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Plan for the course
• Class 1, November 25 2011

– Cordelia Schmid: Local invariant features 

– Jakob Verbeek: Clustering with k-means, mixture of Gaussians

• Class 2, December 2 2011
– Cordelia Schmid: Local features 2 + Instance-level recognition

– Jakob Verbeek: EM for mixture of Gaussian clustering + classification 

– Student presentation 1: Scale and affine invariant interest point 
detectors, Mikolajczyk, Schmid, IJCV 2004. 

• Class 3, December 9 2011
– Jakob Verbeek: Linear classifiers 

– Cordelia Schmid: Bag-of-features models for category classification

– Student presentation 2: Visual categorization with bags of keypoints 
Csurka, Dance, Fan, Willamowski, Bray, ECCV 2004 



Plan for the course
• Class 4, December 16 2011

– Jakob Verbeek: Non-linear kernels + Fisher vector image representation

– Cordelia Schmid: Category level localization

– Student presentation 3: Beyond bags of features: spatial pyramid matching for 
recognizing natural scene categories.

– Student presentation 4: Video Google: A Text Retrieval Approach to Object 
Matching in Videos

• Class 5, January 6 2012
– Cordelia Schmid: TBA

– Student presentation 5: Object Detection with Discriminatively Trained Part 
Based Models.

– Student presentation 6: Learning realistic human actions from movies Laptev, 
Marszalek, Schmid, Rozenfeld, CVPR 2008. 

• Class 6, January 13 2012
– Jakob Verbeek: TBA

– Student presentation 7: High-dimensional signature compression for large-scale 
image classification

– Student presentation 8: Segmentation as Selective Search for Object 
Recognition, van de Sande, Uijlings, Gevers, Smeuldersm, ICCV 2011. 



• Image classification: assigning label to the image

Car: present
Cow: present
Bike: not present
Horse: not present
…

• Object localization: define the location and the category

Car Cow
Category label
+ location

Visual recognition - Objectives



Difficulties: within object variations

Variability in appearance of the same object:

Viewpoint, illumination, occlusion, 

articulation of deformable objects, ...



Difficulties: within-class variations



Visual category recognition

• Robust image description 
– Appropriate descriptors for objects and categories

• Statistical modeling and machine learning
– Automatic modeling from category instances 

• scene types
• object categories 
• human actions 



Why  machine learning?

• Early approaches: simple features + handcrafted models
• Can handle only few images, simples tasks 

L. G. Roberts, Machine Perception of Three Dimensional Solids, 

Ph.D. thesis, MIT Department of Electrical Engineering, 1963. 



Why machine learning?

• Early approaches: manual programming of rules
• Tedious, limited and does not take into account the data  

Y. Ohta, T. Kanade, and T. Sakai, “An Analysis System for Scenes Containing objects with Substructures,” International Joint Conference on Pattern 
Recognition, 1978.



Why machine learning?

• Today lots of data, complex tasks 

Internet images, 
personal photo albums

Movies, news, sports



Why machine learning?

• Today lots of data, complex tasks

• Instead of trying to define rules manually, 

learn them automatically from examples  

Internet images, 
personal photo albums

Movies, news, sports



Bag-of-words image classification 

• Excellent results in the presence of 
– background clutter, occlusion, lighting, viewpoint,...

bikes books building cars people phones trees



Bag-of-features for image classification

 Extract regions Compute 
descriptors

 Find clusters 
and frequencies

Classification



From local descriptors to Bag-of-Words
1) Detect local regions in image (eg. interest point detector)

2) Compute local descriptors (eg. SIFT)

• Image now represented by a set of N local descriptors

• Map each local descriptor to one out of K “visual words”

• Image now represented by visual word histogram of length K
– In analogy to bag-of-word text representations

…..
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Clustering

• Finding a group structure in the data
– Data in one cluster similar to each other
– Data in different clusters dissimilar

• Map each data point to a discrete cluster index
– “flat”  methods find k groups 
– “hierarchical” methods define a tree structure over the data



Hierarchical Clustering

• Data set is partitioned into a tree structure

• Top-down construction
– Start all data in one cluster: root node
– Apply “flat” clustering into k groups
– Recursively cluster the data in each group

• Bottom-up construction
– Start with all points in separate cluster
– Recursively merge “closest” clusters
– Distance between clusters A and B

• Min, max, or mean distance 

between x in A, and y in B



Clustering example: visual words

Airplanes

Motorbikes

Faces

Wild Cats

Leafs

People

Bikes



Clustering descriptors into visual words
• Offline training: Find groups of similar local descriptors

– Using many descriptors from training images

• New image:

– Detect local regions

– Compute local descriptors

– Count descriptors in each cluster

[5, 2, 3] [3, 6, 1]



Definition of k-means clustering

• Given: data set of N points xn, n=1,…,N

• Goal: find K cluster centers mk, k=1,…,K

• Clustering: assignment of data points to cluster centers
– Indicator variables rnk=1 if xn assgined to xn, rnk=0 otherwise

• Error criterion: sum of squared distances between each 
data point and assigned cluster center

E ({mk}k=1
K )=∑n∑k

rnk∥xn−mk∥
2



Examples of k-means clustering

• Data uniformly sampled in unit square, running 
k-means with 5, 10, 15, 20 and 25 centers



Minimizing the error function

• Goal find centers mk and assignments rnk to minimize 
the error function

• An iterative algorithm
1) Initialize cluster centers, eg. on randomly selected data points
2) Update assignments rnk for fixed mk 

3) Update centers mk for fixed data assignments rnk

4) If cluster centers changed: return to step 2)
5) Return cluster centers

• Iterations monotonically decrease error function

E ({mk}k=1
K )=∑n∑k

rnk∥xn−mk∥
2



Examples of k-means clustering

• Several iterations with two centers

Error function



Minimizing the error function

• Update assignments rnk for fixed mk 
– Decouples over the data points
– Only one rnk =1, rest zero

– Assign to closest center

• Update centers mk for fixed assignments rnk 
– Decouples over the centers
– Set derivative to zero
– Put center at mean of assigned data points

mk=
∑n

r nk xn

∑n
r nk

E ({mk}k=1
K )=∑n∑k

rnk∥xn−mk∥
2

∑k
rnk∥xn−mk∥

2

∑n
rnk∥xn−mk∥

2

∂ E
∂mk

=2∑n
rnk (xn−m k)=0



Minimizing the error function

• Goal find centers mk and assignments rnk to minimize 
the error function

• An iterative algorithm
1) Initialize cluster centers, somehow
2) Assign xn to closest mk 

3) Update centers mk as center of assigned data points

4) If cluster centers changed: return to step 2)
5) Return cluster centers

• Iterations monotonically decrease error function
– Both steps reduce the error function
– Only a finite number of possible assignments

E ({mk}k=1
K )=∑n∑k

rnk∥xn−mk∥
2



Examples of k-means clustering

• Several iterations with two centers

Error function



What goes wrong with k-means clustering?

• Solution depends heavily on initialization



What goes wrong with k-means clustering?

• Assignment of data points to clusters is 

only based on the distance to the cluster center
– No representation of the shape of the cluster

– Let's fix this by using simple elliptical shapes



Clustering with Gaussian mixture density

• Each cluster represented by Gaussian density
– Center, as in k-means
– Covariance matrix: cluster spread around center

Determinant of
covariance matrix C Quadratic function of

point x and mean m
Data dimension d

p(x )=N (x∣m,C )=(2π)−d /2∣C∣−1/2 exp(−1
2
( x−m)T C−1(x−m))



Mixture of Gaussian (MoG) density

• Mixture density is weighted sum of Gaussians
– Mixing weight: importance of each cluster

• Density has to integrate to 1, so we require

p (x )=∑k=1

K
πk N (x∣mk , Ck)

π k≥0

∑k
π k=1



Clustering with Gaussian mixture density

• Given: data set of N points xn, n=1,…,N

• Find mixture of Gaussians (MoG) that best explains data
– Maximize log-likelihood of fixed data set X w.r.t. parameters of MoG 
– Assume data points are drawn independently from MoG

• MoG clustering very similar to k-means clustering
– In addition to centers also represents cluster shape: cov. matrix
– Also an iterative algorithm to find parameters
– Also sensitive to initialization of paramters

L(θ)=∑n=1

N
log p(xn)=∑n=1

N
log∑k=1

K
π k N (xn∣mk ,Ck)

θ={π k ,mk ,Ck }k=1
K



Assignment of data points to clusters

• As with k-means zn indicates cluster index for xn

• To sample point from MoG
– Select cluster index k with probability given by mixing weight
– Sample point from the k-th Gaussian
– MoG recovered if we marginalize over the unknown cluster index

p(z=k )=πk

p(x∣z=k )=N (x∣mk ,Ck )

p (x )=∑k
p( z=k ) p (x∣z=k )=∑k

πk N (x∣mk ,C k)



Soft assignment of data points to clusters

• Given data point x, infer value of z

p (z=k∣x)=
p (x , z=k )
p (x)

=
p( z=k ) p(x∣z=k )

∑k
p ( z=k ) p(x∣z=k )

=
πk N (x∣mk ,C k)

∑k
π k N (x∣mk ,Ck )



Maximum likelihood estimation of Gaussian

• Given data points xn, n=1,…,N

• Find Gaussian that maximizes data log-likelihood

• Set derivative of data log-likelihood w.r.t. parameters to zero

• Parameters set as data covariance and mean

L(θ)=∑n=1

N
log p(xn)=∑n=1

N
logN (xn∣m,C)=∑n=1

N (−d
2

logπ−1
2

log∣C∣−1
2
(xn−m)T C−1(xn−m))

∂ L(θ)
∂C−1 =∑n=1

N (12 C−1
2
(xn−m)(xn−m)T )=0

C= 1
N
∑n=1

N
(xn−m)(xn−m)T

∂ L(θ)
∂m

=C−1∑n=1

N

(xn−m )=0

m= 1
N
∑n=1

N
xn



Maximum likelihood estimation of MoG
• No simple equation as in the case of a single Gaussian
• Use EM algorithm

– Initialize MoG: parameters or soft-assign
– E-step: soft assign of data points to clusters

– M-step: update the cluster parameters
– Repeat EM steps, terminate if converged 

• Convergence of parameters or assignments

• E-step: compute posterior on z given x: 
• M-step: update Gaussians from data points weighted by posterior

πk=
1
N
∑n=1

N
qnk

mk=
1

N πk
∑n=1

N
qnk xn

Ck=
1

N πk
∑n=1

N
qnk (xn−mk)(xn−mk )

T

qnk=p(z=k∣xn)



Maximum likelihood estimation of MoG

• Example of several EM iterations



Clustering with k-means and MoG
• Assignment:

– K-means: hard assignment, discontinuity at cluster border

– MoG: soft assignment, 50/50 assignment at midpoint

• Cluster representation
– K-means: center only

– MoG: center, covariance matrix, mixing weight

• If all covariance matrices are constrained to be                and 

then EM algorithm = k-means algorithm

• For both k-means and MoG clustering

– Number of clusters needs to be fixed in advance

– Results depend on initialization, no optimal learning algorithms

– Can be generalized to other types of distances or densities

C k=ϵ I ϵ→0



Further reading
• For more details on k-means and mixture of Gaussian learning with 

EM see the following book chapter (recommended !)

• Pattern Recognition and Machine Learning, chapter 9

Chris Bishop, 2006, Springer
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