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Problem to solve

“Doubly” non-differentiable optimization problem:

min
W∈Rd×k

R(W )︸ ︷︷ ︸
non-differentiable loss

+ λ ‖W‖︸ ︷︷ ︸
non-differentiable regularization

The regularization is need to make “robust” the learning task

Motivations

min
W∈Rd×k

‖BW‖1 + λ ‖W‖σ,1

min
W∈Rd×k

‖BW‖∞ + λ ‖W‖σ,1

B Affine application that depend on data.

‖W‖σ,1 1) Nuclear norm, i.e. the sum of singular values of W
2) It is the convex hull of rank(W ) when maxij{Wij} ≤ 1
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Motivation 1
Collaborative filtering - Example: Netflix challenge

Data: for user i and movie j
Xij ∈ {0, 0.5, . . . , 4.5, 5} ratings
I set of indices of observations
Characteristics of collaborative filtering:

large scale: size(X ) ∼ 100 000 × 100 000
sparse data: size(I) < 0.1%

The aim is to guess a future evaluation
New (i , j) 7→ Xij =?

min
W∈Rd×k

1
N

∑
(i,j)∈I

|Wij − Xij |︸ ︷︷ ︸
R(W )

+ λ ‖W‖σ,1

Xij ∈ R, with (i , j) ∈ I: known rates (of movies)

‖·‖σ,1 regularization: enforces low rank solutions

|·| loss: enforces robustness to outliers
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Motivation 2

Multiclass classification - adaptation of SVM
(standard method in machine learning)

Data (xi , yi ) ∈ Rd × Rk : pairs of (picture, label)
Wj ∈ Rd : the j-th column of W

The aim is to guess a future evaluation
New picture x 7→ y =?

min
W∈Rd×k

max{0, 1 + max
r s.t. r 6=y

{

AW︷ ︸︸ ︷
W T

r x −W T
y x}}︸ ︷︷ ︸

R(W ) := H(AW )

+λ ‖W‖σ,1

Figure: H(·)

R loss: minimizes the misclassification error

‖·‖σ,1 regularization: enforces low rank models
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Why nuclear-norm regularizer?
Classes are embedded in a low dimension subspace of the feature space.

xkcd.com
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Existing algorithms for nonsmooth optimization

min
W∈Rd×k

R(W )︸ ︷︷ ︸
non-differentiable loss

+ λ ‖W‖︸ ︷︷ ︸
non-differentiable regularization

General approach: Subgradient algorithms
Special approaches:

reformultaions (e.g. QP, LP)
for special cases, Douglas-Rachford algorithm [Douglas, Rachford 1956]

Both algorithms are not scalable for double nonsmooth problems with ‖·‖σ,1

What if the loss were smooth?

min
W∈Rd×k

R̃(W )︸ ︷︷ ︸
smooth loss

+ λ ‖W‖︸ ︷︷ ︸
nonsmooth regularization

Algorithms for smooth loss are “good” (by convergence)
Proximal gradient algorithms. [Nemirovski, Yudin 1976] [Nesterov 2005]
[Beck, Teboulle, 2009]

Composite conditional gradient algorithm. Efficient iterations for ‖·‖σ,1
[Harchaoui, Juditsky, Nemirovski, 2013]
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Our approach

The idea:
combine existing algorithms with smoothing techniques
“New algorithm = smoothing techniques + algorithm for smooth loss”

This talk:
Mainly about smoothing techniques

In my thesis
Applications to machine learning problems
Real datasets: Imagenet, Movielens
“Optimal” smoothing
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Definition ( Smooth convex function)

The function f is differentiable on its domain

The gradient ∇f is Lipschitz with modulus L, i.e

for any x , y ‖∇f (x)−∇f (y )‖∗ ≤ L ‖x − y‖

where ‖·‖∗ is the dual norm of ‖·‖.

( Think about ‖·‖ = euclidean norm = ‖·‖∗)

Smooth function and gradient
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Smoothing technique 1: convolution
We want to smooth g

gc
γ(x) :=

∫
Rn

g(x − z)µγ(z)dz

where µγ is a probability density function (concentration controlled by γ).

Let µγ be the uniform distribution on a ball or normal distribution. Then a
smooth surrogate gγ has properties

gγ differentiable

the gradient

∇gc
γ(x) =

∫
Rn s(x − z)µγ(z)dz, where s(x − z) ∈ ∂g(x − z)

is Lipschitz with modulus Lγ = O(1/γ)

gγ is uniform approximation of g, i.e. ∃m, ∃M s.t.

g(x)− γm ≤ gγ(x) ≤ g(x) + γM, for all x

[Bertsekas 1978] [Duchi et al. 2012] [Pierucci et al. 2015]

Numerical integration is difficult
Our objective is to obtain gγ easy to evaluate numerically, possibly explicitly
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Examples of explicit expressions in R
Uniform distribution: µγ(z) = 1

2γ I[−1,1]( z
γ

).

Gaussian distribution: µγ(z) = 1
γ
√

2π
exp

(
− z2

2γ2

)
, F : cumulative distribution

Proof. (Of eq. (20)) We just separate the integral into the two subsets where max{g1, g2} is
maximized.

S (max{g1, g2}) (ξ) =

�
max{g1(ξ + z), g2(ξ + z)}µ(z) dz

=

�

ξ+z∈U1

max{g1, g2}(ξ + z)µ(z) dz +

�

ξ+z∈U2

max{g1, g2}(ξ + z)µ(z) dz

=

�

ξ+z∈U1

g1(ξ + z)µ(z) dz +

�

ξ+z∈U2

g2(ξ + z)µ(z) dz

=

�

ξ+z∈U1

g1(ξ + z)iU1
(ξ + z)µ(z) dz +

�

ξ+z∈U2

g2(ξ + z)iU2
(ξ + z)µ(z) dz

=

�
g1(ξ + z)iU1

(ξ + z)µ(z) dz +

�
g2(ξ + z)iU2

(ξ + z)µ(z) dz

= S (g1iU1) + S (g2iU2)

2.4 Examples

In this section where F is the cumulative distribution function of the gaussian distribution µ, i.e.

F (ξ) :=
1√
2π

ξ�

−∞

e−
t2

2 dt.

g(ξ) µ gr(ξ) ∇gr(ξ)

|ξ| uniform

�
r
2 ( ξr )2 + 1

2 if |ξ| ≤ r

|ξ| if |ξ| > r

�
ξ
r if |ξ| ≤ r

sign(ξ) if |ξ| > r

|ξ| gaussian −ξF (− ξ
r ) +

√
2√
π
re−

ξ2

2r2 + ξF ( ξr ) F ( ξr ) − F (− ξ
r )

max{0, ξ} uniform





0 if ξ ≤ −r
r
4 ( ξr + 1)2 if − r < ξ < r

ξ if r ≥ ξ





0 if ξ ≤ −r
ξ
2r + 1

2 if − r < ξ < r

1 if r ≥ ξ

max{0, ξ} gaussian r√
2π

e−
1

2r2 ξ2

+ ξF ( ξr ) F ( ξr )

Table 4: Table of smooth surrogates in R. We compute explicitly (8). F is the cumulative
distribution function of the gaussian distribution. The uniform distribution on [−1, 1] is µr(z) =
1
2r I[−1,1](

z
r ) and the gaussian is µr(z) = 1

r
√

2π
exp

�
− z2

2r2

�
.

Example with uniform distribution

Proposition 2.8. Let µ associated to uniform distribution on B∞(0, 1), i.e. µ = 1
2d χ{�·�∞≤1}.

We smooth g(ξ) = �ξ�1. Then the smooth surrogate and gradient are

gr(ξ) = r

k�

i=1

h
�

ξi

r

�
, (22)

11

-2 -1 0 1 2
0

0.5

1

1.5

2
gaussian
nonsmooth
uniform

-2 -1 0 1 2
0

0.5

1

1.5

2
gaussian
nonsmooth
uniform

g(ξ) = |ξ| g(ξ) = max{0, ξ}
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Examples of explicit expressions in Rn

To smooth in Rn can be complicate (for easy numerical evaluation)
But for a decomposition

g(x) =
n∑

i=1

g(i)(xi ), g(i)defined on R

we find a smooth g(i)
γ for each component and get

gγ(x) =
n∑

i=1

g(i)
γ (xi )

Example: norm `1

g(x) = ‖x‖1 =
∑n

i=1 |xi | to make smooth

µγ(z) = 1
γ

1
2n IB∞ ( z

γ
) uniform distribution on B∞ = {‖·‖∞ ≤ 1}

gγ(x) =
∑k

i=1 γH
( xi
γ

)
, with H(t) =

{
1
2 t2 + 1

2 |t | ≤ 1
|t | |t | > 1
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Smoothing technique 2: infimal convolution

We want to smooth g

g ic
γ (x) := inf

z∈Rn
g(x − z) + ωγ(z)

where ωγ(·) = γω
(
·
γ

)
and ω is a smooth function.

Then a smooth surrogate gγ has properties

gγ differentiable

The gradient

∇gγ(x) = ∇ωγ(x − z?µ(x)), with z?µ(x) optimal in g ic
γ (x),

is Lipschitz with modulus Lγ = O(1/γ)

gγ is uniform approximation of g, i.e. ∃m, ∃M s.t.

g(x)− γm ≤ gγ(x) ≤ g(x) + γM for all x
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Examples of infimal convolution

We retrieve usual smoothing of the literature:

Moreau-Yosida: ωγ(z) = 1
2γ ‖z‖

2 [Moreau 1965]

g ic
γ (x) := inf

z∈Rn
g(z) + 1

2γ ‖z − x‖2
2

Fenchel-type: ωγ = γd∗, with d strongly convex [Nesterov 2007]

g ic
γ (x) := max

z∈Z
〈x ,Az〉 − φ(z)− γd(z)

where A affine function, φ convex, and Z ⊂ Rn compact convex set.

Asymptotic: any smooth ωγ s.t. lim
γ→0+

ωγ(x) = g(x) [Beck, Teboulle 2012]

g ic
γ (x) := ωγ(x)

Our objective is to obtain gγ easy to evaluate numerically, possibly explicitly
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Examples with Fenchel-type smoothing
28 Federico Pierucci et al.

Nonsmooth σ(ξ) Ball Z Proximity ω(z) Smooth surrogate σ(ξ, γ)

|ξ| [−1, 1] 1
2

|·|2
�

1
2γ

ξ2 if |ξ| ≤ γ

|ξ| − γ
2

if |ξ| > γ

|ξ| [−1, 1] (1 − |z|) ln(1 − |z|) + |z| f(ξ, γ) = γe
−
��� ξ
γ

���
+ |ξ| − γ

maxi{ξi, 0} co(∆n ∪ {0}) 1
2
�·�2

�
ξ,πZ

�
ξ
γ

��
− γ

2

���πZ
�

ξ
γ

����
2

maxi{ξi, 0} co(∆n ∪ {0}) 1 +
n�

i=1
zi log(zi) − zi





γ

�
−1 +

n�
i=1

exp (ξi/γ)

�
if ξ

γ
∈ C

γ log

�
n�

i=1
exp (ξi/γ)

�
if ξ

γ
∈ B

1
q

�q
i=1 ξα(i)

�
z
���
�

zi ≤ 1; zi ∈
�
0, 1

q

��
1
2
�·�2

�
ξ,πZ

�
ξ
γ

��
− γ

2

���πZ
�

ξ
γ

����
2

1
q

�q
i=1 ξα(i)

�
z
���
�

zi ≤ 1; zi ∈
�
0, 1

q

�� �n
i=1 zi ln(nzi) Θ(λ∗(ξ, γ)) (solve dual problem)

Table 1 On the first line we obtain the Huber function, third and fourth lines we have the smoothing of the
multiclass hinge, 5th and 6th line: smoothing of the top-q error. C :=

�
s ∈ Rn

���n
i=1 exp (si) ≤ 1

�
and

B :=
�
s ∈ Rn

���n
i=1 exp (si) > 1

�
. We assume that 0 log 0 = 1. α is the permutation that orders in

decreasing order: xα(1) = maxi xi.

Proof We compute the partial derivatives

∂ω

∂zi
= h�

i(zi),
∂ω

∂zi∂zj
=

�
h��(zi) if i = j

0 if i �= j

The the hessian of ω is positive definite and so ω is strongly convex with strong convexity
constant α

Lemma 5 Let h : [a, b] → R strongly convex on [a, b] with constant α. Then ω(z) :=�n
i=1 h(zi) is strongly convex with constant α on [a, b]n and on any convex subset of

[a, b]n.

Proof For any t ∈ [0, 1]; x, y ∈ [a, b]n

ω(tx + (1 − t)y) =

n�

i=1

h(txi + (1 − t)yi)

≤
�

i

�
th(xi) + (1 − t)h(yi) − α

2
t(1 − t) |xi − yi|2

�

= t
�

i

h(xi) + (1 − t)
�

i

h(yi) − α

2
t(1 − t)

�

i

|xi − yi|2

= tω(x) + (1 − t)ω(y) − α

2
t(1 − t) �x − y�2

The inequality is due to the strong convexity of h. Then we have the statement. The strongly
convexity property is valid also on convex subsets.

Lemma 6 Let A be the function defined on [a, b] compound of two segments such that
Aa = Ab = 0 and A(a+b

2 ) = 1. Let h(t) := At(ln(At)− 1). Then h is strongly convex in
[a, b] with constant α = 4

(b−a)2 .

Proof We define t∗ := (a + b)/2. For t �= t∗ we define the derivative
��A�t

�� =: v and
observe that v = 2

b−a . We claim that h is twice differentiable. For t �= t∗ we compute the

B =
{

s ∈ Rn
∣∣∑n

i=1 exp (si ) > 1
}

C =
{

s ∈ Rn
∣∣∑n

i=1 exp (si ) ≤ 1
}

α: permutation that orders in decreasing order

Note:
Statistics and optimization lead to the same surrogate for maxi{xi , 0}
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Algorithms
1 Doubly non-smooth problem to solve:

minimize
W∈Rd×k

F (W ) := R(W ) + λ ‖W‖σ,1

2 Smoothed problem solved with a standard algorithm:

minimize
W∈Rd×k

Rγ(W ) + λ ‖W‖σ,1

3 Convergence + Explicit formula for good γ [Pierucci et al. 2013]

Theorem (Convergence)

If the iterations Wt are generated with the composite conditional gradient
algorithm to solve the smoothed problem, then

F (Wt )−min
x

F (W ) ≤ O(γ) + O
(

1
γt

)
︸ ︷︷ ︸

ε

i.e. for any ε, it exists γ = O(ε) such that we get an ε-optimal solution for the
nonsmooth problem
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Overview

1) Main objective (Statistical learning): have accurate predictions for new
data

fW (x) = y .

2) A modelization for 1) is to solve

min
W

R(W ) + λ ‖W‖σ,1 ,

because to find low rank linear models is a robust technique for movie
recommendation and image classifications.

3) To optimize the problem at 2) we are interested in smoothing techniques.

Our contribution is at the point 3), to find accurate solutions to 2), but we keep
in mind that the ultimate objective is 1).
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Numerical illustration

X with ratings of movies
943(users)× 1682(movies)

I = indices of known entries (1 %)

Yellow = ”nice” movie

Dark red = ”bad” movie

min
W∈Rd×k

1
N

∑
(i,j)∈I

|Wij − Xij |︸ ︷︷ ︸
RI (W )

+ λ ‖W‖σ,1
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Numerical illustration - optimization
A grid of different values for γ ∈ {0.0001, 0.01, 0.1, 0.5, 1, 5, 10, 50}

Each dataset is split into: train, validation, and test sets

On train we run algorithm for each value of γ.

At each iteration we obtain parameters W γ
t and plot RItrain (W γ

t )

Stop criterion = fixed number of iterations.
Simple, but enough to show the effect of smoothing

Plot of
empirical risk
vs iterations
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Numerical illustration - learning

1) X tr Train

2) X val Validation: to chose the best γ, i.e. that makes most accurate
predictions. We plot RIvalidation (W γ

t )

3) X ts Test: To check finally the results we plot RItest (W
γ
t )
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Figure 2: Movielens data - Empirical risk versus iterations.
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Plots of empirical risk RI vs iterations
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Conclusions

This research opens
Choice of γ ⇐ heavy computations

Need of a simple automatic way for calibrating γ

We came up to an “optimal” (in the sense of complexity analysis of the
algorithm) and iteration-dependent

γt = O
(

1√
t

)

In this talk
A way to combine standard algorithms and smooth surrogates
Two techniques of smoothing

Infimal convolution
Convolution

Thank you for your attention
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Pierucci, Harchaoui, Malick 2015 - Smoothing convex functions for
nonsmooth optimization (in preparation)

Pierucci, Harchaoui, Malick 2015 - Conditional gradient algorithms for
doubly non-smooth learning (in preparation)

Pierucci, Harchaoui, Malick 2013 - A smoothing approach for composite
conditional gradient with nonsmooth loss (CAP conférence
Apprentissage)
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