Nonsmooth Optimization for Statistical Learning with Structured Matrix Regularization

PhD defense of **Federico Pierucci**

Thesis supervised by

Prof. Zaid Harchaoui Prof. Anatoli Juditsky Dr. Jérôme Malick

Université Grenoble Alpes Inria - Thoth and BiPoP

> Inria Grenoble June 23rd, 2017

> > 《口》 《圖》 《臣》 《臣》 三臣

990

Application 1: Collaborative filtering

Collaborative filtering for recommendation systems

Matrix completion optimization problem.

Ratings X:

	film 1	film 2	film 3
Albert	****	**	*
Ben			**
Celine	*	****	* * * *
Diana	*		
Elia		**	
Franz	****		*

- **Data:** for user *i* and movie j $X_{ij} \in \mathbb{R}$, with $(i, j) \in \mathcal{I}$: known ratings
- **Purpose**: predict a future rating New $(i, j) \mapsto X_{ij} = ?$

Э

イロト イロト イヨト イヨト

Application 1: Collaborative filtering

Collaborative filtering for recommendation systems

Matrix completion optimization problem.

Ratings X:

	film 1	film 2	film 3
Albert	****	**	*
Ben			**
Celine	*	****	* * * *
Diana	*		
Elia		**	
Franz	****		*

- **Data:** for user *i* and movie j $X_{ij} \in \mathbb{R}$, with $(i, j) \in \mathcal{I}$: known ratings
- **Purpose**: predict a future rating New $(i, j) \mapsto X_{ij} = ?$

Low rank assumption: Movies can be divided into a small number of types

For example:

$$\min_{\mathbf{V} \in \mathbb{R}^{d \times k}} \quad \frac{1}{N} \sum_{(i,j) \in \mathcal{I}} |\mathbf{W}_{ij} - X_{ij}| \quad + \quad \lambda \|\mathbf{W}\|_{\sigma,1}$$

 $\|\mathbf{W}\|_{\sigma,1}$ Nuclear norm = sum of singular values • convex function

< 2 > < 2 >

surrogate of rank

୬ < ୍ 2/33 **Multiclass classification** of images Example: ImageNet challenge

- Data $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}^k$: pairs of (image, category)
- **Purpose**: predict the category for a new image New image $x \mapsto y = ?$

Application 2: Multiclass classification

ヨトィヨト

Multiclass classification of images Example: ImageNet challenge

- **Data** $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}^k$: pairs of (image, category)
- **Purpose**: predict the category for a new image New image $x \mapsto y = ?$

Low rank assumption: The features are assumed to be embedded in a lower dimensional space

Multiclass version of support vector machine (SVM):

Application 2: Multiclass classification

$$\min_{\mathbf{W}\in\mathbb{R}^{d\times k}} \quad \frac{1}{N} \sum_{i=1}^{N} \underbrace{\max\left\{0, 1 + \max_{\substack{r \text{ s.t. } r \neq y_i}} \{\mathbf{W}_{r}^{\top} x_{i} - \mathbf{W}_{y_{i}}^{\top} x_{i}\}\right\}}_{\left\|\left(\mathcal{A}_{x,y}\mathbf{W}\right)_{+}\right\|_{\infty}} \quad + \quad \lambda \left\|\mathbf{W}\right\|_{\sigma,1}$$

$$\mathbf{W}_j \in \mathbb{R}^d$$
: the *j*-th column of \mathbf{W}

Matrix learning problem

• These two problems have the form:

)ata:

- N number of examples
- \mathbf{x}_i feature vector
- \mathbf{y}_i outcome
- $\hat{\mathbf{y}}_i$ predicted outcome

Э

→ Ξ → → Ξ →

Matrix learning problem

• These two problems have the form:

$$\min_{\mathbf{W}\in\mathbb{R}^{d\times k}} \underbrace{\frac{1}{N}\sum_{i=1}^{N}\ell(\mathbf{y}_{i}, \mathcal{F}(\mathbf{x}_{i}, \mathbf{W}))}_{=:R(\mathbf{W}), \text{ empirical risk}} + \lambda \|\mathbf{W}\|_{\text{regularization}} \\
\bullet \text{ Notation} \\
\frac{\text{Prediction}}{\mathcal{F} \text{ prediction function}} \\
\ell \text{ loss function} \\
\frac{N \text{ num}}{\mathbf{x}_{i} \text{ featu}} \\
\mathbf{y}_{i} \text{ outco} \\
\hat{\mathbf{y}}_{i} \text{ prediction} \\
\end{array}$$

ta:

- *N* number of examples
- \mathbf{x}_i feature vector
- \mathbf{v}_i outcome
- $\hat{\mathbf{y}}_i$ predicted outcome
- Nonsmooth empirical risk:

- Challenges
 - * Large scale: N, k, d
 - * Robust learning:

Generalization \rightarrow **nonsmooth** regularization Noisy data, outliers \rightarrow **nonsmooth** empirical risk

My thesis in one slide

- 1 Smoothing techniques
- 2 Conditional gradient algorithms
- 3 Group nuclear norm

5/33

Part 1 Unified view of smoothing techniques for first order optimization

Motivations:

- Smoothing is a key tool in optimization
- Smooth loss allows the use of gradient-based optimization

< 2 > < 2 >

Part 1 Unified view of smoothing techniques for first order optimization

Motivations:

- Smoothing is a key tool in optimization
- Smooth loss allows the use of gradient-based optimization

Contributions:

- Unified view of smoothing techniques for nonsmooth functions
- New example: smoothing of top-*k* error (for list ranking and classification)
- Study of algorithms = smoothing + state of art algorithms for smooth problems

< 2 > < 2 >

Part 2 Conditional gradient algorithms for doubly nonsmooth learning

Motivations:

• Common matrix learning problems formulated as

- Nonsmooth empirical risk, e.g. L1 norm \rightarrow robust to noise and outlyers
- Standard nonsmooth optimization methods not always scalable (e.g. nuclear norm)

イロト イポト イヨト

Part 2 Conditional gradient algorithms for doubly nonsmooth learning

Motivations:

• Common matrix learning problems formulated as

- Nonsmooth empirical risk, e.g. L1 norm \rightarrow robust to noise and outlyers
- Standard nonsmooth optimization methods not always scalable (e.g. nuclear norm)

Contributions:

- New algorithms based on (composite) conditional gradient
- Convergence analysis: rate of convergence + guarantees
- Some numerical experiences on real data

Part 3 Regularization by group nuclear norm

Motivations:

- Structured matrices can join information coming from different sources
- Low-rank models improve robustness and dimensionality reduction

Nonsmooth Optimization for Statistical Learning with Structured Matrix Regularization

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Part 3 Regularization by group nuclear norm

Motivations:

- Structured matrices can join information coming from different sources
- Low-rank models improve robustness and dimensionality reduction

Contributions:

- Definition of a new norm for matrices with underlying groups
- Analysis of its convexity properties
- Used as regularizer \rightarrow provides low rank by groups and aggregate models

Э

ヘロト 人間 トイヨト イヨト

Outline

1 Unified view of smoothing techniques

2 Conditional gradient algorithms for doubly nonsmooth learning

3 Regularization by group nuclear norm

4 Conclusion and perspectives

<ロ> < 部> < 注> < 注> < 注</p>

Smoothing techniques

Purpose: to smooth a convex function

 $g:\mathbb{R}^n
ightarrow\mathbb{R}$

< ロ > < 回 > < 回 > < 回 > < 回 >

Pierucci

Nonsmooth Optimization for Statistical Learning with Structured Matrix Regularization

ク ۹ (や 10 / 33

E

Smoothing techniques

Purpose: to smooth a convex function

$$g:\mathbb{R}^n\to\mathbb{R}$$

Two techniques:

1) Product convolution [Bertsekas 1978] [Duchi et al. 2012]

$$g_{\gamma}^{pc}(\xi) := \int_{\mathbb{R}^n} g(\xi - \mathbf{z}) \; \frac{1}{\gamma} \mu\left(\frac{\mathbf{z}}{\gamma}\right) \, \mathrm{d}\mathbf{z} \quad \mu : \text{probability density}$$

2) Infimal convolution [Moreau 1965] [Nesterov 2007] [Beck, Teboulle 2012]

$$g_{\gamma}^{ic}(\xi) := \inf_{\mathbf{z} \in \mathbb{R}^n} \left\{ g(\xi - \mathbf{z}) + \gamma \, \omega \left(\frac{\mathbf{z}}{\gamma} \right) \right\} \qquad \omega : \text{smooth convex function}$$

< ∃ > < ∃ >

Smoothing techniques

Purpose: to smooth a convex function

$$g:\mathbb{R}^n\to\mathbb{R}$$

イロト イポト イヨト イヨト

Two techniques:

1) Product convolution [Bertsekas 1978] [Duchi et al. 2012]

$$g_{\gamma}^{pc}(\xi) := \int_{\mathbb{R}^n} g(\xi - \mathbf{z}) \; \frac{1}{\gamma} \mu\left(\frac{\mathbf{z}}{\gamma}\right) \, \mathrm{d}\mathbf{z} \quad \mu : \text{probability density}$$

2) Infimal convolution [Moreau 1965] [Nesterov 2007] [Beck, Teboulle 2012]

$$g_{\gamma}^{ic}(\xi) := \inf_{\mathbf{z} \in \mathbb{R}^n} \left\{ g(\xi - \mathbf{z}) + \gamma \, \omega \left(\frac{\mathbf{z}}{\gamma} \right) \right\} \quad \omega : \text{smooth convex function}$$

Result

- g_{γ} is uniform approximation of g, i.e. $\exists m, M \ge 0$: $-\gamma m \le g_{\gamma}(\mathbf{x}) g(\mathbf{x}) \le \gamma M$
- g_{γ} is L_{γ} -smooth, i.e. g_{γ} differentiable, convex, $\|\nabla g_{\gamma}(\mathbf{x}) - \nabla g_{\gamma}(\mathbf{y})\|_{*} \leq L_{\gamma} \|\mathbf{x} - \mathbf{y}\| \quad (L_{\gamma} \text{ proportional to } \frac{1}{\gamma})$

where ${{\left\| {\,\cdot }\, \right\|}_{*}}$ is the dual norm of ${{\left\| {\,\cdot }\, \right\|}}$

Smoothing surrogates of nonsmooth functions

- **Purpose:** obtain g_γ to be used into algorithms
 * (possibly) explicit expression
 * easy to evaluate numerically
- Elementary example (in \mathbb{R}) : absolute value g(x) = |x|

* Product convolution, with $\mu(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$

$$g_{\gamma}^{c}(x) = -xF(-\frac{x}{\gamma}) - \frac{\sqrt{2}}{\sqrt{\pi}}\gamma e^{-\frac{x^{2}}{2\gamma^{2}}} + xF(\frac{x}{\gamma})$$

 $F(x):=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{t^{2}}{2}}dt$ cumulative distribution of Gaussian

 \star Infimal convolution, with $\omega(x) = \frac{1}{2} ||x||^2$

$$g_{\gamma}^{ic}(x) = \begin{cases} \frac{1}{2\gamma}x^2 + \frac{\gamma}{2} & \text{if } |x| \leq \gamma\\ |x| & \text{if } |x| > \gamma \end{cases}$$

• Motivating nonsmooth function: top-k loss (next)

イロト イロト イヨト イヨト 三日

Motivating nonsmooth functions: top-k loss Example: top-3 loss

• Top-3 loss for Classification

1

イロト イポト イヨト イヨト

Motivating nonsmooth functions: top-k loss Example: top-3 loss

• Top-3 loss for Classification

Good prediction if the true class is among the first 3 predicted.

∃ > < ∃ >

Motivating nonsmooth functions: top-k loss Example: top-3 loss

• Top-3 loss for Classification

Good prediction if the true class is among the first 3 predicted.

• Top-3 loss for Ranking

Predict an ordered list, the loss counts the mismatches to the true list

ヘロト 人間 トイヨト イヨト

Smoothing of top-*k*

Convex top-*k* **error function**, written as a sublinear function

$$g(\mathbf{x}) = \max_{\mathbf{z} \in \mathcal{Z}} \langle \mathbf{x}, \mathbf{z} \rangle$$

$$\mathcal{Z} := \left\{ \mathbf{z} \in \mathbb{R}^n : \ 0 \le z_i \le rac{1}{k}, \ \sum_{i=1}^n z_i \le 1
ight\} = ext{cube} \cap ext{simplex}$$

• Case
$$k = 1$$
 Top-1
 $g(\mathbf{x}) = \|\mathbf{x}_+\|_{\infty} = \max\{0, \max_i\{\mathbf{x}_i\}\}$
Infimal convolution with $\omega(\mathbf{x}) = \left(\sum_{i=1}^n x_i \ln(x_i) - x_i\right)^*$

$$g_{\gamma}(\mathbf{x}) = \begin{cases} \gamma \left(1 + \ln \sum_{i=1}^{n} e^{\frac{x_i}{\gamma}} \right) & \text{if} \quad \sum_{i=1}^{n} e^{\frac{x_i}{\gamma}} > 1\\ \gamma \sum_{i=1}^{n} e^{\frac{x_i}{\gamma}} & \text{if} \quad \sum_{i=1}^{n} e^{\frac{x_i}{\gamma}} \le 1 \end{cases}$$

Smoothing of top-*k*

Convex top-*k* **error function**, written as a sublinear function

$$egin{aligned} egin{aligned} egi$$

• Case
$$k = 1$$
 Top-1
 $g(\mathbf{x}) = \|\mathbf{x}_+\|_{\infty} = \max\{0, \max_i\{\mathbf{x}_i\}\}$
Infimal convolution with $\omega(\mathbf{x}) = \left(\sum_{i=1}^n x_i \ln(x_i) - x_i\right)^*$

$$g_{\gamma}(\mathbf{x}) = \begin{cases} \gamma \left(1 + \ln \sum_{i=1}^{n} e^{\frac{x_i}{\gamma}} \right) & \text{if } \sum_{i=1}^{n} e^{\frac{x_i}{\gamma}} > 1 & \longleftarrow \text{Classification} \end{cases}$$

Same result as in statistics [Hastie et al., 2008] $\gamma = 1 \rightarrow$ multinomial logistic loss

ックへ (や 13 / 33

イロト イロト イヨト イヨト

Smoothing of top-k **case** k > 1

Infimal convolution with $\omega = \frac{1}{2} \|\cdot\|^2$

$$g_{\gamma}(\mathbf{x}) = -\lambda_{\star}(\mathbf{x},\gamma) + \sum_{i=1}^{n} H_{\gamma}(x_i + \lambda_{\star}(\mathbf{x},\gamma))$$

$$H_{\gamma}(t) = \begin{cases} 0 & t < 0\\ \frac{1}{2}t^2 & t \in [0, \frac{1}{k}]\\ \frac{t}{k} - \frac{1}{k^2} & t > \frac{1}{k} \end{cases}$$

• We need to solve an auxiliary problem (smooth dual problem)

Evaluate $g_{\gamma}(\mathbf{x})$ through the dual problem

Define

$$P_{\mathbf{x}} := \{ x_i, x_i - k : i = 1 \dots n \}$$
$$\Theta'(\lambda) = 1 - \sum_{t_j \in P_{\mathbf{x}}} \pi_{[0,1/k]}(t_j + \lambda)$$

Find

$$a, b \in P_{\mathbf{x}}$$
 s.t. $\Theta'(a) \le 0 \le \Theta'(b)$

$$\lambda_{\star}(\mathbf{x},\gamma) = \max\left\{0, a - \frac{\Theta'(a)(b-a)}{\Theta'(b) - \Theta'(a)}\right\}$$

프 + < 프 +

Outline

1 Unified view of smoothing techniques

2 Conditional gradient algorithms for doubly nonsmooth learning

3 Regularization by group nuclear norm

4 Conclusion and perspectives

・ロット 中国 マイボット 日マ うくの

Matrix learning problem

Empirical risk $\mathbf{R}(\mathbf{W}) := \frac{1}{N} \sum_{i=1}^{N} \ell(\mathbf{W}, \mathbf{x}_i, \mathbf{y}_i)$

• Top-k for ranking and multiclass classification

$$\ell_1(\mathbf{W}, \mathbf{x}, \mathbf{y}) := \left\| (\mathcal{A}_{\mathbf{x}, \mathbf{y}} \mathbf{W})_+ \right\|_{\infty}$$

• L1 for regression $\ell_1(\mathbf{W}, \mathbf{x}, \mathbf{y}) := |\mathcal{A}_{\mathbf{x}, \mathbf{y}} \mathbf{W}|$

Regularizer (typically norm) $\Omega(\mathbf{W})$

- Nuclear norm $\|\mathbf{W}\|_{\sigma,1} \longrightarrow$ sparsity on singular values
- L1 norm $\|\mathbf{W}\|_1 := \sum_{i=1}^d \sum_{j=1}^k |\mathbf{W}_{ij}| \longrightarrow$ sparsity on entries
- Group nuclear norm $\Omega_{\mathcal{G}}(\mathbf{W})$ (of contribution 3)

sparsity \leftrightarrow feature selection

Existing algorithms for nonsmooth optimization

• Subgradient, bundle algorithms [Nemirovski, Yudin 1976] [Lemarechal 1979]

• Proximal algorithms [Douglas, Rachford 1956]

Algorithms are not scalable for nuclear norm: iteration $\cot \simeq \text{full SVD} = O(dk^2)$

・ロト ・ 四ト ・ ヨト ・ ヨト

Existing algorithms for nonsmooth optimization

- Subgradient, bundle algorithms [Nemirovski, Yudin 1976] [Lemarechal 1979]
- Proximal algorithms [Douglas, Rachford 1956]

Algorithms are not scalable for nuclear norm: iteration $\cot \simeq \text{full SVD} = O(dk^2)$

What if the loss were smooth?

Algorithms with faster convergence when S is smooth

- Proximal gradient algorithms [Nesterov 2005] [Beck, Teboulle, 2009]
 Still not scalable for nuclear norm: iteration cost ~ full SVD
- (Composite) conditional gradient algorithms
 [Frank, Wolfe, 1956][Harchaoui, Juditsky, Nemirovski, 2013]

 Efficient iterations for nuclear norm:
 iteration cost ≃ compute largest singular value = O(dk)

ヨトイヨト

Composite conditional gradient algorithm

 $\min_{\mathbf{W} \in \mathbb{R}^{d \times k}} \quad \underbrace{S(\mathbf{W})}_{\text{smooth}} \quad + \quad \lambda \underbrace{\Omega(\mathbf{W})}_{\text{nonsmooth}}$

State of art algorithm:

Composite conditional gradient algorithm

Let $\mathbf{W}_0 = \mathbf{0}$ r_0 such that $\Omega(\mathbf{W}_*) \le r_0$ for $t = 0 \dots T$ do Compute $\mathbf{Z}_t = \underset{\mathbf{D} \text{ s.t. } \Omega(\mathbf{D}) \le r_t}{\operatorname{argmin}} \langle \nabla S(\mathbf{W}_t), \mathbf{D} \rangle$ [gradient step] $\alpha_t, \beta_t = \underset{\alpha, \beta \ge 0; \ \alpha + \beta \le 1}{\operatorname{argmin}} S(\alpha \mathbf{Z}_t + \beta \mathbf{W}_t) + \lambda(\alpha + \beta)r_t$ [optimal stepsize] Update $\mathbf{W}_{t+1} = \alpha_t \mathbf{Z}_t + \beta_t \mathbf{W}_t$ $r_{t+1} = (\alpha_t + \beta_t)r_t$ end for

where $\mathbf{W}_t, \mathbf{Z}_t, \mathbf{D} \in \mathbb{R}^{d \times k}$

Efficient and scalable for some Ω e.g. nuclear norm, where $\mathbf{Z}_t = uv^{\top}$

Conditional gradient despite nonsmooth loss

Use conditional gradient replacing $\nabla S(\mathbf{W}_t)$ with a subgradient $s_t \in \frac{\partial R(\mathbf{W}_t)}{\partial \mathbf{W}_t}$

Э

イロト イロト イヨト イヨト

Conditional gradient despite nonsmooth loss

Use conditional gradient replacing $\nabla S(\mathbf{W}_t)$ with a subgradient $s_t \in \frac{\partial R(\mathbf{W}_t)}{\partial \mathbf{W}_t}$

Simple counter example in \mathbb{R}^2

り へ (や 19 / 33

ヨトィヨト

Smoothed composite conditional gradient algorithm

Idea: Replace the nonsmooth loss with a smoothed loss

$$\min_{\mathbf{W}\in\mathbb{R}^{d\times k}} \quad \underbrace{\underset{\text{nonsmooth}}{R(\mathbf{W})}}_{\text{nonsmooth}} + \lambda \Omega(\mathbf{W}) \longrightarrow \min_{\substack{\mathbf{W}\in\mathbb{R}^{d\times k}\\ \{R_{\gamma}\}_{\gamma>0}}} \underbrace{\underset{\mathbf{W}\in\mathbb{R}^{d\times k}}{\min}}_{\substack{\mathbf{W}_{\gamma}\in\mathbf{W}}} + \lambda \Omega(\mathbf{W})$$

Let
$$\mathbf{W}_0 = \mathbf{0}$$

 r_0 such that $\Omega(\mathbf{W}_{\star}) \leq r_0$
for $t = 0 \dots T$ do
Compute
 $\mathbf{Z}_t = \underset{\mathbf{D} \text{ s.t. } \Omega(\mathbf{D}) \leq r_t}{\operatorname{argmin}} \langle \nabla R_{\gamma_t}(\mathbf{W}_t), \mathbf{D} \rangle$
 $\alpha_t, \beta_t = \underset{\alpha, \beta \geq 0; \ \alpha + \beta \leq 1}{\operatorname{argmin}} R_{\gamma_t}(\alpha \mathbf{Z}_t + \beta \mathbf{W}_t) + \lambda(\alpha + \beta)r_t$
Update
 $\mathbf{W}_{t+1} = \alpha_t \mathbf{Z}_t + \beta_t \mathbf{W}_t$
 $r_{t+1} = (\alpha_t + \beta_t)r_t$
end for

 α_t, β_t = stepsize γ_t = smoothing parameter

Note: We want solve the initial 'doubly nonsmooth' problem

ック へ (や 20 / 33

イロト イポト イヨト

Convergence analysis

Doubly nonsmooth problem

$$\min_{\mathbf{W}\in\mathbb{R}^{d\times k}} F(\mathbf{W}) = \frac{R}{\mathbf{W}} + \lambda \,\Omega(\mathbf{W})$$

 \mathbf{W}_{\star} optimal solution γ_t = smoothing parameter (\neq stepsize)

Theorems of convergence

• Fixed smoothing of R $\gamma_t = \gamma$

$$F(\mathbf{W}_t) - F(\mathbf{W}_{\star}) \leq \gamma M + \frac{2}{\gamma(t+14)}$$

Dimensionality freedom of *M* depends on ω or μ The best γ depends on the required accuracy ε

• Time-varying smoothing of R $\gamma_t = \frac{\gamma_0}{\sqrt{t+1}}$

$$F(\mathbf{W}_t) - F(\mathbf{W}_\star) \leq \frac{C}{\sqrt{t}}$$

Dimensionality freedom of *C* depends on ω or μ , γ_0 and $\|\mathbf{W}_{\star}\|$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Algoritm implementation

Package

All the Matlab code written from scratch, in particular:

- Multiclass SVM
- Top-k multiclass SVM
- All other smoothed functions

Memory

Efficient memory management

- Tools to operate with low rank variables
- Tools to work with sparse sub-matrices of low rank matrices (collaborative filtering)

Numerical experiments - 2 motivating applications

- Fix smoothing matrix completion (regression)
- Time-varying smoothing top-5 multiclass classification

ロトス語とスヨトスヨト

Fix smoothing Example with matrix completion, regression Benchmark

Data: Movielens d = 71567 users k = 10681 movies 10000054 ratings (= 1.3%)(normalized into [0,1])

• Iterates \mathbf{W}_t generated on a train set

- We observe $\mathbf{R}(\mathbf{W}_t)$ on the validation set
- Choose the best γ that minimizes $\mathbf{R}(\mathbf{W}_t)$ in the validation set

< ロト < 回 > < 三 > < 三 >

Fix smoothing Example with matrix completion, regression Benchmark

- We observe $R(\mathbf{W}_t)$ on the validation set
- Choose the best γ that minimizes $\mathbf{R}(\mathbf{W}_t)$ in the validation set

Each γ gives a different optimization problem

Tiny smoothing \rightarrow slower convergence Large smoothing \rightarrow objective much different than the initial one

Data: Movielens

d = 71.567 users

 $k = 10\,681 \text{ movies}$

 $10\ 000\ 054\ ratings\ (=1.3\%)$

(normalized into [0,1])

Nonsmooth Optimization for Statistical Learning with Structured Matrix Regularization

Time-varying smoothing Example with top-5 multiclass classification

Benchmark

- Iterates \mathbf{W}_t generated on a train set
- We observe top-5 misclassification error on the validation set
- To compare: find best fixed smoothing parameter (using the other benchmark)

Data: ImageNet k = 134 classes N = 13400 images **Features:** BOW d = 4096 features

< ロト < 回 > < 三 > < 三 >

Time-varying smoothing Example with top-5 multiclass classification

Benchmark

- Iterates W_t generated on a train set
- We observe top-5 misclassification error on the validation set
- To compare: find best fixed smoothing parameter (using the other benchmark)

$$\gamma_t = \frac{\gamma_0}{(1+t)^p}$$

 $p \in \left\{\frac{1}{2}, 1\right\}$

Data: ImageNet

N = 13400 images

k = 134 classes

Features: BOW

d = 4096 features

No need to tune γ_0 :

• Time-varying smoothing matches the performances of the best experimentally tuned fixed smoothing

Outline

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

- **1** Unified view of smoothing techniques
- 2 Conditional gradient algorithms for doubly nonsmooth learning

3 Regularization by group nuclear norm

4 Conclusion and perspectives

Group nuclear norm

• Matrix generalization of the popular **group lasso norm** [Turlach et al., 2005] [Yuan and Lin, 2006] [Zhao et al., 2009] [Jacob et al., 2009]

• Nuclear norm $\|\mathbf{W}\|_{\sigma,1}$: sum of singular values of \mathbf{W}

ヘロト 人間 とくほとくほとう

Group nuclear norm

• Matrix generalization of the popular **group lasso norm** [Turlach et al., 2005] [Yuan and Lin, 2006] [Zhao et al., 2009] [Jacob et al., 2009]

• Nuclear norm $\|\mathbf{W}\|_{\sigma,1}$: sum of singular values of \mathbf{W}

 i_g : immersion Π_g : projection

 $\mathcal{G} = \{1, 2, 3\}$

$$\Omega_{\mathcal{G}}(\mathbf{W}) \coloneqq \min_{\substack{\mathbf{W} = \sum_{g \in \mathcal{G}} i_g(\mathbf{W}_g)}} \sum_{g \in \mathcal{G}} \alpha_g \|\mathbf{W}_g\|_{\sigma, 1}$$

[Tomioka, Suzuki 2013] non-overlapping groups

4 ∃ ≥

Group nuclear norm

• Matrix generalization of the popular **group lasso norm** [Turlach et al., 2005] [Yuan and Lin, 2006] [Zhao et al., 2009] [Jacob et al., 2009]

• Nuclear norm $\|\mathbf{W}\|_{\sigma,1}$: sum of singular values of \mathbf{W}

 i_g : immersion Π_g : projection

 $\mathcal{G} = \{1, 2, 3\}$

$$\Omega_{\mathcal{G}}(\mathbf{W}) \coloneqq \min_{\substack{\mathbf{W} = \sum_{g \in \mathcal{G}} i_g(\mathbf{W}_g)}} \sum_{g \in \mathcal{G}} \alpha_g \|\mathbf{W}_g\|_{\sigma, 1}$$

[Tomioka, Suzuki 2013] non-overlapping groups

Convex analysis - theoretical study

- Fenchel conjugate Ω^{*}_G
- Dual norm $\Omega_{\mathcal{G}}^{\circ}$
- Expression of $\Omega_{\mathcal{G}}$ as a support function
- Convex hull of functions involving rank

イロト イポト イヨト イヨト

Convex hull - Results

In words, the convex hull is the largest convex function lying below the given one

Properly restricted to a ball, the nuclear norm is the convex hull of rank [Fazel 2001] \rightarrow generalization

Theorem

Properly restricted to a ball, group nuclear norm is the convex hull of:

• The 'reweighted group rank' function:

$$\Omega_{\mathcal{G}}^{\mathrm{rank}}(\mathbf{W}) := \inf_{\substack{\mathbf{W} = \sum_{g \in \mathcal{G}} i_g(\mathbf{W}_g)}} \sum_{g \in \mathcal{G}} \alpha_g \operatorname{rank}(\mathbf{W}_g)$$

• The 'reweighted restricted rank' function:

$$\Omega^{\mathrm{rank}}(\mathbf{W}) := \min_{g \in \mathcal{G}} \quad lpha_g \mathrm{rank}(\mathbf{W}) + \delta_g(\mathbf{W})$$

 δ_g indicator function

Learning with group nuclear norm enforces low-rank property on groups

イロト イロト イヨト イヨト

Learning with group nuclear norm

Usual optimization algorithms can handle the group nuclear norm:

- * composite conditional gradient algorithms
- * (accelerated) proximal gradient algorithms

ヘロト 人間 とくほとくほとう

Learning with group nuclear norm

Usual optimization algorithms can handle the group nuclear norm:

- * composite conditional gradient algorithms
- * (accelerated) proximal gradient algorithms

Illustration with proximal gradient optimization algorithm The key computations are parallelized on each group

Good scalability when there are many small groups

• prox of group nuclear norm

$$\operatorname{prox}_{\gamma\Omega_{\mathcal{G}}}((\mathbf{W}_g)_g) = \left(\mathbf{U}_g D_{\gamma}(\mathbf{S}_g) \mathbf{V}_g^{\top}\right)_{g \in \mathcal{G}}$$

where D_{γ} : soft thresholding operator

• SVD decomposition

$$\mathbf{W}_g = \mathbf{U}_g \mathbf{S}_g {\mathbf{V}_g}^\top$$

$$D_{\gamma}(\mathbf{S}) = \text{Diag}(\{\max\{s_i - \gamma, 0\}\}_{1 \le i \le r}).$$

28/33

Learning with group nuclear norm

Usual optimization algorithms can handle the group nuclear norm:

- * composite conditional gradient algorithms
- * (accelerated) proximal gradient algorithms

Illustration with proximal gradient optimization algorithm The key computations are parallelized on each group

Good scalability when there are many small groups

• prox of group nuclear norm

$$\operatorname{prox}_{\gamma\Omega_{\mathcal{G}}}((\mathbf{W}_g)_g) = \left(\mathbf{U}_g D_{\gamma}(\mathbf{S}_g) \mathbf{V}_g^{\top}\right)_{g \in \mathcal{G}}$$

where D_{γ} : soft thresholding operator

• SVD decomposition

$$\mathbf{W}_g = \mathbf{U}_g \mathbf{S}_g {\mathbf{V}_g}^\top$$

$$D_{\gamma}(\mathbf{S}) = \text{Diag}(\{\max\{s_i - \gamma, 0\}\}_{1 \le i \le r}).$$

Package in Matlab, in particular:

 \rightarrow vector space of group nuclear norm, overloading of + *

ロトス語とスヨトスヨト

Numerical illustration: matrix completion

"Ground truth"

Synthetic low rank matrix **X** sum of 10 rank-1 groups normalized to have $\mu = 0$, $\sigma = 1$

Numerical illustration: matrix completion

"Ground truth"

Synthetic low rank matrix \mathbf{X}

normalized to have $\mu = 0, \sigma = 1$

sum of 10 rank-1 groups

Uniform 10% sampling \mathbf{X}_{ij} with $(i, j) \in \mathcal{I}$ Gaussian additive noise $\sigma = 0.2$

< 2 > < 2 >

Numerical illustration: matrix completion

Recovery error: $\frac{1}{2N} \|\mathbf{W}^{\star} - \mathbf{X}\|^2 = 0.0051$

$$\min_{\mathbf{W}\in\mathbb{R}^{d\times k}} \quad \frac{1}{N}\sum_{(i,j)\in\mathcal{I}} \frac{1}{2} (\mathbf{W}_{ij} - \mathbf{X}_{ij})^2 \quad + \quad \lambda \, \Omega_{\mathcal{G}}(\mathbf{W})$$

 か q (や 30 / 33

Outline

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

- **1** Unified view of smoothing techniques
- 2 Conditional gradient algorithms for doubly nonsmooth learning
- **3** Regularization by group nuclear norm
- **4** Conclusion and perspectives

Summary

イロト イロト イヨト イヨト

- Smoothing
 - * Versatile tool in optimization
 - * Ways to combine smoothing with many existing algorithms
- Time-varying smoothing
 - * Theory: minimization convergence analysis
 - $\star\,$ Practice: recover the best, no need to tune γ
- Group nuclear norm
 - * Theory and practice to combine groups and rank sparsity
 - ★ Overlapping groups

Perspectives

イロト イポト イヨト

• Smoothing for faster convergence:

Moreau-Yosida smoothing can be used to improve the condition number of poorly conditioned objectives before applying linearly-convergent convex optimization algorithms [Hongzhou et al. 2017]

• Smoothing for better prediction:

Smoothing can be adapted to properties of the dataset and be used to improve the prediction performance of machine learning algorithms

- Learning group structure and weights for better prediction: The group structure in the group nuclear norm can be learned to leveraged underlying structure and improve the prediction
- Extensions to group Schatten norm
- Potential applications of group nuclear norm
 - * multi-attribute classification
 - ★ multiple tree hierarchies
 - * dimensionality reduction, feature selection e.g. concatenate features, avoid PCA

ック Q (や 33 / 33

Perspectives

イロト イポト イヨト イヨト

• Smoothing for faster convergence:

Moreau-Yosida smoothing can be used to improve the condition number of poorly conditioned objectives before applying linearly-convergent convex optimization algorithms [Hongzhou et al. 2017]

• Smoothing for better prediction:

Smoothing can be adapted to properties of the dataset and be used to improve the prediction performance of machine learning algorithms

- Learning group structure and weights for better prediction: The group structure in the group nuclear norm can be learned to leveraged underlying structure and improve the prediction
- Extensions to group Schatten norm
- Potential applications of group nuclear norm
 - * multi-attribute classification
 - * multiple tree hierarchies
 - * dimensionality reduction, feature selection e.g. concatenate features, avoid PCA

Thank You