Overview

- Introduction to local features
- Harris interest points + SSD, ZNCC, SIFT
- Scale & affine invariant interest point detectors
- Evaluation and comparison of different detectors
- Region descriptors and their performance

• Scale invariance is not sufficient for large baseline changes

detected scale invariant region

projected regions, viewpoint changes can locally be approximated by an affine transformation A

Affine invariant regions - Example

Harris/Hessian/Laplacian-Affine

- Initialize with scale-invariant Harris/Hessian/Laplacian points
- Estimation of the affine neighbourhood with the second moment matrix [Lindeberg'94]
- Apply affine neighbourhood estimation to the scaleinvariant interest points [Mikolajczyk & Schmid'02, Schaffalitzky & Zisserman'02]
- Excellent results in a comparison [Mikolajczyk et al.'05]

Affine invariant regions

• Based on the second moment matrix (Lindeberg'94)

$$M = \mu(\mathbf{x}, \sigma_{I}, \sigma_{D}) = \sigma_{D}^{2} G(\sigma_{I}) \otimes \begin{bmatrix} L_{x}^{2}(\mathbf{x}, \sigma_{D}) & L_{x}L_{y}(\mathbf{x}, \sigma_{D}) \\ L_{x}L_{y}(\mathbf{x}, \sigma_{D}) & L_{y}^{2}(\mathbf{x}, \sigma_{D}) \end{bmatrix}$$

• Normalization with eigenvalues/eigenvectors

Affine invariant regions

Isotropic neighborhoods related by image rotation

• Iterative estimation – initial points

• Iterative estimation – iteration #1

• Iterative estimation – iteration #2

• Iterative estimation – iteration #3, #4

Harris-Affine versus Harris-Laplace

Harris-Affine

Harris-Laplace

Harris/Hessian-Affine

Harris-Affine

Hessian-Affine

Harris-Affine

Hessian-Affine

Matches

22 correct matches

Matches

33 correct matches

Maximally stable extremal regions (MSER) [Matas'02]

- Based on the idea of region segmentation
- State of the art results

Maximally stable extremal regions (MSER) [Matas'02]

- Extremal regions: connected components in a thresholded image (all pixels above/below a threshold)
- Maximally stable: minimal change of the component (area) for a change of the threshold, i.e. region remains stable for a change of threshold

Maximally stable extremal regions (MSER)

Examples of thresholded images

high threshold

MSER

Overview

- Introduction to local features
- Harris interest points + SSD, ZNCC, SIFT
- Scale & affine invariant interest point detectors
- Evaluation and comparison of different detectors
- Region descriptors and their performance

Evaluation of interest points

- Quantitative evaluation of interest point/region detectors
 - points / regions at the same relative location and area
- Repeatability rate : percentage of corresponding points
- Two points/regions are corresponding if
 - location error small
 - area intersection large
- [K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
 F. Schaffalitzky, T. Kadir & L. Van Gool '05]

Evaluation criterion

 $repeatability = \frac{\# corresponding \ regions}{\# detected \ regions} \cdot 100\%$

Evaluation criterion

Comparison of affine invariant detectors

Viewpoint change - structured scene

Comparison of affine invariant detectors

Scale change – textured scene

Conclusion - detectors

- Good performance for large viewpoint and scale changes
- Results depend on transformation and scene type, no one best detector
- Detectors are complementary
 - MSER adapted to structured scenes
 - Harris and Hessian adapted to textured scenes
- Performance of the different scale invariant detectors is very similar (Harris-Laplace, Hessian, LoG and DOG)
- Scale-invariant detector sufficient up to 40 degrees of viewpoint change

Overview

- Introduction to local features
- Harris interest points + SSD, ZNCC, SIFT
- Scale & affine invariant interest point detectors
- Evaluation and comparison of different detectors
- Region descriptors and their performance

Region descriptors

- Normalized regions are
 - invariant to geometric transformations except rotation
 - not invariant to photometric transformations

Descriptors

- Regions invariant to geometric transformations except rotation
 - rotation invariant descriptors
 - normalization with dominant gradient direction

- Regions not invariant to photometric transformations
 - invariance to affine photometric transformations
 - normalization with mean and standard deviation of the image patch

Descriptors

Descriptors

- Gaussian derivative-based descriptors
 - Differential invariants (Koenderink and van Doorn'87)
 - Steerable filters (*Freeman and Adelson'91*)
- SIFT (*Lowe'99*)
- Moment invariants [Van Gool et al.'96]
- Shape context [Belongie et al.'02]
- SIFT with PCA dimensionality reduction
- Gradient PCA [Ke and Sukthankar'04]
- SURF descriptor [Bay et al.'08]
- DAISY descriptor [Tola et al.'08, Windler et al'09]

Comparison criterion

- Descriptors should be
 - Distinctive
 - Robust to changes on viewing conditions as well as to errors of the detector
- Detection rate (recall)
 - #correct matches / #correspondences
- False positive rate
 - #false matches / #all matches
- Variation of the distance threshold
 - distance (d1, d2) < threshold

[K. Mikolajczyk & C. Schmid, PAMI'05]

Viewpoint change (60 degrees)

Scale change (factor 2.8)

Conclusion - descriptors

- SIFT based descriptors perform best
- Significant difference between SIFT and low dimension descriptors as well as cross-correlation
- Robust region descriptors better than point-wise descriptors
- Performance of the descriptor is relatively independent of the detector

Available on the internet

- Binaries for detectors and descriptors
 - Building blocks for recognition systems
- Carefully designed test setup
 - Dataset with transformations
 - Evaluation code in matlab
 - Benchmark for new detectors and descriptors

http://lear.inrialpes.fr/software