Fisher vector image representation

Jakob Verbeek January 13, 2012

Course website: http://lear.inrialpes.fr/~verbeek/MLCR.11.12.php

Fisher vector representation

 Alternative to bag-of-words image representation introduced in Fisher kernels on visual vocabularies for image categorization F. Perronnin and C. Dance, CVPR 2007.

- FV in comparison to the BoW representation
 - Both FV and BoW are based on a visual vocabulary, with assignment of patches to visual words
 - FV based on Mixture of Gaussian clustering of patches, BoW based on k-means clustering
 - FV Extracts a larger image signature than the BoW representation for a given number of visual words
 - Leads to good classification results using linear classifiers, where BoW representations require non-linear classifiers.

Fisher vector representation: Motivation 1

- Suppose we use a bag-of-words image representation
 - Visual vocabulary trained offline
- Feature vector quantization is computationally expensive in practice
- To extract visual word histogram for a new image
 - Compute distance of each local descriptor to each k-means center
 - run-time O(NKD) : linear in
 - N: nr. of feature vectors ~ 10^4 per image
 - K: nr. of clusters ~ 10^3 for recognition
 - D: nr. of dimensions ~ 10^2 (SIFT)
- So in total in the order of 10^9 multiplications per image to obtain a histogram of size 1000
- Can this be done more efficiently ?!
 - Yes, extract more than just a visual word histogram !

Fisher vector representation: Motivation 2

- Suppose we want to refine a given visual vocabulary
- Bag-of-word histogram stores # patches assigned to each word
 - Need more words to refine the representation
 - But this directly increases the computational cost
 - And leads to many empty bins, redundancy

Fisher vector representation: Motivation 2

- Instead, the Fisher Vector also records the mean and variance of the points per dimension in each cell
 - More information for same # visual words
 - Does not increase computational time significantly
 - Leads to high-dimensional feature vectors
- Even when the counts are the same the position and variance of the points in the cell can vary

Image representation using Fisher kernels

- General idea of Fischer vector representation
 - Fit probabilistic model to data $p(X; \Theta)$
 - Represent data with derivative of data log-likelihood "How does the data want that the model changes?" $G(X,\Theta) = \frac{\partial \log p(x;\Theta)}{\partial \Theta}$

Jaakkola & Haussler. "Exploiting generative models in discriminative classifiers", in Advances in Neural Information Processing Systems 11, 1999.

• We use Mixture of Gaussians to model the local (SIFT) descriptors $X = \{x_n\}_{n=1}^N$ $L(X, \Theta) = \sum_n \log p(x_n)$ $p(x_n) = \sum_k \pi_k N(x_n; m_k, C_k)$

 Define mixing weights using the soft-max function ensures positiveness and sum to one constraint

$$\pi_k = \frac{\exp \alpha_k}{\sum_{k'} \exp \alpha_{k'}}$$

Image representation using Fisher kernels

- Mixture of Gaussians to model the local (SIFT) descriptors $L(\Theta) = \sum_{n} \log p(x_{n})$ $p(x_{n}) = \sum_{k} \pi_{k} N(x_{n}; m_{k}, C_{k})$
 - The parameters of the model are Θ

$$\Theta = \{\alpha_k, m_k, C_k\}_{k=1}^K$$

- where we use diagonal covariance matrices

Concatenate derivatives to obtain data representation

$$G(X,\Theta) = \left(\frac{\partial L}{\partial \alpha_1}, \dots, \frac{\partial L}{\partial \alpha_K}, \frac{\partial L}{\partial m_1}, \dots, \frac{\partial L}{\partial m_K}, \frac{\partial L}{\partial C_1^{-1}}, \dots, \frac{\partial L}{\partial C_K^{-1}}\right)^T$$

Image representation using Fisher kernels

Data representation

$$G(X,\Theta) = \left(\frac{\partial L}{\partial \alpha_1}, \dots, \frac{\partial L}{\partial \alpha_K}, \frac{\partial L}{\partial m_1}, \dots, \frac{\partial L}{\partial m_K}, \frac{\partial L}{\partial C_1^{-1}}, \dots, \frac{\partial L}{\partial C_K^{-1}}\right)^T$$

In total K(1+2D) dimensional representation, ۲ since for each visual word / Gaussian we have

Count (1 dim):
$$\frac{\partial L}{\partial \alpha_k} = \sum_n (q_{nk} - \pi_k)$$

Mean (D dims):
$$\frac{\partial L}{\partial \alpha_k} = C_k^{-1} \sum_{k=1}^{n} q_{nk} (x_n - m_k)$$

Center of assigned data
Relative to cluster center

 $\frac{\partial m_k}{\partial m_k} = C_k \sum_n q_{nk} (x_n - m_k)$

Relative to cluster cente

Variance (D dims): $\frac{\partial L}{\partial C_{k}^{-1}} = \frac{1}{2} \sum_{n} q_{nk} (C_{k} - (x_{n} - m_{k})^{2})$ Variance of assigned data relative to cluster variance

With the soft-assignments:

$$q_{nk} = p(k|x_n) = \frac{\pi_k p(x_n|k)}{p(x_n)}$$

Bag-of-words vs. Fisher vector image representation

- Bag-of-words image representation
 - Off-line: fit k-means clustering to local descriptors
 - Represent image with histogram of visual word counts: K dimensions
- Fischer vector image representation
 - Off-line: fit MoG model to local descriptors
 - Represent image with derivative of log-likelihood: K(2D+1) dimensions
- Computational cost similar:
 - Both compare N descriptors to K visual words (centers / Gaussians)
- Memory usage: higher for fisher vectors
 - Fisher vector is a factor (2D+1) larger, e.g. a factor 257 for SIFTs !
 - Ie for 1000 visual words this is roughly 257*1000*4 bytes ~ 1 Mb
 - However, because we store more information per visual word, we can generally obtain same or better performance with far less visual words

Images from categorization task PASCAL VOC

Yearly evaluation since 2005 for image classification (also object localization, segmentation, and body-part localization)

Cat

Person

Sheep

Fisher vectors: classification performance

- Results taken from: "Fisher Kernels on Visual Vocabularies for Image Categorization", F. Perronnin and C. Dance, in CVPR '07
- BoW and Fisher vector yield similar performance
 - Fisher vector uses 32x fewer Gaussians
 - BoW representation 2.000 long, FV length is $64(1+2 \times 128) = 16.448$

Additional reading material

- Fisher vector image representation
 - "Fisher Kernels on Visual Vocabularies for Image Categorization"
 - F. Perronnin and C. Dance, in CVPR '07
- Pattern Recognition and Machine Learning Chris Bishop, 2006, Springer
 - Section 6.2

Exam

- Friday January 27th
 - From 9 am to 12 am
 - Room H105 Ensimag building @ campus
- Prepare from
 - Lecture slides
 - Presented papers
 - Bishop's book
- During the exam you can bring
 - the lecture slides
 - the presented papers