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• Image classification: assigning a class label to the image

Category recognition

Car: present

Cow: present

Bike: not present

Horse: not presentHorse: not present

…



• Image classification: assigning a class label to the image

Tasks

Car: present

Cow: present

Bike: not present

Horse: not present

Category recognition

Horse: not present

…

• Object localization: define the location and the category

Car Cow
Location

Category



Difficulties: within object variations

Variability: Camera position, Illumination,Internal parameters

Within-object variations



Difficulties: within-class variations



Category recognition

• Robust image description 
– Appropriate descriptors for categories

• Statistical modeling and machine learning for vision• Statistical modeling and machine learning for vision
– Use and validation of appropriate techniques



Image classification

• Given 
Positive training images containing an object class

?

Negative training images that don’t

A test image as to whether it contains the object class or not
• Classify  



Bag-of-features for image classification

• Origin: texture recognition
• Texture is characterized by the repetition of basic elements or 

textons

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Texture recognition

Universal texton dictionary

histogram

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Bag-of-features – Origin: bag-of-words (text)

• Orderless document representation: frequencies of words 
from a dictionary

• Classification to determine document categories
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Bag-of-features for image classification

SVM

Classification

SVM

Extract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

[Nowak,Jurie&Triggs,ECCV’06],  [Zhang,Marszalek,Lazebnik&Schmid,IJCV’07]



Bag-of-features for image classification

SVM

Classification

SVM

Extract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

[Nowak,Jurie&Triggs,ECCV’06],  [Zhang,Marszalek,Lazebnik&Schmid,IJCV’07]

Step 1 Step 2 Step 3



Step 1: feature extraction

• Scale-invariant image regions + SIFT (see lecture 2)
– Affine invariant regions give “too” much invariance
– Rotation invariance for many realistic collections “too” much 

invariance

• Dense descriptors 
– Improve results in the context of categories (for most categories)
– Interest points do not necessarily capture “all” features

• Color-based descriptors

• Shape-based descriptors 



Dense features 

- Multi-scale dense grid: extraction of small overlapping patches at multiple scales
-Computation of  the SIFT descriptor  for each grid cells
-Exp.: Horizontal/vertical step size 6 pixel, scaling factor of 1.2 per level



Bag-of-features for image classification

SVM

Classification

SVM

Extract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

Step 1 Step 2 Step 3



Step 2: Quantization

…



Step 2:Quantization

Clustering



Step 2: Quantization

Visual vocabulary

Clustering



Examples for visual words

Airplanes

Motorbikes

Faces

Wild Cats

Leaves

People

Bikes



Step 2: Quantization

• Cluster descriptors
– K-means 
– Gaussian mixture model

• Assign each visual word to a cluster• Assign each visual word to a cluster
– Hard or soft assignment 

• Build frequency histogram



Hard or soft assignment

• K-means � hard assignment 
– Assign to the closest cluster center 
– Count number of descriptors assigned to a center

• Gaussian mixture model � soft assignment• Gaussian mixture model � soft assignment
– Estimate distance to all centers
– Sum over number of descriptors 

• Represent image by a frequency histogram 



Image representationImage representation
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codewords

• Each image is represented by a vector, typically 1000-4000 dimension,                                                          
normalization with L1 norm
• fine grained – represent model instances
• coarse grained – represent object categories



Bag-of-features for image classification

SVM

Classification

SVM

Extract regions Compute 
descriptors

Find clusters 
and frequencies

Compute distance 
matrix

Step 1 Step 2 Step 3



Step 3: Classification

• Learn a decision rule (classifier) assigning bag-of-
features representations of images to different classes

Zebra

Non-zebra

Decision
boundary

Non-zebra



positive negative

Vectors are histograms, one from each training image

Training data

Train classifier,e.g.SVM



Classifiers

• K-nearest neighbor classifier

• Linear classifier 
– Support Vector Machine

• Non-linear classifier
– Kernel trick
– Explicit lifting



Kernels for bags of features

• Hellinger kernel

• Histogram intersection kernel ∑
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Combining features

•SVM with multi-channel chi-square kernel 

● Channel c is a combination of detector, descriptor

is the chi-square distance between histograms),( HHD● is the chi-square distance between histograms

● is the mean value of the distances between all training sample

● Extension: learning of the weights, for example with Multiple 
Kernel Learning (MKL)
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J. Zhang, M. Marszalek, S. Lazebnik and C. Schmid. Local features and kernels for 
classification of texture and object categories: a comprehensive study, IJCV 2007. 



Multi-class SVMs

• Various direct formulations exist, but they are not widely 
used in practice. It is more common to obtain multi-class 
SVMs by combining two-class SVMs in various ways. 

• One versus all:  • One versus all:  
– Training: learn an SVM for each class versus the others 
– Testing:  apply each SVM to test example and assign to it the 

class of the SVM that returns the highest decision value

• One versus one:
– Training: learn an SVM for each pair of classes 
– Testing: each learned SVM “votes”  for a class to assign to the test 

example 



Why does SVM learning work?

• Learns foreground and background visual words

foreground words – high weightforeground words – high weight

background words – low weight



Localization according to visual word probability
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Illustration

A linear SVM trained from positive and negative window descriptors 

A few of the highest weighed descriptor vector dimensions (= 'PAS + tile')

+  lie on object boundary (= local shape structures common to many training exemplars)



Bag-of-features for image classification

• Excellent results in the presence of background clutter

bikes books building cars people phones trees



Books- misclassified into faces, faces, buildings

Examples for misclassified images

Buildings- misclassified into faces, trees, trees

Cars- misclassified into buildings, phones, phones



Bag of visual words summary 

• Advantages:
– largely unaffected by position and orientation of object in image
– fixed length vector irrespective of number of detections
– very successful in classifying images according to the objects they – very successful in classifying images according to the objects they 

contain

• Disadvantages:
– no explicit use of configuration of visual word positions
– poor at localizing objects within an image



Evaluation of image classification

• PASCAL VOC  [05-10] datasets

• PASCAL VOC 2007
– Training and test dataset available
– Used to report state-of-the-art results – Used to report state-of-the-art results 
– Collected January 2007 from Flickr
– 500 000 images downloaded and random subset selected
– 20 classes
– Class labels per image + bounding boxes
– 5011 training images, 4952 test images 

• Evaluation measure: average precision 



PASCAL 2007 dataset



PASCAL 2007 dataset



Evaluation



Results for PASCAL 2007

• Winner of PASCAL 2007 [Marszalek et al.] : mAP 59.4
– Combination of several different channels (dense + interest points, 

SIFT + color descriptors, spatial grids)
– Non-linear SVM with Gaussian kernel 

• Multiple kernel learning [Yang et al. 2009] : mAP 62.2
– Combination of several features
– Group-based MKL approach

• Combining object localization and classification [Harzallah 
et al.’09] : mAP 63.5
– Use detection results to improve classification



Comparison interest point - dense

AP

(SHarris + Lap) x SIFT 0.452

Image classification results on PASCAL’07 train/val set

MSDense x SIFT 0.489

(SHarris + Lap + MSDense) x SIFT 0.515

Method: bag-of-features + SVM classifier

- Dense is on average a bit better
- IP and dense are complementary, combination improves results 



Spatial pyramid matching

• Add spatial information to the bag-of-features

• Perform matching in 2D image space

[Lazebnik, Schmid & Ponce, CVPR 2006]



Evaluation spatial pyramid

(SH, Lap, MSD) x (SIFT,SIFTC) 
spatial layout

AP

1 0.53

Image classification results on PASCAL’07 train/val set

2x2 0.52

3x1 0.52

1,2x2,3x1 0.54

Spatial layout not dominant for PASCAL’07 dataset
Combination improves average results, i.e., it is appropriate for some 
classes 



Evaluation spatial pyramid

1 3x1

Sheep 0.339 0.256

Image classification results on PASCAL’07 train/val set
for individual categories

Sheep 0.339 0.256

Bird 0.539 0.484

DiningTable 0.455 0.502

Train 0.724 0.745

Results are category dependent!
� Combination helps somewhat



Recent extensions

• Linear Spatial Pyramid Matching Using Sparse Coding for 
Image Classification. J. Yang et al., CVPR’09.
– Local coordinate coding,  linear SVM, excellent results in 2009 

PASCAL challenge PASCAL challenge 

• Learning Mid-level features for recognition, Y. Boureau et al., 
CVPR’10. 
– Use of sparse coding techniques and max pooling



Recent extensions

• Efficient Additive Kernels via Explicit Feature Maps, A. 
Vedaldi and Zisserman, CVPR’10.
– Approximation by linear kernels 

• Improving the Fisher Kernel for Large-Scale Image 
Classification, Perronnin et al., ECCV’10  
– More discriminative descriptor, power normalization, linear SVM 


