

NESTA:

a fast and accurate first-order method for sparse recovery

S. Becker, J. Bobin, E. Candès Applied and Computational Mathematics 2009

> Presented by Federico Pierucci

LJK Grenoble, April 24, 2014

・ロト < 団ト < ヨト < ヨト < ロト

Introduction

- Algorithm NESTA
- Optimization based on Nesterov's method
- Compressed sensing applications (e.g. sparse recovery, Total Variation minimization)
- Accurate retrieval of the signal
- Large scale e.g. $x \in \mathbb{R}^n$ with, n = 262144

(BP_{ϵ})	minimize	$\ x\ _{\ell_1}$
	subject to	$\ b - Ax\ _{\ell_2} \le \epsilon,$

A consequence of these properties is that NESTA may be interest of researchers working on signal recovery or undersampled data

▲掃▶ ▲ 国▶ ▲ 国▶ 三国目 のなべ

Optimization

Problem to solve with NESTA:

$$\begin{array}{ll} (\mathrm{BP}_{\epsilon}) & \mbox{minimize} & \|x\|_{\ell_1} \\ & \mbox{subject to} & \|b - Ax\|_{\ell_2} \leq \epsilon, \end{array}$$

Equivalent formulation:

$$(\mathrm{QP}_{\lambda})$$
 minimize $\lambda \|x\|_{\ell_1} + \frac{1}{2} \|b - Ax\|_{\ell_2}^2$

 $\left\|\cdot\right\|_{\ell_1} o$ a sparse solution; $\epsilon^2 =$ estimated bound on noise

where

$$b = Ax^0 + z$$
: collected data
 x^0 : signal to recover
 A : sampling matrix
 z : noise

source: G. Peyré OSL2013

Nesterov's method

 $\min_{x\in\mathcal{Q}_p}f(x)$

f : smooth, i.e. differentiable with Lipschitz gradient Q_p : convex set

Lipschitz gradient of *f*, with lipschitz constatant *L*:

 $\forall x, y \in \mathcal{Q}_{p} \quad \left\| \nabla f(y) - \nabla f(x) \right\|_{\ell_{2}} \leq L \left\| y - x \right\|_{\ell_{2}}$

[Y. NESTEROV, Smooth minimization of nonsmooth functions, Math. Program. (2005)]

・ロト < 用ト < ヨト < ヨト < 目 < のへの

Nesterov's method

Initialize x_0 . For $k \ge 0$, 1. Compute $\nabla f(x_k)$. 2. Compute u_k : $y_k = \operatorname{argmin}_{x \in O_n} \frac{L}{2} \|x - x_k\|_{\ell_2}^2 + \langle \nabla f(x_k), x - x_k \rangle.$ 3. Compute z_k : $z_k = \operatorname{argmin}_{x \in Q_n} \frac{L}{\sigma_n} p_p(x) + \sum_{i=0}^k \alpha_i \langle \nabla f(x_i), x - x_i \rangle.$ 4. Update x_k : $x_k = \tau_k z_k + (1 - \tau_k) y_k.$ Stop when a given criterion is valid.

 p_{ρ} : continuous and strongly convex , $p_{\rho}(x) \geq \frac{\sigma_{\rho}}{2} \left\| x - x_{\rho}^{c} \right\|^{2}$

A ∃ ► A ∃ ► A ∃ E

What if *f* is nonsmooth?

Becker & al. 2009

Nesta: a fast and accurate first-order method for sparse recovery

6/16

Smoothing

We can rewrite the norm as support function

 $||x||_{\ell_1} = \max_{u \in \mathcal{Q}_d} \langle u, x \rangle,$

where

 $\mathcal{Q}_d = \{ u : \|u\|_{\infty} \le 1 \}.$

The smoothed version of $\left\|\cdot\right\|_{\ell_1}$ is

$$f_{\mu}(x) = \max_{u \in \mathcal{Q}_d} \langle u, x \rangle - \mu \, p_d(u),$$

Theorem

If p_d is continuous and strongly convex on Q_d , then f_{μ} is smooth.

Then it is possible to apply Nesterov method to f_{μ}

[Y. NESTEROV, Smooth minimization of nonsmooth functions, Math. Program. (2005)]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

NESTA

NESTA = Nesterov method + smoothing

Convergence of NESTA:

$$f_{\mu}(y_k) - f_{\mu}(x_{\mu}^{\star}) \le \frac{2L_{\mu} \|x_{\mu}^{\star} - x_0\|_{\ell_2}^2}{k^2},$$

k: iteration counter $x^{\star}_{\mu} := \operatorname{argmin}_{x \in Q_p} f_{\mu}(x)$ L_{μ} : Lipschitz constant of f_{μ}

The parameter μ controls the smoothing

$$f_{\mu}(x) = \max_{u \in \mathcal{Q}_d} \langle u, x \rangle - \mu \, p_d(u),$$

Source: Pierucci, Harchaoui, Malick, tech. report 2014

Small $\mu \rightarrow$ good approximation, slow convergence Large $\mu \rightarrow$ worst approximation, faster convergence

トイヨトイヨト

Why don't we start with a large μ

and continue with a smaller μ

Nesta: a fast and accurate first-order method for sparse recovery

10 / 16

▲ 문 ▶ 4 문 ▶ 문 범 ○ Q Q

< A

NESTA "with continuation"

Initialize μ_0 , x_0 and the number of continuation steps T. For $t \ge 1$,

- 1. Apply Nesterov's algorithm with $\mu = \mu^{(t)}$ and $x_0 = x_{\mu^{(t-1)}}$.
- 2. Decrease the value of μ : $\mu^{(t+1)} = \gamma \mu^{(t)}$ with $\gamma < 1$.

Stop when the desired value of μ_f is reached.

Convergence of NESTA with continuation

THEOREM 3.1. At each continuation step t, $\lim_{k\to\infty} y_k = x_{\mu^{(t)}}^{\star}$, and

$$f_{\mu^{(t)}}(y_k) - f_{\mu^{(t)}}(x_{\mu^{(t)}}^{\star}) \le \frac{2L_{\mu^{(t)}} \|x_{\mu^{(t)}}^{\star} - x_{\mu^{(t-1)}}\|_{\ell_2}^2}{k^2}$$

Accuracy evaluation

Analytical solution only for particular cases \rightarrow FISTA

$$(\mathrm{QP}_{\lambda})$$
 minimize $\lambda \|x\|_{\ell_1} + \frac{1}{2} \|b - Ax\|_{\ell_2}^2$

 $\begin{array}{c} \text{Relative error on objective function} \\ \frac{\|x\|_{\ell_1} - \|x^*\|_{\ell_1}}{\|x^*\|_{\ell_1}} \end{array}$

Accuracy of optimal solution ℓ_{∞} error $:= \|x - x^{\star}\|_{\ell_{\infty}}$

TABLE 4.2

NESTA's accuracy. The errors and number of function calls \mathcal{N}_A have the same meaning as in Table 4.1.

Method	ℓ_1 -norm	Rel. error ℓ_1 -norm	ℓ_{∞} error	\mathcal{N}_A
FISTA	5.71539e+7			
NESTA $\mu = 0.2$	5.71614e+7	1.3e-4	3.8	659
NESTA $\mu = 0.02$	5.71547e + 7	1.4e-5	0.96	1055
NESTA $\mu=0.002$	5.71540e + 7	1.6e-6	0.64	1537

x^* : optimal solution for BP_e

・ロト < 目 > < 目 > < 目 > < 日 >

Results

TABLE 5.2

Number of function calls \mathcal{N}_A averaged over 10 independent runs. The sparsity level s = m/5and the stopping rule is Crit. 2 (5.2).

Method	20 dB	40 dB	60 dB	80 dB	100 dB
NESTA	446 351/491	880 719/951	1701 1581/1777	4528 4031/4749	14647 7729/15991
NESTA + Ct	479 475/485	551 539/559	605 589/619	658 635/679	685 657/705
GPSR	59 44/64	736 678/790	5316 4814/5630	DNC	DNC
GPSR + Ct	305 293/311	251 245/257	511 467/543	1837 1323/2091	9127 7251/10789
SpaRSA	345 327/373	455 435/469	541 509/579	600 561/629	706 667/819
SPGL1	55 37/61	138 113/152	217 196/233	358 300/576	470 383/568
FISTA	65 63/66	288 279/297	932 882/966	3407 2961/3591	13160 11955/13908
FPC AS	176 169/183	236 157/263	218 215/239	344 247/459	330 319/339
FPC AS (CG)	357 343/371	475 301/538	434 423/481	622 435/814	588 573/599
FPC	416 398/438	435 418/446	577 558/600	899 788/962	3866 1938/4648
FPC-BB	149 140/154	$172 {}_{164/174}$	217 208/254	262 248/286	512 308/790
Bregman-BB	211 203/225	270 257/295	364 355/393	470 429/501	572 521/657

Dynamic range of a signal x is $\log_{10}\left(\frac{x_{max}}{x_{min}}\right)$, measured in becibel

<ロト < 同ト < 巨ト < 巨ト 三日 のへの</p>

Conclusion

$$\begin{array}{ll} (\mathrm{BP}_{\epsilon}) & \mbox{minimize} & \|x\|_{\ell_1} \\ & \mbox{subject to} & \|b - Ax\|_{\ell_2} \leq \epsilon, \end{array}$$

- Nesterov's method
- NESTA
- NESTA with continuation
- Comparison with FISTA
- Compressed sensing applications
- Accurate retrieval of the signal
- Large scale

Becker & al. 2009

Nesta: a fast and accurate first-order method for sparse recovery

14 / 16

▲掃▶ ▲ 国▶ ▲ 国▶ 三国目 のなべ

Thank you for your attention

Becker & al. 2009

Nesta: a fast and accurate first-order method for sparse recovery

15/16

Observation on NESTA with continuation:

Convergence

THEOREM 3.1. At each continuation step t, $\lim_{k\to\infty} y_k = x_{\mu^{(t)}}^*$, and $f_{\mu^{(t)}}(y_k) - f_{\mu^{(t)}}(x_{\mu^{(t)}}^*) \le \frac{2L_{\mu^{(t)}} \|x_{\mu^{(t)}}^* - x_{\mu^{(t-1)}}\|_{\ell_2}^2}{k^2}.$

 $\gamma < 1$ L_{μ} is proportional to $\frac{1}{\mu}$. If we take $\mu_{(t)} = \gamma^{t} \mu_{0}$ we have $\frac{L_{\mu(t)}}{k^{2}} \propto \frac{1}{\gamma^{t}k^{2}}$. Then the Lipschitz constant grows faster than k^{2} . If t(k) = k there is no evident convergence. We conclude that the convergence proof is valid only if the decreasing value of μ is lower bounded.

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <