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Application 1:
Collaborative filtering

Collaborative filtering for recommendation systems
Matrix completion optimization problem.

Ratings X:
film 1 film 2 film 3

Albert ? ? ? ? ? ? ? ?
Ben ? ?
Celine ? ? ? ? ? ? ? ? ? ?
Diana ?
Elia ? ?
Franz ? ? ? ? ?

• Data: for user i and movie j
Xij ∈ R, with (i, j) ∈ I: known ratings

• Purpose: predict a future rating
New (i, j) 7−→ Xij = ?

Low rank assumption:
Movies can be divided into a
small number of types

For example:

min
W∈Rd×k

1
N

∑
(i,j)∈I

|Wij −Xij | + λ ‖W‖σ,1

‖W‖σ,1 Nuclear norm = sum of singular values
• convex function
• surrogate of rank
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Application 2:
Multiclass classification

Multiclass classification of images
Example: ImageNet challenge

• Data (xi, yi) ∈ Rd×Rk : pairs of (image, category)

• Purpose: predict the category for a new image
New image x 7−→ y = ?

7−→ marmot

7−→ edgehog

7−→ ?

min
W∈Rd×k

1
N

N∑
i=1

max
{

0, 1 + max
r s.t. r 6=yi

{W>
r xi −W>

yi
xi}
}

︸ ︷︷ ︸
‖(Ax,yW)+‖∞

+ λ ‖W‖σ,1

Wj ∈ Rd : the j-th column of W
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• Data (xi, yi) ∈ Rd×Rk : pairs of (image, category)
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Matrix learning problem
• These two problems have the form:

min
W∈Rd×k

1
N

N∑
i=1

`(yi,
ŷi︷ ︸︸ ︷

F(xi,W))︸ ︷︷ ︸
=:R(W), empirical risk

+ λ ‖W‖︸︷︷︸
regularization

x

y F(·,W1)
F(·,W2)

••••• • •• •••••••(xi,yi)
••••
••
•••

• Notation
Prediction
F prediction function
` loss function

Data:
N number of examples
xi feature vector
yi outcome
ŷi predicted outcome

• Challenges
? Large scale: N, k, d
? Robust learning:

• Nonsmooth empirical risk:

-2 -1 0 1 2
0

0.5

1

1.5

2

-2 -1 0 1 2
0

0.5

1

1.5

2

g(ξ) = |ξ| max{0, ξ}

Generalization→ nonsmooth regularization
Noisy data, outliers→ nonsmooth empirical risk
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My thesis
in one slide

min
W︸︷︷︸

2nd contribution

1
N

N∑
i=1

`(yi,F(xi,W))︸ ︷︷ ︸
1st contribution

+ λ ‖W‖︸︷︷︸
3rd contribution

1 - Smoothing techniques
2 - Conditional gradient algorithms
3 - Group nuclear norm
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Part 1
Unified view of smoothing techniques

for first order optimization
Motivations:

• Smoothing is a key tool in optimization

• Smooth loss allows the use of gradient-based optimization

-2 -1 0 1 2
0

0.5

1

1.5

2

-2 -1 0 1 2
0

0.5

1

1.5

2

g(ξ) = |ξ| g(ξ) = max{0, ξ}

Contributions:

• Unified view of smoothing techniques for nonsmooth functions

• New example: smoothing of top-k error (for list ranking and classification)

• Study of algorithms = smoothing + state of art algorithms for smooth problems
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Part 2
Conditional gradient algorithms
for doubly nonsmooth learning

Motivations:

• Common matrix learning problems formulated as

min
W∈Rd×k

R(W)︸ ︷︷ ︸
nonsmooth emp.risk

+ λ ‖W‖︸︷︷︸
nonsmooth regularization

• Nonsmooth empirical risk, e.g. L1 norm→ robust to noise and outlyers

• Standard nonsmooth optimization methods not always scalable (e.g. nuclear norm)

Contributions:

• New algorithms based on (composite) conditional gradient

• Convergence analysis: rate of convergence + guarantees

• Some numerical experiences on real data
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Part 3
Regularization by group nuclear norm

Motivations:

• Structured matrices can join information coming from different sources

• Low-rank models improve robustness and dimensionality reduction

W1

W2

W3

W2

W3

W1
=

Contributions:

• Definition of a new norm for matrices with underlying groups

• Analysis of its convexity properties

• Used as regularizer→ provides low rank by groups and aggregate models
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Outline

1 Unified view of smoothing techniques

2 Conditional gradient algorithms for doubly nonsmooth learning

3 Regularization by group nuclear norm

4 Conclusion and perspectives
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Smoothing techniques

Purpose:
to smooth a convex function

g : Rn → R
-2 -1 0 1 2
0

0.5

1

1.5

2

-2 -1 0 1 2
0

0.5

1

1.5

2

Two techniques:
1) Product convolution [Bertsekas 1978] [Duchi et al. 2012]

gpcγ (ξ) :=
∫
Rn

g(ξ − z) 1
γ
µ

(
z
γ

)
dz µ : probability density

2) Infimal convolution [Moreau 1965] [Nesterov 2007] [Beck, Teboulle 2012]

gicγ (ξ) := inf
z∈Rn

{
g(ξ − z) + γ ω

(
z
γ

)}
ω : smooth convex function

Result
• gγ is uniform approximation of g, i.e. ∃m, M ≥ 0 : −γm ≤ gγ(x)− g(x) ≤ γM
• gγ is Lγ-smooth, i.e. gγ differentiable, convex,
‖∇gγ(x)−∇gγ(y)‖∗ ≤ Lγ ‖x− y‖ (Lγ proportional to 1

γ
)

where ‖·‖∗ is the dual norm of ‖·‖

Pierucci Nonsmooth Optimization for Statistical Learning with Structured Matrix Regularization 10 / 33



Smoothing techniques

Purpose:
to smooth a convex function

g : Rn → R
-2 -1 0 1 2
0

0.5

1

1.5

2

-2 -1 0 1 2
0

0.5

1

1.5

2

Two techniques:
1) Product convolution [Bertsekas 1978] [Duchi et al. 2012]

gpcγ (ξ) :=
∫
Rn

g(ξ − z) 1
γ
µ

(
z
γ

)
dz µ : probability density

2) Infimal convolution [Moreau 1965] [Nesterov 2007] [Beck, Teboulle 2012]

gicγ (ξ) := inf
z∈Rn

{
g(ξ − z) + γ ω

(
z
γ

)}
ω : smooth convex function

Result
• gγ is uniform approximation of g, i.e. ∃m, M ≥ 0 : −γm ≤ gγ(x)− g(x) ≤ γM
• gγ is Lγ-smooth, i.e. gγ differentiable, convex,
‖∇gγ(x)−∇gγ(y)‖∗ ≤ Lγ ‖x− y‖ (Lγ proportional to 1

γ
)

where ‖·‖∗ is the dual norm of ‖·‖

Pierucci Nonsmooth Optimization for Statistical Learning with Structured Matrix Regularization 10 / 33



Smoothing techniques

Purpose:
to smooth a convex function

g : Rn → R
-2 -1 0 1 2
0

0.5

1

1.5

2

-2 -1 0 1 2
0

0.5

1

1.5

2

Two techniques:
1) Product convolution [Bertsekas 1978] [Duchi et al. 2012]

gpcγ (ξ) :=
∫
Rn

g(ξ − z) 1
γ
µ

(
z
γ

)
dz µ : probability density

2) Infimal convolution [Moreau 1965] [Nesterov 2007] [Beck, Teboulle 2012]

gicγ (ξ) := inf
z∈Rn

{
g(ξ − z) + γ ω

(
z
γ

)}
ω : smooth convex function

Result
• gγ is uniform approximation of g, i.e. ∃m, M ≥ 0 : −γm ≤ gγ(x)− g(x) ≤ γM
• gγ is Lγ-smooth, i.e. gγ differentiable, convex,
‖∇gγ(x)−∇gγ(y)‖∗ ≤ Lγ ‖x− y‖ (Lγ proportional to 1

γ
)

where ‖·‖∗ is the dual norm of ‖·‖

Pierucci Nonsmooth Optimization for Statistical Learning with Structured Matrix Regularization 10 / 33



Smoothing surrogates of nonsmooth functions

• Purpose: obtain gγ to be used into algorithms
? (possibly) explicit expression
? easy to evaluate numerically

• Elementary example (in R) :
absolute value g(x) = |x|

? Product convolution, with µ(x) = 1√
2π e
− 1

2x
2

gcγ(x) = −xF (− x
γ

)−
√

2√
π
γe
− x2

2γ2 + xF (x
γ

)

F (x) := 1√
2π

∫ x
−∞ e−

t2
2 dt cumulative distribution of Gaussian

? Infimal convolution, with ω(x) = 1
2 ‖x‖

2

gicγ (x) =
{ 1

2γ x
2 + γ

2 if |x| ≤ γ
|x| if |x| > γ

•Motivating nonsmooth function: top-k loss (next)
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Motivating nonsmooth functions: top-k loss
Example: top-3 loss

• Top-3 loss for Classification

Cat ←→
1 Paper towel
2 Wall
3 Cat

=⇒ loss = 0

Ground truth Prediction

Good prediction if the true class is among the first 3 predicted.

• Top-3 loss for Ranking

1 Janis Joplins
2 David Bowie
3 Eric Clapton
4 Patty Smith
5 Jean-Jacques Goldman
6 Francesco Guccini

...

←→
1 David Bowie
2 Patty Smith
3 Janis Joplins

=⇒ loss = 0 + 1
3 + 0

Grund truth Prediction

Predict an ordered list, the loss counts the mismatches to the true list

Pierucci Nonsmooth Optimization for Statistical Learning with Structured Matrix Regularization 12 / 33



Motivating nonsmooth functions: top-k loss
Example: top-3 loss

• Top-3 loss for Classification

Cat ←→
1 Paper towel
2 Wall
3 Cat

=⇒ loss = 0

Ground truth Prediction

Good prediction if the true class is among the first 3 predicted.

• Top-3 loss for Ranking

1 Janis Joplins
2 David Bowie
3 Eric Clapton
4 Patty Smith
5 Jean-Jacques Goldman
6 Francesco Guccini

...

←→
1 David Bowie
2 Patty Smith
3 Janis Joplins

=⇒ loss = 0 + 1
3 + 0

Grund truth Prediction

Predict an ordered list, the loss counts the mismatches to the true list

Pierucci Nonsmooth Optimization for Statistical Learning with Structured Matrix Regularization 12 / 33



Motivating nonsmooth functions: top-k loss
Example: top-3 loss

• Top-3 loss for Classification

Cat ←→
1 Paper towel
2 Wall
3 Cat

=⇒ loss = 0

Ground truth Prediction

Good prediction if the true class is among the first 3 predicted.

• Top-3 loss for Ranking

1 Janis Joplins
2 David Bowie
3 Eric Clapton
4 Patty Smith
5 Jean-Jacques Goldman
6 Francesco Guccini

...

←→
1 David Bowie
2 Patty Smith
3 Janis Joplins

=⇒ loss = 0 + 1
3 + 0

Grund truth Prediction

Predict an ordered list, the loss counts the mismatches to the true list

Pierucci Nonsmooth Optimization for Statistical Learning with Structured Matrix Regularization 12 / 33



Smoothing of top-k

Convex top-k error function, written as a sublinear function

g(x) = max
z∈Z
〈x, z〉

Z :=
{

z ∈ Rn : 0 ≤ zi ≤ 1
k
,
n∑
i=1

zi ≤ 1
}

= cube ∩ simplex

• Case k = 1 Top-1
g(x) = ‖x+‖∞ = max{0,max

i
{xi}}

Infimal convolution with ω(x) =
(

n∑
i=1

xi ln(xi)− xi
)∗

gγ(x) =

γ
(

1 + ln
∑n

i=1 e
xi
γ

)
if

∑n

i=1 e
xi
γ > 1

γ
∑n

i=1 e
xi
γ if

∑n

i=1 e
xi
γ ≤ 1

x
x
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γ
(
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)
if

∑n

i=1 e
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γ > 1 ←− Classification

Same result as in statistics [Hastie et al., 2008]
γ = 1→ multinomial logistic loss
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Smoothing of top-k case k > 1
Infimal convolution with ω = 1

2 ‖·‖
2

gγ(x) = −λ?(x, γ) +
n∑
i=1

Hγ(xi + λ?(x, γ))

Hγ(t) =


0 t < 0
1
2 t

2 t ∈ [0, 1
k

]
t
k
− 1

k2 t > 1
k

•We need to solve an auxiliary problem
(smooth dual problem)

Evaluate gγ(x) through the dual problem

Define
Px := {xi, xi − k : i = 1 . . . n}

Θ′(λ) = 1−
∑

tj∈Px
π[0,1/k](tj + λ)

Find
a, b ∈ Px s.t. Θ′(a) ≤ 0 ≤ Θ′(b)

λ?(x, γ) = max
{

0, a− Θ′(a)(b−a)
Θ′(b)−Θ′(a)

}
−20 −10 0 10 20
−1

0

1

2

3
∇Θ  (λ)Θ′(λ)

λ

λ?
b

a

tj
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Outline

1 Unified view of smoothing techniques

2 Conditional gradient algorithms for doubly nonsmooth learning

3 Regularization by group nuclear norm

4 Conclusion and perspectives
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Matrix learning problem

min
W∈Rd×k

R(W)︸ ︷︷ ︸
nonsmooth

+ λΩ(W)︸ ︷︷ ︸
nonsmooth

Empirical risk R(W) := 1
N

∑N

i=1 `(W,xi,yi)
• Top-k for ranking and multiclass classification `1(W,x,y) := ‖(Ax,yW)+‖∞
• L1 for regression `1(W,x,y) := |Ax,yW|

Regularizer (typically norm) Ω(W)
• Nuclear norm ‖W‖σ,1 −→ sparsity on singular values

• L1 norm ‖W‖1 :=
∑d

i=1

∑k

j=1 |Wij | −→ sparsity on entries

• Group nuclear norm ΩG(W) (of contribution 3)

sparsity↔ feature selection
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Existing algorithms for nonsmooth optimization

min
W∈Rd×k

R(W)︸ ︷︷ ︸
nonsmooth

+ λΩ(W)︸ ︷︷ ︸
nonsmooth

Subgradient, bundle algorithms [Nemirovski, Yudin 1976] [Lemarechal 1979]

Proximal algorithms [Douglas, Rachford 1956]

Algorithms are not scalable for nuclear norm: iteration cost ' full SVD = O(dk2)

What if the loss were smooth?

min
W∈Rd×k

S(W)︸ ︷︷ ︸
smooth

+ λΩ(W)︸ ︷︷ ︸
nonsmooth

Algorithms with faster convergence when S is smooth

Proximal gradient algorithms
[Nesterov 2005] [Beck, Teboulle, 2009]
Still not scalable for nuclear norm: iteration cost ' full SVD

(Composite) conditional gradient algorithms
[Frank, Wolfe, 1956][Harchaoui, Juditsky, Nemirovski, 2013]
Efficient iterations for nuclear norm:
iteration cost ' compute largest singular value = O(dk)
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Composite conditional gradient algorithm

min
W∈Rd×k

S(W)︸ ︷︷ ︸
smooth

+ λ Ω(W)︸ ︷︷ ︸
nonsmooth

State of art algorithm:

Composite conditional gradient algorithm

Let W0 = 0
r0 such that Ω(W?) ≤ r0

for t = 0 . . . T do
Compute

Zt = argmin
D s.t. Ω(D)≤rt

〈∇S(Wt),D〉 [gradient step]

αt, βt = argmin
α,β≥0; α+β≤1

S(αZt + βWt) + λ(α+ β)rt [optimal stepsize]

Update
Wt+1 = αtZt + βtWt

rt+1 = (αt + βt)rt
end for

where
Wt,Zt,D ∈ Rd×k

Efficient and scalable for some Ω e.g. nuclear norm, where Zt = uv>
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Conditional gradient despite nonsmooth loss

Use conditional gradient replacing∇S(Wt) with a subgradient st ∈ ∂R(Wt)

Simple counter example in R2

min
w∈R2

‖Aw + b‖1 + ‖w‖1

4 Federico Pierucci et al.

Algorithm 1 Composite Conditional Gradient
Inputs: �, ✏
Initialize W0 = 0, t = 1
for k = 0 . . . K do

Call the linear minimization oracle: LMO(Wk)
Compute

min
✓1,...,✓t�0

�
tX

i=1

✓i + R

 
tX

i=1

✓iai

!

Increment t t + 1
end for
Return W =

P
i ✓iai

Algorithm 2 Conditional gradient algorithm: Frank-Wolfe
Input
Initialize W0 = 0, t = 1
for k = 0 . . . K do

Call linear minimization oracle adaptiveak  LMO(Wt)
Set step-size ↵k = 2/(2 + k)
Update Wk+1  (1� ↵k)Wk + ↵kak

end for
Return WK

2.3 How about nonsmooth empirical risk?

Composite conditional gradient assumes that the empirical risk in the objective function g is smooth.
Indeed, at each iteration, the algorithm requires to computerR(W ). Should we consider nonsmooth loss
functions, such as the `1-loss or the hinge-loss, the convergence of the algorithm is unclear if we replace
the gradient by a subgradient in @R(W ). In fact, we can produce a simple counterexample showing that
the corresponding algorithm can get stuck in a suboptimal point.

Let us describe and draw in Figure 1 a counterexample in two dimensions (generalization to higher di-
mension is straightforward). We consider the `1-norm with its four atoms {(1, 0), (0, 1), (�1, 0), (0,�1)}
and a convex function of the type of a translated weighted `1-norm

f(w1, w2) = |w1 + w2 � 3/2| + 4 |w2 � w1| .

level sets of Remp

w1

w2

atoms of A

algorithm stuck at (0, 0)

Fig. 1 Drawing of a situation where the algorithm using a subgradient of a nonsmooth empirical risk does not converge.

We observe that the four directions given by the atoms go from (0, 0) towards level-sets of R with
larger values. This yields that, for small �, the minimization of the objective function on these directions
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Inputs: �, ✏
Initialize W0 = 0, t = 1
for k = 0 . . . K do

Call the linear minimization oracle: LMO(Wk)
Compute

min
✓1,...,✓t�0

�
tX

i=1

✓i + R

 
tX

i=1

✓iai

!

Increment t t + 1
end for
Return W =

P
i ✓iai

Algorithm 2 Conditional gradient algorithm: Frank-Wolfe
Input
Initialize W0 = 0, t = 1
for k = 0 . . . K do

Call linear minimization oracle adaptiveak  LMO(Wt)
Set step-size ↵k = 2/(2 + k)
Update Wk+1  (1� ↵k)Wk + ↵kak

end for
Return WK

2.3 How about nonsmooth empirical risk?

Composite conditional gradient assumes that the empirical risk in the objective function g is smooth.
Indeed, at each iteration, the algorithm requires to computerR(W ). Should we consider nonsmooth loss
functions, such as the `1-loss or the hinge-loss, the convergence of the algorithm is unclear if we replace
the gradient by a subgradient in @R(W ). In fact, we can produce a simple counterexample showing that
the corresponding algorithm can get stuck in a suboptimal point.

Let us describe and draw in Figure 1 a counterexample in two dimensions (generalization to higher di-
mension is straightforward). We consider the `1-norm with its four atoms {(1, 0), (0, 1), (�1, 0), (0,�1)}
and a convex function of the type of a translated weighted `1-norm

f(w1, w2) = |w1 + w2 � 3/2| + 4 |w2 � w1| .

level sets of Remp

w1

w2

atoms of A

algorithm stuck at (0, 0)

Fig. 1 Drawing of a situation where the algorithm using a subgradient of a nonsmooth empirical risk does not converge.

We observe that the four directions given by the atoms go from (0, 0) towards level-sets of R with
larger values. This yields that, for small �, the minimization of the objective function on these directions
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Smoothed composite conditional gradient algorithm

Idea: Replace the nonsmooth loss with a smoothed loss

min
W∈Rd×k

R(W)︸ ︷︷ ︸
nonsmooth

+λΩ(W) −→ min
W∈Rd×k

Rγ(W)︸ ︷︷ ︸
smooth

+λΩ(W)

{Rγ}γ>0 family of smooth approximations of R

Let W0 = 0
r0 such that Ω(W?) ≤ r0

for t = 0 . . . T do
Compute

Zt = argmin
D s.t. Ω(D)≤rt

〈∇Rγt (Wt),D〉

αt, βt = argmin
α,β≥0; α+β≤1

Rγt (αZt + βWt) + λ(α+ β)rt

Update
Wt+1 = αtZt + βtWt

rt+1 = (αt + βt)rt
end for

αt, βt = stepsize γt = smoothing parameter

Note: We want solve the initial ‘doubly nonsmooth’ problem
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Convergence analysis

Doubly nonsmooth problem

min
W∈Rd×k

F (W) = R(W) + λΩ(W)

W? optimal solution
γt = smoothing parameter ( 6= stepsize)

Theorems of convergence

• Fixed smoothing of R γt = γ

F (Wt)− F (W?) ≤ γM + 2
γ(t+ 14)

Dimensionality freedom of M depends on ω or µ
The best γ depends on the required accuracy ε

• Time-varying smoothing of R γt = γ0√
t+1

F (Wt)− F (W?) ≤ C√
t

Dimensionality freedom of C depends on ω or µ, γ0 and ‖W?‖
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Algoritm implementation

Package
All the Matlab code written from scratch, in particular:

• Multiclass SVM

• Top-k multiclass SVM

• All other smoothed functions

Memory
Efficient memory management

• Tools to operate with low rank variables

• Tools to work with sparse sub-matrices of low rank matrices (collaborative filtering)

Numerical experiments - 2 motivating applications

• Fix smoothing - matrix completion (regression)

• Time-varying smoothing - top-5 multiclass classification
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Fix smoothing
Example with matrix completion, regression

Data: Movielens
d = 71 567 users
k = 10 681 movies
10 000 054 ratings (= 1.3%)
( normalized into [0,1] )

Benchmark
• Iterates Wt generated on a train set
•We observe R(Wt) on the validation set
• Choose the best γ that minimizes R(Wt) in the
validation set

10
0

10
20.188

0.2457

0.3211

0.4196

0.5484

0.7167

iterations

Emp. risk on validation set, λ=10−6 

 

 

γ = 0.001
γ = 0.01
γ = 0.1
γ = 0.5
γ = 1
γ = 5
γ = 10
γ = 50
γ = best

Each γ gives a different optimization problem

Tiny smoothing→ slower convergence
Large smoothing→ objective much different than the initial one
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Time-varying smoothing
Example with top-5 multiclass classification

Data: ImageNet
k = 134 classes
N = 13 400 images
Features: BOW
d = 4096 features

Benchmark
• Iterates Wt generated on a train set
•We observe top-5 misclassification error on the validation set
• To compare: find best fixed smoothing parameter (using the
other benchmark)

Time-varying smoothing parameter

γt = γ0

(1 + t)p

p ∈
{

1
2 , 1
}

1 2 4 8 16 32 64 128 256
0.7791

0.8131

0.8487

0.8857

0.9244

0.9648
Validation set

iterations

M
is

cl
as

si
fic

at
io

n 
er

ro
r

 

 

γ
0
=0.01 p=1

γ
0
=0.1 p=1

γ
0
=1 p=1

γ
0
=10 p=1

γ
0
=100 p=1

γ
0
=0.01 p=0.5

γ
0
=0.1 p=0.5

γ
0
=1 p=0.5

γ
0
=10 p=0.5

γ
0
=100 p=0.5

γ=0.1 non ad.

No need to tune γ0:
• Time-varying smoothing matches the performances of the best experimentally
tuned fixed smoothing
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Outline

1 Unified view of smoothing techniques

2 Conditional gradient algorithms for doubly nonsmooth learning

3 Regularization by group nuclear norm

4 Conclusion and perspectives
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Group nuclear norm

•Matrix generalization of the popular group lasso norm
[Turlach et al., 2005] [Yuan and Lin, 2006] [Zhao et al., 2009] [Jacob et al., 2009]

• Nuclear norm ‖W‖σ,1 : sum of singular values of W

W1

W2

W3

W2
W3

W1
W =

i1

Π1

i3

Π3

i3

Π3

G = {1, 2, 3}

ΩG(W) := min
W=
∑
g∈G

ig(Wg)

∑
g∈G

αg ‖Wg‖σ,1

[Tomioka, Suzuki 2013] non-overlapping groups

ig : immersion
Πg : projection

Convex analysis - theoretical study

• Fenchel conjugate Ω∗G
• Dual norm Ω◦G
• Expression of ΩG as a support function

• Convex hull of functions involving rank
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Convex hull - Results

In words, the convex hull is the largest convex function lying below the given one

Properly restricted to a ball,
the nuclear norm is the convex hull of rank [Fazel 2001]→ generalization

Theorem

Properly restricted to a ball, group nuclear norm is the convex hull of:

• The ‘reweighted group rank’ function:

Ωrank
G (W) := inf

W=
∑
g∈G

ig(Wg)

∑
g∈G

αg rank(Wg)

• The ‘reweighted restricted rank’ function:

Ωrank(W) := min
g∈G

αg rank(W) + δg(W)

δg indicator function

Learning with group nuclear norm enforces low-rank property on groups
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Learning with group nuclear norm

Usual optimization algorithms can handle the group nuclear norm:
? composite conditional gradient algorithms
? (accelerated) proximal gradient algorithms

Illustration with proximal gradient optimization algorithm
The key computations are parallelized on each group

Good scalability when there are many small groups

• prox of group nuclear norm

proxγΩG ((Wg)g) =
(
UgDγ(Sg)Vg

>)
g∈G

where Dγ : soft thresholding operator

• SVD decomposition
Wg = UgSgVg

>

Dγ(S) = Diag({max{si − γ, 0}}1≤i≤r).

Package in Matlab, in particular:
→ vector space of group nuclear norm, overloading of + *
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Numerical illustration: matrix completion

“Ground truth”
data

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

-3

-2

-1

0

1

2

Synthetic low rank matrix X
sum of 10 rank-1 groups
normalized to have µ = 0, σ = 1
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Numerical illustration: matrix completion

“Ground truth” Observation
data

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

-3

-2

-1

0

1

2

observations

500 1000 1500 2000

500

1000

1500

2000

-3

-2

-1

0

1

2

Synthetic low rank matrix X
sum of 10 rank-1 groups
normalized to have µ = 0, σ = 1

Uniform 10% sampling Xij

with (i, j) ∈ I
Gaussian additive noise σ = 0.2
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Numerical illustration: matrix completion

“Ground truth” X Solution W?

data
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Recovery error:
1

2N ‖W
? −X‖2 = 0.0051

min
W∈Rd×k

1
N

∑
(i,j)∈I

1
2 (Wij −Xij)2 + λΩG(W)

Pierucci Nonsmooth Optimization for Statistical Learning with Structured Matrix Regularization 30 / 33



Outline

1 Unified view of smoothing techniques

2 Conditional gradient algorithms for doubly nonsmooth learning

3 Regularization by group nuclear norm

4 Conclusion and perspectives
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Summary

• Smoothing

? Versatile tool in optimization

? Ways to combine smoothing with many existing algorithms

• Time-varying smoothing

? Theory: minimization convergence analysis

? Practice: recover the best, no need to tune γ

• Group nuclear norm

? Theory and practice to combine groups and rank sparsity

? Overlapping groups
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Perspectives

• Smoothing for faster convergence:
Moreau-Yosida smoothing can be used to improve the condition number of poorly
conditioned objectives before applying linearly-convergent convex optimization
algorithms [Hongzhou et al. 2017]

• Smoothing for better prediction:
Smoothing can be adapted to properties of the dataset and be used to improve the
prediction performance of machine learning algorithms

• Learning group structure and weights for better prediction:
The group structure in the group nuclear norm can be learned to leveraged
underlying structure and improve the prediction

• Extensions to group Schatten norm

• Potential applications of group nuclear norm

? multi-attribute classification

? multiple tree hierarchies

? dimensionality reduction, feature selection e.g. concatenate features, avoid PCA

Thank You
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