Category-specific video summarization

Speaker: Danila Potapov

Joint work with:

Matthijs Douze Zaid Harchaoui Cordelia Schmid

LEAR team, Inria Grenoble Rhône-Alpes

Christmas Colloquium on Computer Vision Moscow, 28.12.2015

Introduction

- size of video data is growing
 - 300 hours of video uploaded on YouTube every minute
- types of video data: user-generated, sports, news, movies

News

Movies

common need for structuring video data

Video summarization

Detecting the most important part in a "Landing a fish" video

Goals

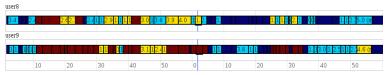
- Recognize events accurately and efficiently
- Identify the most important moments in videos
- Quantitative evaluation of video analysis algorithms

Goals

- Recognize events accurately and efficiently
- Identify the most important moments in videos
- Quantitative evaluation of video analysis algorithms

Goals

- Recognize events accurately and efficiently
- Identify the most important moments in videos
- Quantitative evaluation of video analysis algorithms



- supervised approach to video summarization
- temporal localization at test time
- MED-Summaries dataset for evaluation of video summarization

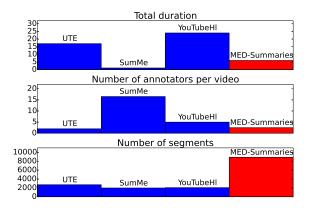
Publication

- D. Potapov, M. Douze, Z. Harchaoui, C. Schmid "Category-specific video summarization", ECCV 2014
- MED-Summaries dataset online

http://lear.inrialpes.fr/people/potapov/med_summaries

MED-Summaries dataset

- evaluation benchmark for video summarization
- subset of TRECVID Multimedia Event Detection 2011 dataset
- 10 categories



Definition

A video summary

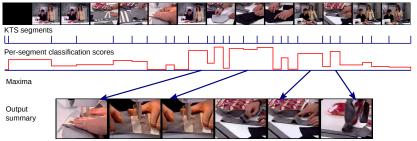
- built from subset of temporal segments of original video
- conveys the most important details of the video

Original video, and its video summary for the category "Birthday party"

Overview of our approach

- produce visually coherent temporal segments
 - no shot boundaries, camera shake, etc. inside segments
- identify important parts
 - category-specific importance: a measure of relevance to the type of event

Input video (category: Working on a sewing project)

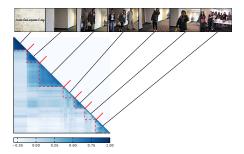


specialized domains

- ► Lu and Grauman [2013], Lee et al. [2012]: summarization of egocentric videos
- Khosla et al. [2013]: keyframe summaries, canonical views for cars and trucks from web images
- Sun et al. [2014] "Ranking Domain-specific Highlights by Analyzing Edited Videos"
 - automatic approach for harvesting data
 - highlight detection vs. temporally coherent summarization
- Gygli et al. [2014] "Creating Summaries from User Videos"
 - cinematic rules for segmentation
 - small set of informative descriptors

Kernel temporal segmentation

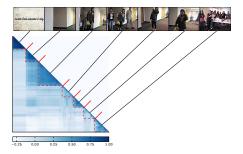
- goals: group similar frames such that semantic changes occur at the boundaries
- kernelized Multiple Change-Point Detection algorithm
 - change-points divide the video into temporal segments
- input: robust frame descriptor (SIFT + Fisher Vector)



Kernel matrix and temporal segmentation of a video

Kernel temporal segmentation

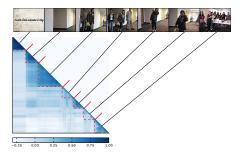
- goals: group similar frames such that semantic changes occur at the boundaries
- kernelized Multiple Change-Point Detection algorithm
 - change-points divide the video into temporal segments
- input: robust frame descriptor (SIFT + Fisher Vector)



Kernel matrix and temporal segmentation of a video

Kernel temporal segmentation

- goals: group similar frames such that semantic changes occur at the boundaries
- kernelized Multiple Change-Point Detection algorithm
 - change-points divide the video into temporal segments
- input: robust frame descriptor (SIFT + Fisher Vector)



Kernel matrix and temporal segmentation of a video

Kernel temporal segmentation algorithm

Input: temporal sequence of descriptors $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{n-1}$ 1. Compute the Gram matrix $A : a_{i,i} = K(\mathbf{x}_i, \mathbf{x}_i)$ 2. Compute cumulative sums of A Compute unnormalized variances $V_{t,t+d} = \sum_{i=t}^{t+d-1} a_{i,i} - \frac{1}{d} \sum_{i=t}^{t+d-1} a_{i,i}$ $t = 0, \ldots, n-1, \quad d = 1, \ldots, n-t$ 4. Do the forward pass of dynamic programming $L_{i,i} = \min_{t=1,...,i-1} (L_{i-1,t} + v_{t,i}), \quad L_{0,i} = v_{0,i}$ $i = 1, \ldots, m_{\max}, \quad j = 1, \ldots, n$ 5. Select the optimal number of change points $m^{\star} = \arg \min_{m=0,...,m_{max}} L_{m,n} + C m (\log (n/m) + 1)$ Find change-point positions by backtracking $t_{m^{\star}} = n, \quad t_{i-1} = \arg\min_{t} (L_{i-1,t} + v_{t,t_i})$ $i = m^{\star}, ..., 1$ **Output:** Change-point positions $t_0, \ldots, t_{m^{\star}-1}$

Supervised summarization

Input video (category: Working on a sewing project)

- Training: train a linear SVM from a set of videos with just video-level class labels
- Testing: score segment descriptors with the classifiers trained on full videos; build a summary by concatenating the most important segments of the video

input video (dategory, working on a sewing project)						
KTS segments						
Per-segment classification scores						
Maxima						
Output summary						

MED-Summaries dataset

- 100 test videos (= 4 hours) from TRECVID MED 2011
- multiple annotators
- 2 annotation tasks:
 - segment boundaries (median duration: 3.5 sec.)
 - segment importance (grades from 0 to 3)
 - 0 = not relevant to the category
 - 3 = highest relevance

Central frame for each segment with importance annotation for category "Changing a vehicle tyre".

Annotation interface

Instructions Category description

Save to server Revert to server version Help											
.5	.5 4.9 (min: 5.7 (min: 3. 11.0 (min: 4.0)) 9	9.0 (min:3.0) 6.8		7.5 (min:	7.5 (min:3.0) 3.9		6.1 (min:2.0 <mark>3.0</mark> (
45	50	55	0	5	10	15	20	25	30	35	40

Current segment (duration: 9.0 sec.)

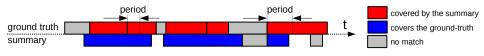
14 / 22

	Training	Validation	Test			
MED dataset						
Total videos	10938	1311	31820			
Total duration, hours	468	57	980			
MED-Summaries						
Annotated videos	—	60	100			
Total duration, hours	—	3	4			
Annotators per video	—	1	2-4			
Total annotated segments (units)		1680	8904			

Evaluation metrics for summarization (1)

- often based on user studies
 - time-consuming, costly and hard to reproduce
- Our approach: rely on the annotation of test videos
- ground truth segments $\{S_i\}_{i=1}^m$
- computed summary {\$\tilde{S}_j\$}_{j=1}^{\tilde{m}}

► coverage criterion: duration $(S_i \cap \widetilde{S}_j) > \alpha P_i$



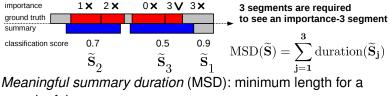
importance ratio for summary S of duration T

$$\mathcal{I}^*(\widetilde{\mathbf{S}}) = rac{\mathcal{I}(\widetilde{\mathbf{S}})}{\mathcal{I}^{\max}(\mathbf{T})}$$

total importance covered by the summary max. possible total importance for a summary of duration **T**

Evaluation metrics for summarization (2)

 a meaningful summary covers a ground-truth segment of importance 3



meaningful summary

Evaluation metric for temporal segmentation

• segmentation *f-score*: match when overlap/union $> \beta$

Baselines

- Users: keep 1 user in turn as a ground truth for evaluation of the others
- SD + SVM: shot detector Massoudi et al. [2006] for segmentation + SVM-based importance scoring
- KTS + Cluster: Kernel Temporal Segmentation + k-means clustering for summarization
 - sort segments by increasing distance to centroid

Our approach

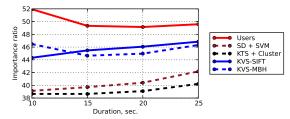
Kernel Video Summarization =

Kernel Temporal Segmentation + SVM-based importance scoring

Results

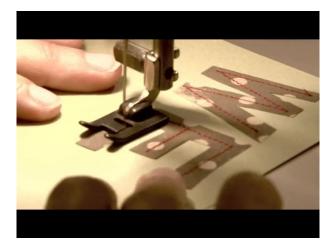
Method	Segmentation	Summarization	
	Avg. f-score	Med. MSD (s)	
	higher better	lower better	
Users	49.1	10.6	
SD + SVM	30.9	16.7	
KTS + Cluster	41.0	13.8	
KVS	41.0	12.5	

Segmentation and summarization performance



Importance ratio for different summary durations

Example summaries



Conclusion

- KVS delivers short and highly-informative summaries, with the most important segments for a given category
- temporal segmentation algorithm produces visually coherent segments
- KVS is trained in a weakly-supervised way
 - does not require segment annotations in the training set
- MED-Summaries dataset for evaluation of video summarization
 - annotations and evaluation code available online

Publication

- D. Potapov, M. Douze, Z. Harchaoui, C. Schmid
 "Category-specific video summarization", ECCV 2014
- MED-Summaries dataset online

http://lear.inrialpes.fr/people/potapov/med_summaries

Thank you for your attention!