the Average Precision (AP), averaged over the 18 classes.

Image signatures. Images are resized to 100K pixels (if

larger). SIFT descriptors are extracted densely at multiple

scales. To keep the computational cost reasonable, we ex-

tract on the order of 1K patches per image (except where

the contrary is specified). The feature dimensionality is re-

duced to D = 64 with PCA. To simplify the analysis we

do not perform any partitioning of the image and therefore

extract a single FV for the full image (i.e. R = 1). Hence,
in the following experiments, the single factor which affects

2The flat cost used during the challenge is 1 minus this quantity.
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Figure 1. Accuracy as a function of the number of Gaussians N and the training set size. Left: results on ILSVRC2010 with a variable

number of classes. Right: results on FLICKR1M with a variable number of images per class.

the signature dimensionality is the number N of Gaussians.

We vary N between 16 and 256 which leads to signatures

ranging in size from 2, 048 to 32, 768 dimensions.

Classification. We use linear SVMs trained with

Stochastic Gradient Descent (SGD) [3] using one sample

at a time. For FLICKR1M, the 18 classifiers are trained on

all positive and negative samples. For ILSVRC2010, given

the high computational cost of learning 1K classifiers, we

subsample negatives: at each iteration we use all positive

samples and we randomly sample the same number of neg-

atives. We typically use 50 SGD iterations, i.e. we see on

average 5% of negatives when training a classifier. Increas-

ing significantly the number of iterations only has a limited

impact on the classification accuracy (e.g. +1-2% for × 10

more iterations) showing that it is not necessary to view all

negatives to obtain good results.

Experimental setup. The influence of the number C
of classes is studied on ILSVRC2010 and we vary C from

10 to 1K. For a given number C, we split the classes into

1, 000/C groups of C classes, run experiments for each

group and average results. The influence of the number of

images per class is studied on FLICKR1M. We vary this

number from 100 per class to the full training set. We repeat

all experiments (but those carried-out on the full dataset)

five times and average results.

Results. Results are shown in Figure 1.

On ILSVRC2010, when considering 10 classes, the ac-

curacy increases from 97.5% forN=16 to 98.2% forN=256

(+0.7% absolute and less than 1% in relative). When con-

sidering the 1K classes, the accuracy increases from 32.7%

to 46.2% (13.5% absolute and +41.3% relative).

On FLICKR1M, when considering 100 images per class,

the accuracy increases from 35.1% for N=16 to 39.9% for

N=256 (+4.8% absolute and +13.7% relative). On the full

training set, the accuracy increases from 44.5% to 55.7%

(+11.2% absolute and +25.2% relative).

We can draw the following conclusion: the larger the

training set, i.e. the larger the number of classes and/or the

number of images per class, the more high-dimensional sig-

natures make a difference. In other words, we need high-

dimensional signatures to obtain state-of-the-art results on

large datasets. Conversely, while the training set size has

a less pronounced influence on small signatures, it has a

greater impact on large signatures. For instance, for N=16
the increase in accuracy from 45K training images to the

full 926K is modest (+0.6% absolute) while for N=256 the

accuracy increases significantly (+5.3% absolute).

5. High-Dimensional Signature Compression

The previous experiments clearly show that high-

dimensional signatures are important to obtain state-of-the-

art accuracy in large-scale (linear) classification. How-

ever such high-dimensional signatures come at a high stor-

age/memory cost (TBs of data) which makes learning dif-

ficult if not infeasible. We now address the compression

of such high-dimensional signatures. We explore two lossy

compression schemes for high-dimensional signatures: di-

mensionality reduction based on hash kernels and data en-

coding with product quantizers. We also propose a FV-

specific sparsity encoding scheme.

5.1. Hash kernels

The Hash Kernel (HK) [26, 33] is a sparse random

projection technique which was proposed for very high-

dimensional data. It consists in accumulating all the co-

ordinates of a vector for which a hash function generates

the same value. The HK is the dot-product between vec-
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tors in this reduced space. A similar idea was proposed by

Jégou et al. [12] for the dimensionality reduction of BOF

histograms.

The HK may come in different flavors. The aggregation

process may be unbalanced [26, 33] or balanced [12], i.e.

a variable or constant number of input dimensions may be

collapsed into a given dimension. Also one may consider an

unsigned sum [26] or a signed sum [33] of hash features. In

the unsigned case, the HK leads to a biased estimate of the

dot-product in the original space while in the signed case

it leads to an unbiased estimate. This is a very important

property as the dot-product is a good measure of similar-

ity between FVs [22]. Therefore, learning linear classifiers

on hashed FVs makes sense. We will evaluate in section 6

the 4 possible combinations (balanced/unbalanced and bi-

ased/unbiased).

5.2. Product quantization

Product Quantizer (PQ). A Vector Quantizer (VQ) q :
R

E → C maps a vector v ∈ R
E to a codeword ck ∈ R

E

in the codebook C = {ck, k = 1 . . .K} [11]. The car-

dinality K of the set C, known as the codebook size, de-

fines the compression level of the VQ as ⌈log2 K⌉ bits are
needed to identify the K codewords. If one considers the

Mean-Squared Error (MSE) as the distortion measure, then

the Lloyd optimality conditions lead to k-means training of

the VQ. If we use on average b bits per dimension to en-

code a given image signature (bmight be a fractional value),

then the cardinality of the codebook is 2bE . However, for

E = O(105) , even for a small number of bits (e.g. our

target in this work is typically b = 1), the cost of learn-

ing and storing such a codebook – in O(E2bE) – would be

incommensurable.

A solution is to use PQs which were introduced as a prin-

cipled way to deal with high dimensional input spaces (see

e.g. [13] for an excellent introduction to the topic). A PQ

q : R
E → C splits a vector v into a set of M distinct sub-

vectors of size G = E/M , i.e. v = [v1, . . . , vM ]. M sub-

quantizers {qm, m = 1 . . .M} operate independently on

each of the sub-vectors. If Cm is the codebook associated

with qm, then C is the Cartesian product C = C1 × . . . CM

and q(v) is the concatenation of the qm(vm)’s. We note

G = 1 corresponds to scalar quantization and that if G = E
we are back to the VQ problem on the full vector. Again,

let b be the average number of bits per dimension (assum-

ing that the bits are equally distributed across the codebooks

Cm) . The codebook size of C is K = (2bG)M = 2bE

which is unchanged with respect to the standard VQ. How-

ever the costs of learning and storing the codebook are now

in O(E2bG). To keep these costs reasonable we have to cap
the value bG. In practice we enforce bG ≤ 8 which ensures

that, in our implementation, the cost of encoding a FV is not

higher than the cost of extracting the FV itself. Obviously,

different applications might have different constraints.

FV sparsity encoding. We mentioned earlier that the

FV is dense: on average, only approximately 50% of the

dimensions are zero. Generally speaking, this does not lead

to any gain in storage as encoding the index and the value

for each dimension would take as much space (or close to).

However, we can leverage the fact that the zeros are not

randomly distributed in the FV but appear in a structure.

Indeed, if no patch was assigned to Gaussian i (i.e. ∀t,
γt(i) = 0), then in equations (3) and (4) all the gradients

are zero. Hence, we do not need to encode the sparsity on a

per-dimension basis but on a per-Gaussian basis.

The sparsity encoding works as follows. We add one bit

per Gaussian. This bit is set to 0 if no low-level feature

is assigned to the Gaussian and 1 if at least one low-level

feature is assigned to the Gaussian. If this bit is zero for a

given Gaussian, then we know that all the gradients for this

Gaussian are exactly zero and therefore we do not need to

encode the codewords for the sub-vectors of this Gaussian.

If the bit is 1, then we encode the 2D = 128 gradient values
of this Gaussian using PQ.

Note that adding this per Gaussian bit can be viewed as

a first step toward gain/shape coding, i.e. encoding sepa-

rately the norm and direction of the gradient vectors. We ex-

perimented with a more principled approach to gain/shape

coding but did not observe any substantial improvement in

terms of storage reduction.

SGD Learning. Since we cannot learn a linear classifier

directly in the compressed space (i.e. in the space of code-

book indices), we have to learn the classifier in the origi-

nal high dimensional space. We therefore integrated the de-

compression algorithm in the SGD training code. All com-

pressed signatures are kept in RAM if possible. When a sig-

nature is passed to the SGD algorithm, it is decompressed

on the fly. Once it has been processed, the decompressed

version of the sample is discarded. Hence, only one decom-

pressed sample at a time is kept in RAM. The decompres-

sion time is very reasonable compared to the training cost

as it involves simple look-up table accesses. This makes our

learning scheme both efficient and scalable.

Since we learn the linear classifier in the original space,

test images do not need to be compressed. In our exper-

iments, we will report results with uncompressed test im-

ages, except where the contrary is specified.

6. Compression Results

We start experimentswith the small PASCAL VOC 2007

dataset [8]. This enables to run an uncompressed baseline

even with very large image signatures. We then proceed

with ILSVRC2010 [2] and FLICKR1M. We finally report

results on a subset of 10K classes of ImageNet [6].
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Figure 2. Compression results on VOC 2007. Left: HK results as a function of the number of dimensions. Right: PQ results as a function

of the number b of bits per dimension and the group size G (without sparsity encoding). The baseline corresponds to the uncompressed

signature (262,144 dimensions). For a given compression factor, PQ performs much better than HK.

6.1. PASCAL VOC 2007

We follow the standard protocol of training the classi-

fiers on the trainval set (5K images) and evaluating the re-

sults on the test set (5K images). We report the accuracy as

the Average Precision (AP), averaged over the 20 classes.

We choose N = 256 Gaussians and R = 8 regions 3

which leads to 262,144-dimensional signatures. The un-

compressed baseline yields 58.3%.

We first report compression with HK. We repeat the ex-

periments 10 times (with 10 different hashing functions)

and Figure 2 (left) shows the average and the standard de-

viation for the four different flavors. Our conclusions are

the following ones. First, the unbiased balanced version

seems to yield slightly better results than the other varia-

tions but the difference is quite small. Second, accuracy

drops rapidly when decreasing the number of dimensions.

For instance, reducing to 32K dimensions (i.e. by a factor

8) yields 55.2%. However, if we did not use spatial pyra-

mids, we would obtain vectors of exactly the same size and

achieve the same accuracy (55.3%). These results seem to

indicate that our data does not lie in a much lower dimen-

sional subspace of the original 262,144 dimensional space.

We now turn to PQ. We again repeat the experiments 10

times (with 10 different runs of k-means). We report the

average on Figure 2 (right). The standard deviation is not

shown because it is very small (< 0.1%). A key conclu-

sion is that, for a given compression factor, PQ consistently

outperforms HK. Another conclusion is that, the smaller the

number of bits per dimension b we can afford, the more the

group size G makes a difference, i.e. the more important it

3The 8 FVs are the following ones: one for the whole image, three for

the top, middle and bottom regions and one for each of the four quadrants.

is to capture the correlation between dimensions. For in-

stance, for b = 1, the AP is increased from 54.2% for G=1

to 57.3% for G=8 and for b = 0.5 from 50.2% for G=1

to 56.2% for G=16. In conjunction with the sparse encod-

ing (which results in an additional 50% saving), b = 0.5
and b = 1 lead respectively to a 64 and 128 fold reduc-

tion in memory. The previous PQ results do not consider

any compression of test samples. Compressing test samples

typically leads to an additional 1% loss (e.g. from 57.3% to

56.5% for b = 1 and G = 8).

6.2. ILSVRC2010 and FLICKR1M

We now run experiments on the full ILSVRC2010 and

FLICKR 1M datasets (c.f. section 4 for details on the pro-

tocol). In a first stage, we do not make use of spatial pyra-

mids (R = 1). We set N = 256 which yields 215=32,768-

dimensional signatures. Considering smaller signatures en-

ables to run the uncompressed baseline. Table 1 provides

HK results. We report the average and the standard devia-

tion over 10 different HK runs. Again, we observe a very

rapid decrease of the accuracy with the number of dimen-

sions. We show on Figure 3 (top) PQ results. Again, PQ

clearly outperforms HK for a given compression rate.

We also show results on 262,144-dimensional signatures

(N = 256, R = 8) on Figure 3 (bottom). We were not

able to train classifiers on these uncompressed signatures

in a reasonable amount of time. The main issue is that,

without compression, much more time is spent reading data

than performing actual computation. Indeed, on our double

quadcore multi-threaded machine with Intel Xeon proces-

sors (16 processing units), we could use on average only 1

processing unit when dealing with uncompressed data be-

cause of the throughput bottleneck. When compressing the
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data, we could use the 16 processing units simultaneously.

For a number b ≤ 1 of bits per dimension we could even

fit the full training set in the RAM of our 48GB machine

(for b = 1 the compressed ILSVRC2010 training set fits in

20GB). In this case, the SGD learning algorithm trains the

1K classifiers on 1.2TBs of training data (after decompres-

sion) in approx. 5h30.

We underline that using large signatures with compres-

sion yields much better results than using smaller signatures

without compression. For instance, without spatial pyra-

mids and without compression, the best result we obtain on

ILSVRC2010 is 46.2%. Using spatial pyramids (8 times

larger signatures) and a fairly aggressive compression rate

of 64 (b=1 combined with sparsity encoding), we can reach

56.1% (+9.9% absolute).

Getting state-of-the-art results on ILSVRC2010. We

now show that, using the FV-compressed features, we can

get state-of-the-art accuray on ILSVRC2010. Compared to

the previous experiments, we (a) increased the number of

patches per image from 1K to 10K, (b) increased the dimen-

sionality of our FVs to approximately 524K (N = 1, 024
and R = 4 regions4) and (c) increased the number of

SGD iterations from 50 to 200. With these parameters, we

achieve 67.9% accuracy at top-5. Using a second type of

low-level features (the 96 dimensional color descriptors of

[22] reduced to 64 dimensions with PCA), and averaging

the results of the two channelswe can further increase the

top-5 accuracy to 74.3%. This is a 2.5% improvement

with respect to the state-of-the-art (the winning NEC-

UIUC-Rutgers system achieved 71.8% accuracy during the

challenge [2]). We also provide our top-1 accuracy: 54.3%.

Training one channel on a single machine with 16 cpus

takes approx. 3.5 days: 2 days for the low-level feature

extraction (SIFT or color) + FV computation/compression

and 1.5 days for the SGD training. We underline that both

steps could be easily parallelized on multiple machines.

6.3. ImageNet10K

We finally replicated the very large-scale experiments of

Deng et al. [6]: we ran our system on the same 10,184

categories from the Fall 2009 release of ImageNet includ-

ing both internal and leaf nodes with more than 200 im-

ages. This makes an approximate total of 9M images, half

of which is used for training and half for testing. Out of

the 4.5M training images, we keep a small subset of 50K

images for validation purposes. We report the average per-

class accuracy as in [6].

We extracted on the order of 10K SIFT descriptors per

image (no color information). To keep the computational

cost reasonable, we set the number of Gaussians to N =
256 and the number of regions to R = 4 which yields

131K dimensional signatures. We performed 500 iterations

4The 4 FVs correspond to: full image, top, middle and bottom.

of SGD.We report a top-1 accuracy of 16.7% to be com-

pared to 6.4% in [6]. We underline that this corresponds

to a relative improvement of 160%.
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(-) (0.11) (0.23) (0.21) (0.26)

Table 1. HK results on ILSVRC2010 (top-5 accuracy) and

FLICKR1M (mean AP) with the balanced unbiased version.
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