Automatic summarization of video data

Presented by Danila Potapov

Joint work with:
Matthijs Douze Zaid Harchaoui Cordelia Schmid

LEAR team, Inria Grenoble

Khronos-Persyvact Spring School 1.04.2015
Definition

A video summary

- built from subset of temporal segments of original video
- conveys the most important details of the video

Original video, and its video summary for the category “Birthday party”
Overview of our approach

▶ produce *visually coherent* temporal segments
 ▶ no shot boundaries, camera shake, etc. inside segments
▶ identify important parts
 ▶ *category-specific importance*: a measure of relevance to the type of event

Input video (category: Working on a sewing project)

KTS segments

Per-segment classification scores

Maxima

Output summary
Contributions

- temporal video segmentation algorithm
- novel approach for supervised video summarization
- *MED-Summaries*: dataset for evaluation of video summarization
Kernel temporal segmentation

- input: robust frame descriptor (SIFT + Fisher Vector)
- kernelized Multiple Change-Point Detection algorithm
- solved exactly with dynamic programming in $O(mn^2)$
- optimization criterion: minimize the sum of within-segment variances
- automatic calibration of the number of change points with a BIC-like regularizer
Supervised summarization

- **Training:** Train a linear SVM from a set of videos with just video-level class labels.
- **Testing:** Score segment descriptors with the classifiers trained on full videos. Build a summary by concatenating the most important segments of the video.
MED-Summaries dataset

- 100 test videos (= 4 hours) from Trecvid MED 2011
- multiple annotators
- 2 annotation tasks:
 - segment boundaries (median duration: 3.5 sec.)
 - segment importance (grades from 0 to 3)

Central frame for each segment with importance annotation for category “Changing a vehicle tyre”.
Evaluation metrics for summarization (1)

- often based on user studies
 - time-consuming, costly and hard to reproduce
- **Our approach**: rely on the annotation of test videos
- ground truth segments \(\{ S_i \}_{i=1}^{m} \)
- computed summary \(\{ \tilde{S}_j \}_{j=1}^{\tilde{m}} \)
- coverage criterion: \(\text{duration}(S_i \cap \tilde{S}_j) > \alpha P_i \)

importance ratio for summary \(\tilde{S} \) of duration \(T \)

\[
\mathcal{I}^*(\tilde{S}) = \frac{\mathcal{I}(\tilde{S})}{\mathcal{I}^{\max}(T)}
\]

- total importance covered by the summary
- max. possible total importance for a summary of duration \(T \)
a meaningful summary covers a ground-truth segment of importance 3

Meaningful summary duration (MSD): minimum length for a meaningful summary

\[MSD(\tilde{\mathcal{S}}) = \sum_{j=1}^{3} \text{duration}(\tilde{\mathcal{S}}_j) \]

segmentation f-score: match when overlap/union \(> \beta \)
Experiments

Baselines

- **Users**: keep 1 user in turn as a ground truth for evaluation of the others
- **SD + SVM**: shot detector (Massoudi, 2006) for segmentation + same importance scoring
- **KTS + Cluster**: same segmentation + k-means clustering for summarization
 - sort segments by increasing distance to centroid

Our approach

- **KVS = KTS + SVM**
Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Segmentation Avg. f-score</th>
<th>Summarization Med. MSD (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users</td>
<td>49.1</td>
<td>10.6</td>
</tr>
<tr>
<td>SD + SVM</td>
<td>30.9</td>
<td>16.7</td>
</tr>
<tr>
<td>KTS + Cluster</td>
<td>41.0</td>
<td>13.8</td>
</tr>
<tr>
<td>KVS</td>
<td>41.0</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Segmentation and summarization performance

Importance ratio for different summary durations

![Importance ratio graph](image-url)
Examples summaries

Birthday party

Our video summary

Uniform sampling

Changing a vehicle tire

Our video summary

Uniform sampling

Parade

Our video summary
Conclusion

- KVS delivers short and highly-informative summaries, with the most important segments for a given category
- KVS is trained in a semi-supervised way
 - does not require segment annotations in the training set
- MED-Summaries — publicly available dataset
 - annotations and evaluation code available online: http://lear.inrialpes.fr/people/potapov/
Thank you for your attention!
References

- MED-Summaries dataset lear.inrialpes.fr/people/potapov/med_summaries.php
- D. Potapov, M. Douze, Z. Harchaoui, C. Schmid
 “Category-specific video summarization”, ECCV 2014

Related work

- M. Gygli et al. “Creating Summaries from User Videos”, ECCV 2014