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Introduction

Algorithm NESTA

Optimization based on Nesterov’s method

Compressed sensing applications (e.g. sparse recovery, Total Variation
minimization)

Accurate retrieval of the signal

Large scale - e.g. x ∈ Rn with, n = 262 144

4

efficiency there as well. Finally, we conclude with Section 7 discussing further exten-
sions, which would address an even wider range of linear inverse problems.

Notations. Before we begin, it is best to provide a brief summary of the notations
used throughout the paper. As usual, vectors are written in small letters and matrices
in capital letters. The ith entry of a vector x is denoted x[i] and the (i, j)th entry of
the matrix A is A[i, j].

It is convenient to introduce some common optimization problems that will be
discussed throughout. Solving sparse reconstruction problems can be approached via
several different equivalent formulations. In this paper, we particularly emphasize the
quadratically constrained �1-minimization problem

(BP�) minimize �x��1
subject to �b − Ax��2 ≤ �,

(1.2)

where � quantifies the uncertainty about the measurements b as in the situation where
the measurements are noisy. This formulation is often preferred because a reasonable
estimate of � may be known. A second frequently discussed approach considers solving
this problem in Lagrangian form, i.e.

(QPλ) minimize λ�x��1 +
1

2
�b − Ax�2

�2 , (1.3)

and is also known as the basis pursuit denoising problem (BPDN) [18]. This problem
is popular in signal and image processing because of its loose interpretation as a
maximum a posteriori estimate in a Bayesian setting. In statistics, the same problem
is more well-known as the lasso [49]

(LSτ ) minimize �b − Ax��2
subject to �x��1 ≤ τ.

(1.4)

Standard optimization theory [47] asserts that these three problems are of course
equivalent provided that �,λ, τ obey some special relationships. With the exception
of the case where the matrix A is orthogonal, this functional dependence is hard
to compute [51]. Because it is usually more natural to determine an appropriate �
rather than an appropriate λ or τ , the fact that NESTA solves (BP�) is a significant
advantage. Further, note that theoretical equivalence of course does not mean that all
three problems are just as easy (or just as hard) to solve. For instance, the constrained
problem (BP�) is harder to solve than (QPλ), as discussed in Section 5.2. Therefore,
the fact that NESTA turns out to be competitive with algorithms that only solve
(QPλ) is quite remarkable.

2. Nesterov’s method.

2.1. Minimizing smooth convex functions. In [42, 41], Nesterov introduces
a subtle algorithm to minimize any smooth convex function f on the convex set Qp,

min
x∈Qp

f(x). (2.1)

We will refer to Qp as the primal feasible set. The function f is assumed to be
differentiable and its gradient ∇f(x) is Lipschitz and obeys

||∇f(x) −∇f(y)||�2 ≤ L�x − y��2 ; (2.2)

A consequence of these properties is that NESTA may be interest of
researchers working on signal recovery or undersampled data
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Problem to solve with NESTA:
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‖·‖`1
→ a sparse solution; ε2 = estimated bound on noise

where
b = Ax0 + z: collected data
x0: signal to recover
A : sampling matrix
z : noise

source: G. Peyré OSL2013
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Nesterov’s method

min
x∈Qp

f (x)

f : smooth, i.e. differentiable with Lipschitz gradient
Qp : convex set

Lipschitz gradient of f , with lipschitz constatant L:

∀x , y ∈ Qp ‖∇f (y)−∇f (x)‖`2
≤ L ‖y − x‖`2

[ Y. NESTEROV, Smooth minimization of nonsmooth functions, Math. Program. (2005)]

Becker & al. 2009 Nesta: a fast and accurate first-order method for sparse recovery 4 / 16
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in short, L is an upper bound on the Lipschitz constant. With these assumptions,
Nesterov’s algorithm minimizes f over Qp by iteratively estimating three sequences
{xk}, {yk} and {zk} while smoothing the feasible set Qp. The algorithm depends on
two scalar sequences {αk} and {τk} discussed below, and takes the following form:

Initialize x0. For k ≥ 0,

1. Compute ∇f(xk).

2. Compute yk:

yk =argminx∈Qp

L
2 �x − xk�2

�2
+ �∇f(xk), x − xk�.

3. Compute zk:

zk =argminx∈Qp

L
σp

pp(x) +
�k

i=0 αi�∇f(xi), x − xi�.

4. Update xk:

xk =τkzk + (1 − τk)yk.

Stop when a given criterion is valid.

At step k, yk is the current guess of the optimal solution. If we only performed
the second step of the algorithm with yk−1 instead of xk, we would obtain a standard
first-order technique with convergence rate O(1/k).

The novelty is that the sequence zk “keeps in mind” the previous iterations since
Step 3 involves a weighted sum of already computed gradients. Another aspect of
this step is that—borrowing ideas from smoothing techniques in optimization [4]—it
makes use of a prox-function pp(x) for the primal feasible set Qp. This function is
strongly convex with parameter σp; assuming that pp(x) vanishes at the prox-center
xc

p = argminx pp(x), this gives

pp(x) ≥ σp

2
�x − xc

p�2
�2 .

The prox-function is usually chosen so that xc
p ∈ Qp, thus discouraging zk from moving

too far away from the center xc
p.

The point xk, at which the gradient of f is evaluated, is a weighted average
between zk and yk. In truth, this is motivated by a theoretical analysis [43, 50],
which shows that if αk = 1/2(k +1) and τk = 2/(k +3), then the algorithm converges
to

x� = argmin
x∈Qp

f(x)

with the convergence rate

f(yk) − f(x�) ≤ 4Lpp(x
�)

(k + 1)2σp
. (2.3)

pp: continuous and strongly convex , pp(x) ≥
σp

2

∥∥x − xc
p

∥∥2
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What if
f

is nonsmooth?
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Smoothing

We can rewrite the norm as support function
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3.1. NESTA. We wish to solve (1.2), i.e. minimize �x��1 subject to �b−Ax��2 ≤
�, where A ∈ Rm×n is singular (m < n).

In this section, we assume that A∗A is an orthogonal projector, i.e. the rows of A
are orthonormal. This is often the case in compressed sensing applications where it
is common to take A as a submatrix of a unitary transformation which admits a fast
algorithm for matrix-vector products; special instances include the discrete Fourier
transform, the discrete cosine transform, the Hadamard transform, the noiselet trans-
form, and so on. Basically, collecting incomplete structured orthogonal measurements
is the prime method for efficient data acquisition in compressed sensing.

Recall that the �1 norm is of the form

�x��1 = max
u∈Qd

�u, x�,

where the dual feasible set is the �∞ ball

Qd = {u : �u�∞ ≤ 1}.

Therefore, a natural smooth approximation to the �1 norm is

fµ(x) = max
u∈Qd

�u, x� − µ pd(u),

where pd(u) is our dual prox-function. For pd(u), we would like a strongly convex
function, which is known analytically and takes its minimum value (equal to zero) at
some uc

d ∈ Qd. It is also usual to have pd(u) separable. Taking these criteria into
account, a convenient choice is pd(u) = 1

2�u�2
�2

whose strong convexity parameter σd

is equal to 1. With this prox-function, fµ is the well-known Huber function and ∇fµ

is Lipschitz with constant 1/µ.1 In particular, ∇fµ(x) is given by

∇fµ(x)[i] =

�
µ−1 x[i], if |x[i]| < µ,

sgn(x[i]), otherwise.
(3.1)

Following Nesterov, we need to solve the smooth constrained problem

min
x∈Qp

fµ(x), (3.2)

where Qp = {x : �b − Ax��2 ≤ �}. Once the gradient of fµ at xk is computed, Step 2
and Step 3 of NESTA consist in updating two auxiliary iterates, namely, yk and zk.

3.2. Updating yk. To compute yk, we need to solve

yk = argmin
x∈Qp

Lµ

2
�xk − x�2

�2 + �∇fµ(xk), x − xk�, (3.3)

where xk is given. The Lagrangian for this problem is of course

L(x,λ) =
Lµ

2
�xk − x�2

�2 +
λ

2

�
�b − Ax�2

�2 − �2
�

+ �∇fµ(xk), x − xk�, (3.4)

1In the case of total-variation minimization in which f(x) = �x�TV , fµ is not a known function.

where
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Theorem

If pd is continuous and strongly convex on Qd , then fµ is smooth.

Then it is possible to apply Nesterov method to fµ

[ Y. NESTEROV, Smooth minimization of nonsmooth functions, Math. Program. (2005)]
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NESTA

NESTA = Nesterov method + smoothing

Convergence of NESTA:
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for some vector c. Thus with PQp
the projector onto Qp, yk = PQp

(xk −L−1
µ c). Now

two observations are in order.

1. Computing yk is similar to a projected gradient step as the Lipschitz constant
L−1

µ plays the role of the step size. Since Lµ is proportional to µ−1, the larger µ, the
larger the step-size, and the faster the convergence. This also applies to the sequence
{zk}.

2. For a fixed value of µ, the convergence rate of the algorithm obeys

fµ(yk) − fµ(x�
µ) ≤ 2Lµ�x�

µ − x0�2
�2

k2
,

where x�
µ is the optimal solution to min fµ over Qp. On the one hand, the convergence

rate is proportional to µ−1, so a large value of µ is beneficial. On the other hand,
choosing a good guess x0 close to x�

µ provides a low value of pp(x
�
µ) = 1

2�x�
µ − x0�2

�2
,

also improving the rate of convergence. Warm-starting with x0 from a previous solve
not only changes the starting point of the algorithm, but it beneficially changes pp as
well.

These two observations motivate the following continuation-like algorithm:

Initialize µ0, x0 and the number of continuation steps T . For t ≥ 1,

1. Apply Nesterov’s algorithm with µ = µ(t) and x0 = xµ(t−1) .

2. Decrease the value of µ: µ(t+1) = γµ(t) with γ < 1.

Stop when the desired value of µf is reached.

This algorithm iteratively finds the solutions to a succession of problems with de-
creasing smoothing parameters µ0 > · · · > µf = γT µ0 producing a sequence of—
hopefully— finer estimates of x�

µf
; these intermediate solutions are cheap to compute

and provide a string of convenient first guess for the next problem. In practice, they
are solved with less accuracy, making them even cheaper to compute.

The value of µf is based on a desired accuracy as explained in Section 3.5. As
for an initial value µ0, (3.1) makes clear that the smoothing parameter plays a role
similar to a threshold. A first choice may then be µ0 = 0.9�A∗b��∞ .

We illustrate the good behavior of the continuation-inspired algorithm by apply-
ing NESTA with continuation to solve a sparse reconstruction problem from partial
frequency data. In this series of experiments, we assess the performance of NESTA
while the dynamic range of the signals to be recovered increases.

The signals x are s-sparse signals—that is, have exactly s nonzero components—
of size n = 4096 and s = m/40. Put Λ for the indices of the nonzero entries of x; the
amplitude of each nonzero entry is distributed uniformly on a logarithmic scale with
a fixed dynamic range. Specifically, each nonzero entry is generated as follows:

x[i] = η1[i]10αη2[i], (3.14)

where η1[i] = ±1 with probability 1/2 (a random sign) and η2[i] is uniformly dis-
tributed in [0, 1]. The parameter α quantifies the dynamic range. Unless specified
otherwise, a dynamic range of d dB means that α = d/20 (since for large signals α

k : iteration counter
x?µ := argminx∈Qp

fµ(x)
Lµ : Lipschitz constant of fµ
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The parameter µ controls the smoothing
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µ

‖·‖1

fµ
µ/2

Source: Pierucci, Harchaoui, Malick, tech. report 2014

Small µ→ good approximation, slow convergence
Large µ→ worst approximation, faster convergence
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Why don’t we
start with a

large µ

and continue with a
smaller µ

?
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NESTA “with continuation”

11

for some vector c. Thus with PQp
the projector onto Qp, yk = PQp

(xk −L−1
µ c). Now

two observations are in order.

1. Computing yk is similar to a projected gradient step as the Lipschitz constant
L−1

µ plays the role of the step size. Since Lµ is proportional to µ−1, the larger µ, the
larger the step-size, and the faster the convergence. This also applies to the sequence
{zk}.

2. For a fixed value of µ, the convergence rate of the algorithm obeys

fµ(yk) − fµ(x�
µ) ≤ 2Lµ�x�

µ − x0�2
�2

k2
,

where x�
µ is the optimal solution to min fµ over Qp. On the one hand, the convergence

rate is proportional to µ−1, so a large value of µ is beneficial. On the other hand,
choosing a good guess x0 close to x�

µ provides a low value of pp(x
�
µ) = 1

2�x�
µ − x0�2

�2
,

also improving the rate of convergence. Warm-starting with x0 from a previous solve
not only changes the starting point of the algorithm, but it beneficially changes pp as
well.

These two observations motivate the following continuation-like algorithm:

Initialize µ0, x0 and the number of continuation steps T . For t ≥ 1,

1. Apply Nesterov’s algorithm with µ = µ(t) and x0 = xµ(t−1) .

2. Decrease the value of µ: µ(t+1) = γµ(t) with γ < 1.

Stop when the desired value of µf is reached.

This algorithm iteratively finds the solutions to a succession of problems with de-
creasing smoothing parameters µ0 > · · · > µf = γT µ0 producing a sequence of—
hopefully— finer estimates of x�

µf
; these intermediate solutions are cheap to compute

and provide a string of convenient first guess for the next problem. In practice, they
are solved with less accuracy, making them even cheaper to compute.

The value of µf is based on a desired accuracy as explained in Section 3.5. As
for an initial value µ0, (3.1) makes clear that the smoothing parameter plays a role
similar to a threshold. A first choice may then be µ0 = 0.9�A∗b��∞ .

We illustrate the good behavior of the continuation-inspired algorithm by apply-
ing NESTA with continuation to solve a sparse reconstruction problem from partial
frequency data. In this series of experiments, we assess the performance of NESTA
while the dynamic range of the signals to be recovered increases.

The signals x are s-sparse signals—that is, have exactly s nonzero components—
of size n = 4096 and s = m/40. Put Λ for the indices of the nonzero entries of x; the
amplitude of each nonzero entry is distributed uniformly on a logarithmic scale with
a fixed dynamic range. Specifically, each nonzero entry is generated as follows:

x[i] = η1[i]10αη2[i], (3.14)

where η1[i] = ±1 with probability 1/2 (a random sign) and η2[i] is uniformly dis-
tributed in [0, 1]. The parameter α quantifies the dynamic range. Unless specified
otherwise, a dynamic range of d dB means that α = d/20 (since for large signals α

Convergence of NESTA with continuation
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Figure 3.2. Total number of iterations required for convergence with a varying number of
continuation steps and for different values of the dynamic range.

factor of 8. As this factor is likely to increase exponentially with the dynamic range
(when expressed in dB), NESTA with continuation seems to be a better candidate for
solving sparse reconstruction problems with high accuracy.

Interestingly, the behavior of NESTA with continuation seems to be quite stable:
increasing the number of continuation steps does not increase dramatically the number
of iterations. In practice, although the ideal T is certainly signal dependent, we have
observed that choosing T ∈ {4, 5, 6} leads to reasonable results.

3.7. Some theoretical considerations. The convergence of NESTA with and
without continuation is straightforward. The following theorem states that each con-
tinuation step with µ = µ(t) converges to x�

µ. Global convergence is proved by applying
this theorem to t = T .

Theorem 3.1. At each continuation step t, limk→∞ yk = x�
µ(t) , and

fµ(t)(yk) − fµ(t)(x�
µ(t)) ≤

2Lµ(t)�x�
µ(t) − xµ(t−1)�2

�2

k2
.

Proof. Immediate by using [43, Theorem 2].

As mentioned earlier, continuation may be valuable for improving the speed of
convergence. Let each continuation step t stop after N (t) iterations with

N (t) =

�
2Lµ(t)

γtδ0
�x�

µ(t) − x�
µ(t−1)��2

so that we have

fµ(t)(yk) − fµ(t)(x�
µ(t)) ≤ γtδ0,
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efficiency there as well. Finally, we conclude with Section 7 discussing further exten-
sions, which would address an even wider range of linear inverse problems.

Notations. Before we begin, it is best to provide a brief summary of the notations
used throughout the paper. As usual, vectors are written in small letters and matrices
in capital letters. The ith entry of a vector x is denoted x[i] and the (i, j)th entry of
the matrix A is A[i, j].

It is convenient to introduce some common optimization problems that will be
discussed throughout. Solving sparse reconstruction problems can be approached via
several different equivalent formulations. In this paper, we particularly emphasize the
quadratically constrained �1-minimization problem

(BP�) minimize �x��1
subject to �b − Ax��2 ≤ �,

(1.2)

where � quantifies the uncertainty about the measurements b as in the situation where
the measurements are noisy. This formulation is often preferred because a reasonable
estimate of � may be known. A second frequently discussed approach considers solving
this problem in Lagrangian form, i.e.

(QPλ) minimize λ�x��1 +
1

2
�b − Ax�2

�2 , (1.3)

and is also known as the basis pursuit denoising problem (BPDN) [18]. This problem
is popular in signal and image processing because of its loose interpretation as a
maximum a posteriori estimate in a Bayesian setting. In statistics, the same problem
is more well-known as the lasso [49]

(LSτ ) minimize �b − Ax��2
subject to �x��1 ≤ τ.

(1.4)

Standard optimization theory [47] asserts that these three problems are of course
equivalent provided that �,λ, τ obey some special relationships. With the exception
of the case where the matrix A is orthogonal, this functional dependence is hard
to compute [51]. Because it is usually more natural to determine an appropriate �
rather than an appropriate λ or τ , the fact that NESTA solves (BP�) is a significant
advantage. Further, note that theoretical equivalence of course does not mean that all
three problems are just as easy (or just as hard) to solve. For instance, the constrained
problem (BP�) is harder to solve than (QPλ), as discussed in Section 5.2. Therefore,
the fact that NESTA turns out to be competitive with algorithms that only solve
(QPλ) is quite remarkable.

2. Nesterov’s method.

2.1. Minimizing smooth convex functions. In [42, 41], Nesterov introduces
a subtle algorithm to minimize any smooth convex function f on the convex set Qp,

min
x∈Qp

f(x). (2.1)

We will refer to Qp as the primal feasible set. The function f is assumed to be
differentiable and its gradient ∇f(x) is Lipschitz and obeys

||∇f(x) −∇f(y)||�2 ≤ L�x − y��2 ; (2.2)

Relative error on objective function
‖x‖`1

−‖x?‖
`1

‖x?‖`1

Accuracy of optimal solution
`∞error := ‖x − x?‖`∞

17

Table 4.2
NESTA’s accuracy. The errors and number of function calls NA have the same meaning as in

Table 4.1.

Method �1-norm Rel. error �1-norm �∞ error NA

FISTA 5.71539e+7
NESTA µ = 0.2 5.71614e+7 1.3e-4 3.8 659
NESTA µ = 0.02 5.71547e+7 1.4e-5 0.96 1055
NESTA µ = 0.002 5.71540e+7 1.6e-6 0.64 1537

in the forthcoming comparisons from this section and the next.

4.3. The smoothing parameter µ and NESTA’s accuracy. By definition,
µ fixes the accuracy of the approximation fµ to the �1 norm and, therefore, NESTA’s
accuracy directly depends on this parameter. We now propose to assess the accuracy
of NESTA for different values of µ. The problem sizes are as before, namely, n =
262,144 and m = n/8, except that now the unknown x0 is far less sparse with s = m/5.
The standard deviation of the additive Gaussian white noise is also higher, and we
set σ = 0.1.

Because of the larger value of s and σ, it is no longer possible to have an analytic
solution from (4.3). Instead, we use FISTA to compute a reference solution xF , using
20,000 iterations and with λ = 0.0685, which gives �b − AxF �2

�2
� (m + 2

√
2m)σ2.

To be sure that FISTA’s solution is very close to the optimal solution, we check that
the KKT stationarity condition is nearly verified. If I� is the support of the optimal
solution x�, this condition reads

A[I�]
∗(b − Ax�) = λ sgn(x�[I�]),

�A[Ic
�]

∗(b − Ax�)��∞ ≤ λ.

Now define I to be the support of xF . Then, here, xF obeys

�A[I]∗(b − AxF ) − λ sgn(xF [I])��∞ = 2.6610−10λ,

�A[Ic]∗(b − AxF )��∞ ≤ 0.99λ.

This shows that xF is extremely close to the optimal solution.
NESTA is run with T = 5 continuation steps for three different values of µ ∈

{0.2, 0.02, 0.002} (the tolerance δ is set to 10−6, 10−7 and 10−8 respectively). Fig-
ure 4.2 plots the solutions given by NESTA versus the “optimal solution” xF . Clearly,
when µ decreases, the accuracy of NESTA increases just as expected. More precisely,
notice in Table 4.2 that for this particular experiment, decreasing µ by a factor of 10
gives about 1 additional digit of accuracy on the optimal value.

According to this table, µ = 0.02 seems a reasonable choice to guarantee an
accurate solution since one has between 4 and 5 digits of accuracy on the optimal
value, and since the �∞ error is lower than 1. Observe that this value separates the
nonzero entries from the noise floor (when σ = 0.01). In the extensive numerical
experiments of Section 5, we shall set µ = 0.02 and δ = 10−7 as default values.

5. Numerical comparisons. This section presents numerical experiments com-
paring several state-of-the-art optimization techniques designed to solve (1.2) or (1.3).
To be as fair as possible, we propose comparisons with methods for which software is
publicly available online. To the best of our knowledge, such extensive comparisons
are currently unavailable. Moreover, whereas publications sometimes test algorithms

x?: optimal solution for BPε
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Table 5.1
Number of function calls NA averaged over 10 independent runs. The sparsity level s = m/5

and the stopping rule is Crit. 1 (5.1).

Method 20 dB 40 dB 60 dB 80 dB 100 dB
NESTA 446 351/491 880 719/951 1701 1581/1777 4528 4031/4749 14647 7729/15991

NESTA + Ct 479 475/485 551 539/559 605 589/619 658 635/679 685 657/705

GPSR 56 44/62 733 680/788 5320 4818/5628 DNC DNC
GPSR + Ct 305 293/311 251 245/257 497 453/531 1816 1303/2069 9101 7221/10761

SpaRSA 345 327/373 455 435/469 542 511/579 601 563/629 708 667/819

SPGL1 54 37/61 128 102/142 209 190/216 354 297/561 465 380/562

FISTA 68 66/69 270 261/279 935 885/969 3410 2961/3594 13164 11961/13911

FPC AS 156 111/177 236 157/263 218 215/239 351 247/457 325 313/335

FPC AS (CG) 312 212/359 475 301/538 434 423/481 641 470/812 583 567/595

FPC 414 394/436 417 408/422 571 546/594 945 852/1038 3945 2018/4734

FPC-BB 148 140/152 166 158/168 219 208/250 264 252/282 520 320/800

Bregman-BB 211 203/225 270 257/295 364 355/393 470 429/501 572 521/657

Table 5.2
Number of function calls NA averaged over 10 independent runs. The sparsity level s = m/5

and the stopping rule is Crit. 2 (5.2).

Method 20 dB 40 dB 60 dB 80 dB 100 dB
NESTA 446 351/491 880 719/951 1701 1581/1777 4528 4031/4749 14647 7729/15991

NESTA + Ct 479 475/485 551 539/559 605 589/619 658 635/679 685 657/705

GPSR 59 44/64 736 678/790 5316 4814/5630 DNC DNC
GPSR + Ct 305 293/311 251 245/257 511 467/543 1837 1323/2091 9127 7251/10789

SpaRSA 345 327/373 455 435/469 541 509/579 600 561/629 706 667/819

SPGL1 55 37/61 138 113/152 217 196/233 358 300/576 470 383/568

FISTA 65 63/66 288 279/297 932 882/966 3407 2961/3591 13160 11955/13908

FPC AS 176 169/183 236 157/263 218 215/239 344 247/459 330 319/339

FPC AS (CG) 357 343/371 475 301/538 434 423/481 622 435/814 588 573/599

FPC 416 398/438 435 418/446 577 558/600 899 788/962 3866 1938/4648

FPC-BB 149 140/154 172 164/174 217 208/254 262 248/286 512 308/790

Bregman-BB 211 203/225 270 257/295 364 355/393 470 429/501 572 521/657

it does not converge for 80 and 100 dB signals. GPSR with continuation does worse
on the low dynamic range signals (which is not surprising). It does much better than
the regular GPSR version on the high dynamic range signals, though it is slower than
NESTA with continuation by more than a factor of 10. SpaRSA performs well at
low dynamic range, comparable to NESTA, and begins to outperform GSPR with
continuation as the dynamic range increases, although it begins to underperform
NESTA with continuation in this regime. SpaRSA takes over twice as many function
calls on the 100 dB signal as on the 20 dB signal.

SPGL1 shows good performance with very sparse signals and low dynamic range.
Although it has fewer iteration counts than NESTA, the performance decreases much
more quickly than for NESTA as the dynamic range increases; SPGL1 requires about
9× more calls to A at 100 dB than at 20 dB, whereas NESTA with continuation
requires only about 1.5× more calls. FISTA is almost as fast as SPGL1 on the low
dynamic range signal, but degrades very quickly as the dynamic range increases,
taking about 200× more iterations at 100 dB than at 20 dB. One large contributing
factor to this poor performance at high dynamic range is the lack of a continuation
scheme.

FPC performs well at low dynamic range, but is very slow on 100 dB signals. The
Barzilai-Borwein version was consistently faster than the regular version, but also de-
grades much faster than NESTA with continuation as the dynamic range increases.

Dynamic range of a signal x is log10

(
xmax
xmin

)
, measured in becibel
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efficiency there as well. Finally, we conclude with Section 7 discussing further exten-
sions, which would address an even wider range of linear inverse problems.

Notations. Before we begin, it is best to provide a brief summary of the notations
used throughout the paper. As usual, vectors are written in small letters and matrices
in capital letters. The ith entry of a vector x is denoted x[i] and the (i, j)th entry of
the matrix A is A[i, j].

It is convenient to introduce some common optimization problems that will be
discussed throughout. Solving sparse reconstruction problems can be approached via
several different equivalent formulations. In this paper, we particularly emphasize the
quadratically constrained �1-minimization problem

(BP�) minimize �x��1
subject to �b − Ax��2 ≤ �,

(1.2)

where � quantifies the uncertainty about the measurements b as in the situation where
the measurements are noisy. This formulation is often preferred because a reasonable
estimate of � may be known. A second frequently discussed approach considers solving
this problem in Lagrangian form, i.e.

(QPλ) minimize λ�x��1 +
1

2
�b − Ax�2

�2 , (1.3)

and is also known as the basis pursuit denoising problem (BPDN) [18]. This problem
is popular in signal and image processing because of its loose interpretation as a
maximum a posteriori estimate in a Bayesian setting. In statistics, the same problem
is more well-known as the lasso [49]

(LSτ ) minimize �b − Ax��2
subject to �x��1 ≤ τ.

(1.4)

Standard optimization theory [47] asserts that these three problems are of course
equivalent provided that �,λ, τ obey some special relationships. With the exception
of the case where the matrix A is orthogonal, this functional dependence is hard
to compute [51]. Because it is usually more natural to determine an appropriate �
rather than an appropriate λ or τ , the fact that NESTA solves (BP�) is a significant
advantage. Further, note that theoretical equivalence of course does not mean that all
three problems are just as easy (or just as hard) to solve. For instance, the constrained
problem (BP�) is harder to solve than (QPλ), as discussed in Section 5.2. Therefore,
the fact that NESTA turns out to be competitive with algorithms that only solve
(QPλ) is quite remarkable.

2. Nesterov’s method.

2.1. Minimizing smooth convex functions. In [42, 41], Nesterov introduces
a subtle algorithm to minimize any smooth convex function f on the convex set Qp,

min
x∈Qp

f(x). (2.1)

We will refer to Qp as the primal feasible set. The function f is assumed to be
differentiable and its gradient ∇f(x) is Lipschitz and obeys

||∇f(x) −∇f(y)||�2 ≤ L�x − y��2 ; (2.2)

Nesterov’s method

NESTA

NESTA with continuation

Comparison with FISTA

Compressed sensing applications

Accurate retrieval of the signal

Large scale
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Figure 3.2. Total number of iterations required for convergence with a varying number of
continuation steps and for different values of the dynamic range.

factor of 8. As this factor is likely to increase exponentially with the dynamic range
(when expressed in dB), NESTA with continuation seems to be a better candidate for
solving sparse reconstruction problems with high accuracy.

Interestingly, the behavior of NESTA with continuation seems to be quite stable:
increasing the number of continuation steps does not increase dramatically the number
of iterations. In practice, although the ideal T is certainly signal dependent, we have
observed that choosing T ∈ {4, 5, 6} leads to reasonable results.

3.7. Some theoretical considerations. The convergence of NESTA with and
without continuation is straightforward. The following theorem states that each con-
tinuation step with µ = µ(t) converges to x�

µ. Global convergence is proved by applying
this theorem to t = T .

Theorem 3.1. At each continuation step t, limk→∞ yk = x�
µ(t) , and

fµ(t)(yk) − fµ(t)(x�
µ(t)) ≤

2Lµ(t)�x�
µ(t) − xµ(t−1)�2

�2

k2
.

Proof. Immediate by using [43, Theorem 2].

As mentioned earlier, continuation may be valuable for improving the speed of
convergence. Let each continuation step t stop after N (t) iterations with

N (t) =

�
2Lµ(t)

γtδ0
�x�

µ(t) − x�
µ(t−1)��2

so that we have

fµ(t)(yk) − fµ(t)(x�
µ(t)) ≤ γtδ0,

γ < 1
Lµ is proportional to 1

µ
.

If we take µ(t) = γ tµ0 we have
Lµ(t)

k2 ∝ 1
γt k2 . Then the Lipschitz constant

grows faster than k2. If t(k) = k there is no evident convergence. We
conclude that the convergence proof is valid only if the decreasing value of µ
is lower bounded.
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