A smoothing approach for Composite Conditional Gradient with nonsmooth loss Applications to collaborative filtering

Federico Pierucci

Joint work with Zaid Harchaoui, Jérôme Malick

Laboratoire Jean Kuntzmann - Inria

NYU - Courant Institute of Mathematical Sciences New York, June 2015

1 Motivating example

- 2 Nonsmooth optimization problem
- 3 Dual smoothing of the loss
- 4 SCCG algorithm
- 5 Experimental results

Recommendation systems

- Related product recommendation ۲ (Amazon)
- Web page ranking (Google) 0
- Social recommendation (Facebook)
- Computational advertising (Yahoo!) ۲
- \rightarrow Movie recommendation (Netflix)

Collaborative Filtering for movie recommendation systems

Data: for user *i* and movie *j* $X_{ij} \in \{0, 0.5, 1, 1.5, 2..., 4.5, 5\}$ ratings

The **aim** is to guess a future evaluation $(i, j) \mapsto X_{ij} = ?$

Characteristics of collaborative filtering:

- large scale: size(X) ~ 100,000 x 100,000
- sparse data: size(I) << total entries of X
- no external data
- method is not content based

Motivating example

2 Nonsmooth optimization problem

Dual smoothing of the loss

Experimental results

Convex optimization problem - Matrix completion

$$\min_{W \in \mathbb{R}^{d \times k}} \quad \frac{1}{N} \sum_{(i,j) \in \mathcal{I}} |W_{ij} - X_{ij}| + \lambda ||W||_{\sigma,1}$$

where nuclear norm $||W||_{\sigma,1}$ is the sum of singular values of W $N = \text{size}(\mathcal{I}) = \text{Number of known entries of the matrix (=known rates)}$

Why ℓ_1 **loss?** Previous work with $\|\cdot\|_2^2$ [Becker Bobin Candes 2009] Here we consider ℓ_1 penality for more robustness to outliers.

Why nuclear-norm regularizer? Movies rates are supposed to be a linear combination of few "movie types" which are deduced observing only the ratings.

Why nuclear-norm regularizer?

Classes are embedded in a low dimension subspace of the feature space.

xkcd.com

Convex optimization problem

 $\underset{W \in \mathbb{R}^{d \times k}}{\text{minimize}} \quad R_{\text{emp}}(W) + \lambda \left\| W \right\|_{\sigma,1} \quad \text{``doubly'' nonsmooth problem}$

- Algorithm: proximal algorithms (not scalable on large scale) [Nemirovski Yudin 1976] [Nesterov 2005]
- Issue: proximal operator related to nuclear-norm, requires computing the complete SVD of W.

Convex optimization problem

 $\underset{W \in \mathbb{R}^{d \times k}}{\text{minimize}} \quad R_{\text{emp}}(W) + \lambda \left\| W \right\|_{\sigma,1} \quad \text{``doubly'' nonsmooth problem}$

- Algorithm: proximal algorithms (not scalable on large scale) [Nemirovski Yudin 1976] [Nesterov 2005]
- Issue: proximal operator related to nuclear-norm, requires computing the complete SVD of W.

What if the loss were smooth?

 $\underset{W \in \mathbb{R}^{d \times k}}{\text{minimize}} \quad R_{\text{emp}}(W) + \lambda \left\| W \right\|_{\sigma, 1} \quad \text{with a smooth } R_{\text{emp}}$

 Algorithm: Composite Conditional Gradient (scalable) [Harchaoui, Juditsky, Nemirovski, 2013]
Requires to compute appropriate top singular vector pairs (an order of

magnitude simpler than computing SVD)

Composite Conditional Gradient with nonsmooth loss does not converge

minimize $R_{emp}(W) + \lambda \|W\|_{\sigma,1}$

Our approach:

to smooth the loss (in a controllable way)

• to use Composite Conditional Gradient algorithms with smooth risk Extension of Composite Conditional Gradient algorithms for doubly nonsmooth learning problems, e.g. collaborative filtering.

1 Motivating example

2 Nonsmooth optimization problem

Smoothing of the loss function

Aim: build a family of smooth surrogates of $R_{\rm emp}$ parametrized by γ

 $\{R_{emp}^{\gamma}\}_{\gamma>0}$ with R_{emp}^{γ} smooth

Assumption:

The empirical risk is the support function of a convex compact set \mathcal{B} in \mathbb{R}^n (e.g. norms, gauge functions) composed with an affine function A

 $R_{emp}(W) = \max_{x \in \mathcal{B}} \langle x, AW \rangle$

Construction of the family using the above structure: Fenchel-type γ -smooth function (adapted from [Nesterov 2005])

Definition (Fenchel-type γ -smooth function)

From Fenchel conjugate:

$$R_{emp}^{\gamma}(W) := \max_{x \in \mathcal{B}} \langle x, AW \rangle - \gamma f(x) =: (\gamma f)^{\mathcal{B}}(AW) = (\gamma f_{|\mathcal{B}})^{*}(AW)$$

 $f: \mathcal{B} \to \mathbb{R}$ convex function

Example of smooth surrogate

$$|s| = \max_{x \in [-1,1]} xs$$
$$(\gamma f)^{\mathcal{B}}(s) = \max_{x \in [-1,1]} xs - \gamma \frac{1}{2} x^2$$

With $f(x) = \frac{1}{2}x^2$, we obtain the Huber function

$$(\gamma f)^{\mathcal{B}}(s) = \begin{cases} \frac{1}{2\gamma} s^2 & \text{if } |s| \le \gamma \\ |s| - \frac{\gamma}{2} & \text{if } |s| > \gamma \end{cases} \qquad \nabla(\gamma f)^{\mathcal{B}}(s) = \begin{cases} 1 & \text{if } s > \gamma \\ \frac{1}{\gamma} s & \text{if } |s| \le \gamma \\ -1 & \text{if } s < -\gamma \end{cases}$$

The parameter γ controls the approximation Small $\gamma \Rightarrow$ better but less smooth approximation Large $\gamma \Rightarrow$ worse but smoother approximation

Properties of the Fenchel-type γ -smooth function

Bounds of Fenchel-type γ -smooth function

• for all $x \in \mathcal{B}$ $m \leq f(x) \leq M \Rightarrow$

for all
$$oldsymbol{s} \in \mathbb{R}^k$$
 $\gamma oldsymbol{m} \leq \sigma(oldsymbol{s}) - (\gamma oldsymbol{f})^{\mathcal{B}}(oldsymbol{s}) \leq \gamma oldsymbol{M}$

• for
$$s \in \mathbb{R}^k$$
 $(\gamma f)^{\mathcal{B}}(s) \stackrel{\gamma \to 0}{\longrightarrow} \sigma(s)$

The smooth surrogate can be made as tight as we want

Smoothness of *B*-conjugate

f strongly convex on $\mathcal B$ (with constant 1) then

- $(\gamma f)^{\mathcal{B}}$ smooth
- $\nabla(\gamma f)^{\mathcal{B}}$ with Lipschitz constant $\frac{1}{\gamma}$ on \mathbb{R}^{k}

We now have the required smoothness to use Conditional Gradient algorithm

1 Motivating example

2 Nonsmooth optimization problem

3 Dual smoothing of the loss

5 Experimental results

We use Composite Conditional Gradient algorithm fom [Harchaoui Juditsky Nemirovski 2013]

SCCG: Smoothed Composite Conditional Gradient

* In theory

Theorem (Complexity bound)

Set an optimization accuracy ϵ . Under some technical assumptions there is a smoothing parameter $\gamma(\epsilon) = O(\epsilon)$ such that after $T(\epsilon) = O(1/\gamma\epsilon)$ we have

 $R_{emp}(W_{T(\epsilon)}) - R_{emp}^{\star} \leq \epsilon$

\star In practice - choice of γ with grid search

- Choose a family of smooth surrogate for loss (λ is fixed)
- Run SCCG for each γ on train set, fixed number of iteraitions
- Choose the best γ that minimizes $\textit{R}_{\rm emp}$ on validation set

Motivating example

2 Nonsmooth optimization problem

3 Dual smoothing of the loss

4 SCCG algorithm

We recall

Original problem (doubly nonsmooth)

$$\underset{W \in \mathbb{R}^{d \times k}}{\text{minimize}} \quad \frac{1}{N} \sum_{(i,j) \in \mathcal{I}} |W_{ij} - X_{ij}| + \lambda ||W||_{\sigma,1}$$

Surrogate problem with smooth loss

n

$$\underset{W \in \mathbb{R}^{d \times k}}{\text{minimize}} \quad \frac{1}{N} \sum_{(i,j) \in \mathcal{I}} \ell^{\gamma} (W_{ij} - X_{ij}) + \lambda \|W\|_{\sigma,1}$$

 $\{W_t\}_t$ sequence of iterates from SCCG algorithm

Computations minimize the smoothed problem and return $\{W_t\}_t$

Data sets

MovieLens	users	movies	observations	sparsity
Small	943	1 682	100 000	6.3%
Medium	3 952	6 040	1 000 209	4.2%
Large	71 564	65 133	10 000 054	0.21%

Results Plot of the values of nonsmooth empirical risk $R_{emp}(W_t)$ for all three datasets [Pierucci, Harchaoui, Malick, Conférence d'Apprentissage Automatique Cap'2014]

Figure 2: Movielens data - Empirical risk versus iterations.

Train set : we obtain sequences $\{W_t\}_t$ for a set of $\gamma \in [0.001, \dots, 50]$ and $\lambda \in [0, \dots, 10^{-2}]$

Validation set: we chose the parameters λ_{best} and γ_{best} which minimize $R_{emp}(W_t)$, at the last iteration

Figure 2: Movielens data - Empirical risk versus iterations.

Conclusion

- Collaborative Filtering with ℓ_1 loss
- Generalizable doubly nonsmooth objective function: nonsmooth loss + norm regularizer
- Algorithm SCCG suitable for large scale
- Efficient calibration of γ
- (To release) Matlab and python code collaborative filtering for recommendation systems

Thank you for your attention

Figure 3: Movielens data - Empirical risk versus time. Related to all γ for the best choice of λ .

Key point: Consider the variable as weighted sum of atoms $a_i \in A$

$$W = \sum_{i \in \mathcal{I}} \theta_i a_i, \quad \theta_i \in \mathbb{R}$$

SCCG - General version

Inputs: $\lambda, \gamma, \epsilon$ Initialize $W_0 = \mathbf{0}$ for $t = 1, ..., T(\epsilon)$ do Call the linear minimization oracle: $a_i = \mathbf{LMO}^{\gamma}(W_t)$ Compute $\min_{\theta_1,...,\theta_t \ge 0} \quad \lambda \sum_{i=1}^t \theta_i + R_{emp}^{\gamma} \left(\sum_{i=1}^t \theta_i a_i \right)$ Current solution $W_t = \sum_{i=1}^t \theta_i a_i$ end for Return $W = \sum_i \theta_i a_i$

Linear minimization operator (replaces the proximal operator)

$$\mathsf{LMO}^{\gamma}(W) \coloneqq \operatorname*{argmin}_{a \in \mathcal{A}} \langle a, \nabla R^{\gamma}_{\mathsf{emp}}(W) \rangle .$$