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Recommendation systems

Related product recommendation
(Amazon)

Web page ranking (Google)

Social recommendation (Facebook)

Computational advertising (Yahoo!)

→ Movie recommendation (Netflix)
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Collaborative Filtering for movie recommendation systems

Data: for user i and movie j
Xij ∈ {0, 0.5, 1, 1.5, 2 . . . , 4.5, 5} ratings

The aim is to guess a future evaluation
(i , j) 7→ Xij =?

Characteristics of collaborative filtering:

large scale: size(X ) ∼ 100, 000 x 100, 000

sparse data: size(I) << total entries of X

no external data

method is not content based
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Convex optimization problem - Matrix completion

min
W∈Rd×k

1
N

∑
(i,j)∈I

|Wij − Xij | + λ ‖W‖σ,1

where nuclear norm ‖W‖σ,1 is the sum of singular values of W
N = size(I) = Number of known entries of the matrix (=known rates)

Why `1 loss? Previous work with ‖·‖2
2 [Becker Bobin Candes 2009]

Here we consider `1 penality for more robustness to outliers.

Why nuclear-norm regularizer? Movies rates are supposed to be a linear
combination of few ”movie types” which are deduced observing only the
ratings.
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Why nuclear-norm regularizer?
Classes are embedded in a low dimension subspace of the feature space.

xkcd.com
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Convex optimization problem

minimize
W∈Rd×k

Remp(W ) + λ ‖W‖σ,1 “doubly” nonsmooth problem

Algorithm: proximal algorithms (not scalable on large scale) [Nemirovski
Yudin 1976] [Nesterov 2005]

Issue: proximal operator related to nuclear-norm, requires computing the
complete SVD of W .

What if the loss were smooth?

minimize
W∈Rd×k

Remp(W ) + λ ‖W‖σ,1 with a smooth Remp

Algorithm: Composite Conditional Gradient (scalable) [Harchaoui,
Juditsky, Nemirovski, 2013]
Requires to compute appropriate top singular vector pairs (an order of
magnitude simpler than computing SVD)
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Composite Conditional Gradient with nonsmooth loss does not
converge

level sets of Remp

w1

w2

Possible choices uvT for descent direction

algorithm stuck at (0,0)

minimize Remp(W ) + λ ‖W‖σ,1

Our approach:

to smooth the loss (in a controllable way)

to use Composite Conditional Gradient algorithms with smooth risk

Extension of Composite Conditional Gradient algorithms for doubly
nonsmooth learning problems, e.g. collaborative filtering.
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Smoothing of the loss function

Aim: build a family of smooth surrogates of Remp parametrized by γ

{Rγ
emp}γ>0 with Rγ

emp smooth

Assumption:
The empirical risk is the support function of a convex compact set B in Rn

(e.g. norms, gauge functions) composed with an affine function A

Remp(W ) = max
x∈B
〈x ,AW 〉

Construction of the family using the above structure: Fenchel-type
γ-smooth function (adapted from [Nesterov 2005])

Definition (Fenchel-type γ-smooth function )

From Fenchel conjugate:

Rγ
emp(W ) := max

x∈B
〈x ,AW 〉 − γf (x) =: (γf )B(AW ) = (γf|B)∗(AW )

f : B → R convex function
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Example of smooth surrogate

γ

|·|

(γf )B
γ/2

With f (x) = 1
2 x2, we obtain the Huber function

|s| = max
x∈[−1,1]

xs

(γf )B(s) = max
x∈[−1,1]

xs − γ 1
2

x2

(γf )B(s) =
{

1
2γ s2 if |s| ≤ γ
|s| − γ

2 if |s| > γ
∇(γf )B(s) =


1 if s > γ
1
γ

s if |s| ≤ γ
−1 if s < −γ

The parameter γ controls the approximation
Small γ ⇒ better but less smooth approximation
Large γ ⇒ worse but smoother approximation
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Properties of the Fenchel-type γ-smooth function

Bounds of Fenchel-type γ-smooth function

for all x ∈ B m ≤ f (x) ≤ M ⇒

for all s ∈ Rk γm ≤ σ(s)− (γf )B(s) ≤ γM

for s ∈ Rk (γf )B(s)
γ→0−→ σ(s)

The smooth surrogate can be made as tight as we want

Smoothness of B-conjugate

f strongly convex on B (with constant 1)
then

(γf )Bsmooth

∇(γf )B with Lipschitz constant 1
γ

on Rk

We now have the required smoothness to use Conditional Gradient algorithm
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We use Composite Conditional Gradient algorithm fom [Harchaoui
Juditsky Nemirovski 2013]

SCCG: Smoothed Composite Conditional Gradient

Inputs: λ, γ, ε
Initialize W0 = 0
for t = 1, . . . ,T (ε) do

Call the oracle: (ut , vt ) = argmin
‖u‖2=‖v‖2=1

〈∇Rγ
emp(Wt−1), uv>〉

Compute

min
θ1,...,θt≥0

Rγ
emp


t∑

i=1

θiuivT
i︸ ︷︷ ︸

Wt

 + λ
t∑

i=1

θi

Current solution Wt =
∑t

i=1 θiuivT
i

end for
Return W
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? In theory

Theorem (Complexity bound)

Set an optimization accuracy ε. Under some technical assumptions there is a
smoothing parameter γ(ε) = O(ε) such that after T (ε) = O(1/γε) we have

Remp(WT (ε))− R?
emp ≤ ε

? In practice - choice of γ with grid search

Choose a family of smooth surrogate for loss (λ is fixed)

Run SCCG for each γ on train set, fixed number of iteraitions

Choose the best γ that minimizes Remp on validation set
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We recall

Original problem (doubly nonsmooth)

minimize
W∈Rd×k

1
N

∑
(i,j)∈I

|Wij − Xij | + λ ‖W‖σ,1

Surrogate problem with smooth loss

minimize
W∈Rd×k

1
N

∑
(i,j)∈I

`γ(Wij − Xij ) + λ ‖W‖σ,1

{Wt}t sequence of iterates from SCCG algorithm

Computations minimize the smoothed problem and return {Wt}t

Data sets
MovieLens users movies observations sparsity
Small 943 1 682 100 000 6.3%
Medium 3 952 6 040 1 000 209 4.2%
Large 71 564 65 133 10 000 054 0.21%
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Results Plot of the values of nonsmooth empirical risk Remp(Wt ) for all three
datasets [Pierucci, Harchaoui, Malick, Conférence d’Apprentissage
Automatique Cap’2014 ]
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Figure 2: Movielens data - Empirical risk versus iterations.
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Train set : we obtain sequences {Wt}t for a set of γ ∈ [0.001, . . . , 50] and
λ ∈ [0, . . . , 10−2]

Validation set: we chose the parameters λbest and γbest which minimize
Remp(Wt ), at the last iteration
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Figure 2: Movielens data - Empirical risk versus iterations.
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Conclusion

Collaborative Filtering with `1 loss

Generalizable doubly nonsmooth objective function:
nonsmooth loss + norm regularizer

Algorithm SCCG suitable for large scale

Efficient calibration of γ

(To release) Matlab and python code - collaborative filtering for
recommendation systems

Thank you for your attention
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Figure 3: Movielens data - Empirical risk versus time. Related to all γ for the best choice of λ.
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Key point: Consider the variable as weighted sum of atoms ai ∈ A

W =
∑
i∈I

θiai , θi ∈ R

SCCG - General version

Inputs: λ, γ, ε
Initialize W0 = 0
for t = 1, . . . ,T (ε) do

Call the linear minimization oracle: ai = LMOγ(Wt )

Compute
min

θ1,...,θt≥0
λ

t∑
i=1

θi + Rγ
emp

(
t∑

i=1

θiai

)
Current solution Wt =

∑t
i=1 θiai

end for
Return W =

∑
i θiai

Linear minimization operator (replaces the proximal operator)

LMOγ(W ) := argmin
a∈A

〈a,∇Rγ
emp(W )〉 .
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