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Sparse methods for machine learning

Outline

• Sparse linear estimation with the ℓ1-norm

– Lasso

– Important theoretical results

• Structured sparse methods on vectors

– Groups of features / Multiple kernel learning

• Sparse methods on matrices

– Multi-task learning

– Matrix factorization (low-rank, sparse PCA, dictionary learning)



Supervised learning and regularization

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n

• Minimize with respect to function f : X → Y:

n
∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2

Error on data + Regularization

Loss & function space ? Norm ?

• Two theoretical/algorithmic issues:

1. Loss

2. Function space / norm



Regularizations

• Main goal: avoid overfitting

• Two main lines of work:

1. Euclidean and Hilbertian norms (i.e., ℓ2-norms)

– Possibility of non linear predictors

– Non parametric supervised learning and kernel methods

– Well developped theory and algorithms (see, e.g., Wahba, 1990;

Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)
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• Main goal: avoid overfitting

• Two main lines of work:

1. Euclidean and Hilbertian norms (i.e., ℓ2-norms)

– Possibility of non linear predictors

– Non parametric supervised learning and kernel methods

– Well developped theory and algorithms (see, e.g., Wahba, 1990;

Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)

2. Sparsity-inducing norms

– Usually restricted to linear predictors on vectors f(x) = w⊤x

– Main example: ℓ1-norm ‖w‖1 =
∑p

i=1
|wi|

– Perform model selection as well as regularization

– Theory and algorithms “in the making”



ℓ2-norm vs. ℓ1-norm

• ℓ1-norms lead to interpretable models

• ℓ2-norms can be run implicitly with very large feature spaces (e.g.,

kernel trick)

• Algorithms:

– Smooth convex optimization vs. nonsmooth convex optimization

• Theory:

– better predictive performance?



ℓ2 vs. ℓ1 - Gaussian hare vs. Laplacian tortoise

• First-order methods (Fu, 1998; Beck and Teboulle, 2009)
• Homotopy methods (Markowitz, 1956; Efron et al., 2004)



Why ℓ1-norm constraints leads to sparsity?

• Example: minimize quadratic function Q(w) subject to ‖w‖1 6 T .

– coupled soft thresholding

• Geometric interpretation

– NB : penalizing is “equivalent” to constraining
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ℓ1-norm regularization (linear setting)

• Data: covariates xi ∈ R
p, responses yi ∈ Y, i = 1, . . . , n

• Minimize with respect to loadings/weights w ∈ R
p:

J(w) =
n

∑

i=1

ℓ(yi, w
⊤xi) + λ‖w‖1

Error on data + Regularization

• Including a constant term b? Penalizing or constraining?

• square loss ⇒ basis pursuit in signal processing (Chen et al., 2001),

Lasso in statistics/machine learning (Tibshirani, 1996)



Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if

‖QJcJQ
−1

JJ sign(wJ)‖∞ 6 1,

where Q = limn→+∞
1

n

∑n
i=1

xix
⊤
i ∈ R

p×p and J = Supp(w)
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Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and
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‖QJcJQ
−1
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1

n
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xix
⊤
i ∈ R

p×p and J = Supp(w)

• The Lasso is usually not model-consistent

– Selects more variables than necessary (see, e.g., Lv and Fan, 2009)

– Fixing the Lasso: adaptive Lasso (Zou, 2006), relaxed

Lasso (Meinshausen, 2008), thresholding (Lounici, 2008),

Bolasso (Bach, 2008a), stability selection (Meinshausen and

Bühlmann, 2008)



Adaptive Lasso and concave penalization

• Adaptive Lasso (Zou, 2006; Huang et al., 2008)

– Weighted ℓ1-norm: min
w∈Rp

L(w) + λ

p
∑

j=1

|wj|

|ŵj|α

– ŵ estimator obtained from ℓ2 or ℓ1 regularization

• Reformulation in terms of concave penalization

min
w∈Rp

L(w) +

p
∑

j=1

g(|wj|)

– Example: g(|wj|) = |wj|
1/2 or log |wj|. Closer to the ℓ0 penalty

– Concave-convex procedure: replace g(|wj|) by affine upper bound

– Better sparsity-inducing properties (Fan and Li, 2001; Zou and Li,

2008; Zhang, 2008b)
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Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if

‖QJcJQ
−1

JJ sign(wJ)‖∞ 6 1,

where Q = limn→+∞
1

n

∑n
i=1

xix
⊤
i ∈ R

p×p and J = Supp(w)

2. Exponentially many irrelevant variables (Zhao and Yu, 2006;

Wainwright, 2009; Bickel et al., 2009; Lounici, 2008; Meinshausen

and Yu, 2008): under appropriate assumptions, consistency is possible

as long as

log p = O(n)



Alternative sparse methods

Greedy methods

• Forward selection

• Forward-backward selection

• Non-convex method

– Harder to analyze

– Simpler to implement

– Problems of stability

• Positive theoretical results (Zhang, 2009, 2008a)

– Similar sufficient conditions than for the Lasso

• Bayesian methods : see Seeger (2008)



Comparing Lasso and other strategies

for linear regression

• Compared methods to reach the least-square solution

– Ridge regression: min
w∈Rp

1

2
‖y − Xw‖2

2 +
λ

2
‖w‖2

2

– Lasso: min
w∈Rp

1

2
‖y − Xw‖2

2 + λ‖w‖1

– Forward greedy:

∗ Initialization with empty set

∗ Sequentially add the variable that best reduces the square loss

• Each method builds a path of solutions from 0 to ordinary least-

squares solution



Simulation results

• i.i.d. Gaussian design matrix, k = 4, n = 64, p ∈ [2, 256], SNR = 1

• Note stability to non-sparsity and variability
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Extensions - Going beyond the Lasso

• ℓ1-norm for linear feature selection in high dimensions

– Lasso usually not applicable directly



Extensions - Going beyond the Lasso

• ℓ1-norm for linear feature selection in high dimensions

– Lasso usually not applicable directly

• Sparse methods are not limited to the square loss

– logistic loss: algorithms (Beck and Teboulle, 2009) and theory (Van

De Geer, 2008; Bach, 2009)

• Sparse methods are not limited to supervised learning

– Learning the structure of Gaussian graphical models (Meinshausen

and Bühlmann, 2006; Banerjee et al., 2008)

– Sparsity on matrices (last part of this session)

• Sparse methods are not limited to linear variable selection

– Multiple kernel learning (next part of this session)



Sparse methods for machine learning

Outline

• Sparse linear estimation with the ℓ1-norm

– Lasso

– Important theoretical results

• Structured sparse methods on vectors

– Groups of features / Multiple kernel learning

• Sparse methods on matrices

– Multi-task learning

– Matrix factorization (low-rank, sparse PCA, dictionary learning)



Penalization with grouped variables

(Yuan and Lin, 2006)

• Assume that {1, . . . , p} is partitioned into m groups G1, . . . , Gm

• Penalization by
∑m

i=1
‖wGi‖2, often called ℓ1-ℓ2 norm

• Induces group sparsity

– Some groups entirely set to zero

– no zeros within groups

• In this tutorial:

– Groups may have infinite size ⇒ MKL

– Groups may overlap ⇒ structured sparsity



Linear vs. non-linear methods

• All methods in this tutorial are linear in the parameters

• By replacing x by features Φ(x), they can be made non linear in

the data

• Implicit vs. explicit features

– ℓ1-norm: explicit features

– ℓ2-norm: representer theorem allows to consider implicit features if

their dot products can be computed easily (kernel methods)



Kernel methods: regularization by ℓ2-norm

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n, with features Φ(x) ∈ F = R
p

– Predictor f(x) = w⊤Φ(x) linear in the features

• Optimization problem: min
w∈Rp

n
∑

i=1

ℓ(yi, w
⊤Φ(xi)) +

λ

2
‖w‖2

2



Kernel methods: regularization by ℓ2-norm

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n, with features Φ(x) ∈ F = R
p

– Predictor f(x) = w⊤Φ(x) linear in the features

• Optimization problem: min
w∈Rp

n
∑

i=1

ℓ(yi, w
⊤Φ(xi)) +

λ

2
‖w‖2

2

• Representer theorem (Kimeldorf and Wahba, 1971): solution must

be of the form w =
∑n

i=1
αiΦ(xi)

– Equivalent to solving: min
α∈Rn

n
∑

i=1

ℓ(yi, (Kα)i) +
λ

2
α⊤Kα

– Kernel matrix Kij = k(xi, xj) = Φ(xi)
⊤Φ(xj)



Multiple kernel learning (MKL)

(Lanckriet et al., 2004b; Bach et al., 2004a)

• Sparsity with non-linearities

– replace f(x) =
∑p

j=1
w⊤

j xj with x ∈ R
p and wj ∈ R

– by f(x) =
∑p

j=1
w⊤

j Φj(x) with x ∈ X , Φj(x) ∈ Fj an wj ∈ Fj

• Replace the ℓ1-norm
∑p

j=1
|wj| by “block” ℓ1-norm

∑p
j=1

‖wj‖2

• Multiple feature maps / kernels on x ∈ X :

– p “feature maps” Φj : X 7→ Fj, j = 1, . . . , p.

– Predictor: f(x) = w1
⊤Φ1(x) + · · · + wp

⊤Φp(x)

– Generalized additive models (Hastie and Tibshirani, 1990)



Regularization for multiple features

x

Φ1(x)⊤ w1

ր ... ... ց

−→ Φj(x)⊤ wj −→

ց ... ... ր

Φp(x)⊤ wp

w⊤
1 Φ1(x) + · · · + w⊤

p Φp(x)

• Regularization by
∑p

j=1
‖wj‖

2
2 is equivalent to using K =

∑p
j=1

Kj

– Summing kernels is equivalent to concatenating feature spaces



Regularization for multiple features

x

Φ1(x)⊤ w1

ր ... ... ց

−→ Φj(x)⊤ wj −→

ց ... ... ր

Φp(x)⊤ wp

w⊤
1 Φ1(x) + · · · + w⊤

p Φp(x)

• Regularization by
∑p

j=1
‖wj‖

2
2 is equivalent to using K =

∑p
j=1

Kj

• Regularization by
∑p

j=1
‖wj‖2 imposes sparsity at the group level

• Main questions when regularizing by block ℓ1-norm:

1. Algorithms (Bach et al., 2004a; Rakotomamonjy et al., 2008)

2. Analysis of sparsity inducing properties (Bach, 2008b)

3. Equivalent to learning a sparse combination
∑p

j=1
ηjKj



Applications of multiple kernel learning

• Selection of hyperparameters for kernel methods

• Fusion from heterogeneous data sources (Lanckriet et al., 2004a)

• Two regularizations on the same function space:

– Uniform combination ⇔ ℓ2-norm

– Sparse combination ⇔ ℓ1-norm

– MKL always leads to more interpretable models

– MKL does not always lead to better predictive performance

∗ In particular, with few well-designed kernels

∗ Be careful with normalization of kernels (Bach et al., 2004b)



Applications of multiple kernel learning

• Selection of hyperparameters for kernel methods

• Fusion from heterogeneous data sources (Lanckriet et al., 2004a)

• Two regularizations on the same function space:

– Uniform combination ⇔ ℓ2-norm

– Sparse combination ⇔ ℓ1-norm

– MKL always leads to more interpretable models

– MKL does not always lead to better predictive performance

∗ In particular, with few well-designed kernels

∗ Be careful with normalization of kernels (Bach et al., 2004b)

• Sparse methods: new possibilities and new features
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• Sparse linear estimation with the ℓ1-norm

– Lasso

– Important theoretical results

• Structured sparse methods on vectors

– Groups of features / Multiple kernel learning

• Sparse methods on matrices

– Multi-task learning

– Matrix factorization (low-rank, sparse PCA, dictionary learning)



Learning on matrices - Image denoising

• Simultaneously denoise all patches of a given image

• Example from Mairal, Bach, Ponce, Sapiro, and Zisserman (2009b)



Learning on matrices - Collaborative filtering

• Given nX “movies” x ∈ X and nY “customers” y ∈ Y,

• predict the “rating” z(x,y) ∈ Z of customer y for movie x

• Training data: large nX ×nY incomplete matrix Z that describes the

known ratings of some customers for some movies

• Goal: complete the matrix.



Learning on matrices - Multi-task learning

• k linear prediction tasks on same covariates x ∈ R
p

– k weight vectors wj ∈ R
p

– Joint matrix of predictors W = (w1, . . . ,wk) ∈ R
p×k

• Classical application

– Multi-category classification (one task per class) (Amit et al., 2007)

• Share parameters between tasks

• Joint variable selection (Obozinski et al., 2009)

– Select variables which are predictive for all tasks

• Joint feature selection (Pontil et al., 2007)

– Construct linear features common to all tasks



Matrix factorization - Dimension reduction

• Given data matrix X = (x1, . . . ,xn) ∈ R
p×n

– Principal component analysis: xi ≈ Dαi ⇒ X = DA

– K-means: xi ≈ dk ⇒ X = DA



Two types of sparsity for matrices M ∈ R
n×p

I - Directly on the elements of M

• Many zero elements: Mij = 0

M

• Many zero rows (or columns): (Mi1, . . . ,Mip) = 0

M



Two types of sparsity for matrices M ∈ R
n×p

II - Through a factorization of M = UV⊤

• Matrix M = UV⊤, U ∈ R
n×k and V ∈ R

p×k

• Low rank: m small

=

T

U
V

M

• Sparse decomposition: U sparse

U= VM
T



Structured sparse matrix factorizations

• Matrix M = UV⊤, U ∈ R
n×k and V ∈ R

p×k

• Structure on U and/or V

– Low-rank: U and V have few columns

– Dictionary learning / sparse PCA: U has many zeros

– Clustering (k-means): U ∈ {0, 1}n×m, U1 = 1

– Pointwise positivity: non negative matrix factorization (NMF)

– Specific patterns of zeros (Jenatton et al., 2010)

– Low-rank + sparse (Candès et al., 2009)

– etc.

• Many applications

• Many open questions (Algorithms, identifiability, etc.)



Low-rank matrix factorizations

Trace norm

• Given a matrix M ∈ R
n×p

– Rank of M is the minimum size m of all factorizations of M into

M = UV⊤, U ∈ R
n×m and V ∈ R

p×m

– Singular value decomposition: M = UDiag(s)V⊤ where U and

V have orthonormal columns and s ∈ R
m
+ are singular values

• Rank of M equal to the number of non-zero singular values



Low-rank matrix factorizations

Trace norm

• Given a matrix M ∈ R
n×p

– Rank of M is the minimum size m of all factorizations of M into

M = UV⊤, U ∈ R
n×m and V ∈ R

p×m

– Singular value decomposition: M = UDiag(s)V⊤ where U and

V have orthonormal columns and s ∈ R
m
+ are singular values

• Rank of M equal to the number of non-zero singular values

• Trace-norm (a.k.a. nuclear norm) = sum of singular values

• Convex function, leads to a semi-definite program (Fazel et al., 2001)

• First used for collaborative filtering (Srebro et al., 2005)



Sparse principal component analysis

• Given data X = (x⊤
1 , . . . ,x⊤

n ) ∈ R
p×n, two views of PCA:

– Analysis view: find the projection d ∈ R
p of maximum variance

(with deflation to obtain more components)

– Synthesis view: find the basis d1, . . . ,dk such that all xi have

low reconstruction error when decomposed on this basis

• For regular PCA, the two views are equivalent



Sparse principal component analysis

• Given data X = (x⊤
1 , . . . ,x⊤

n ) ∈ R
p×n, two views of PCA:

– Analysis view: find the projection d ∈ R
p of maximum variance

(with deflation to obtain more components)

– Synthesis view: find the basis d1, . . . ,dk such that all xi have

low reconstruction error when decomposed on this basis

• For regular PCA, the two views are equivalent

• Sparse extensions

– Interpretability

– High-dimensional inference

– Two views are differents

∗ For analysis view, see d’Aspremont, Bach, and El Ghaoui (2008)



Sparse principal component analysis

Synthesis view

• Find d1, . . . ,dk ∈ R
p sparse so that

n
∑

i=1

min
αi∈Rm

∥

∥

∥

∥

xi −
k

∑

j=1

(αi)jdj

∥

∥

∥

∥

2

2

=
n

∑

i=1

min
αi∈Rm

∥

∥xi − Dαi

∥

∥

2

2
is small

– Look for A = (α1, . . . ,αn) ∈ R
k×n and D = (d1, . . . ,dk) ∈ R

p×k

such that D is sparse and ‖X −DA‖2
F is small



Sparse principal component analysis

Synthesis view

• Find d1, . . . ,dk ∈ R
p sparse so that

n
∑

i=1

min
αi∈Rm

∥

∥

∥

∥

xi −
k

∑

j=1

(αi)jdj

∥

∥

∥

∥

2

2

=
n

∑

i=1

min
αi∈Rm

∥

∥xi − Dαi

∥

∥

2

2
is small

– Look for A = (α1, . . . ,αn) ∈ R
k×n and D = (d1, . . . ,dk) ∈ R

p×k

such that D is sparse and ‖X −DA‖2
F is small

• Sparse formulation (Witten et al., 2009; Bach et al., 2008)

– Penalize/constrain dj by the ℓ1-norm for sparsity

– Penalize/constrain αi by the ℓ2-norm to avoid trivial solutions

min
D,A

n
∑

i=1

‖xi −Dαi‖
2
2 + λ

k
∑

j=1

‖dj‖1 s.t. ∀i, ‖αi‖2 6 1



Sparse PCA vs. dictionary learning

• Sparse PCA: xi ≈ Dαi, D sparse



Sparse PCA vs. dictionary learning

• Sparse PCA: xi ≈ Dαi, D sparse

• Dictionary learning: xi ≈ Dαi, αi sparse



Structured matrix factorizations (Bach et al., 2008)

min
D,A

n
∑

i=1

‖xi −Dαi‖
2
2 + λ

k
∑

j=1

‖dj‖⋆ s.t. ∀i, ‖αi‖• 6 1

min
D,A

n
∑

i=1

‖xi −Dαi‖
2
2 + λ

n
∑

i=1

‖αi‖• s.t. ∀j, ‖dj‖⋆ 6 1

• Optimization by alternating minimization (non-convex)

• αi decomposition coefficients (or “code”), dj dictionary elements

• Two related/equivalent problems:

– Sparse PCA = sparse dictionary (ℓ1-norm on dj)

– Dictionary learning = sparse decompositions (ℓ1-norm on αi)

(Olshausen and Field, 1997; Elad and Aharon, 2006; Lee et al.,

2007)



Probabilistic topic models and matrix factorization

• Latent Dirichlet allocation (Blei et al., 2003)

– For a document, sample θ ∈ R
k from a Dirichlet(α)

– For the n-th word of the same document,

∗ sample a topic zn from a multinomial with parameter θ

∗ sample a word wn from a multinomial with parameter β(zn, :)



Probabilistic topic models and matrix factorization

• Latent Dirichlet allocation (Blei et al., 2003)

– For a document, sample θ ∈ R
k from a Dirichlet(α)

– For the n-th word of the same document,

∗ sample a topic zn from a multinomial with parameter θ

∗ sample a word wn from a multinomial with parameter β(zn, :)

• Interpretation as multinomial PCA (Buntine and Perttu, 2003)

– Marginalizing over topic zn, given θ, each word wn is selected from

a multinomial with parameter
∑k

z=1
θkβ(z, :) = β⊤θ

– Row of β = dictionary elements, θ code for a document



Probabilistic topic models and matrix factorization

• Two different views on the same problem

– Interesting parallels to be made

– Common problems to be solved

• Structure on dictionary/decomposition coefficients with adapted

priors (Blei et al., 2004; Jenatton et al., 2010)

• Identifiability and interpretation/evaluation of results

• Discriminative tasks (Blei and McAuliffe, 2008; Lacoste-Julien

et al., 2008; Mairal et al., 2009a)

• Optimization and local minima

– Online learning (Mairal et al., 2009c)



Sparse methods for machine learning

Why use sparse methods?

• Sparsity as a proxy to interpretability

– Structured sparsity

• Sparsity for high-dimensional inference

– Influence on feature design

• Sparse methods are not limited to least-squares regression

• Faster training/testing

• Better predictive performance?

– Problems are sparse if you look at them the right way



Conclusion - Interesting questions/issues

• Exponentially many features

– Can we algorithmically achieve log p = O(n)?

– Use structure among features (Bach, 2008c)

• Norm design

– What type of behavior may be obtained with sparsity-inducing

norms?

• Overfitting convexity

– Do we actually need convexity for matrix factorization problems?

– Convexity used in inner loops

– Joint convexity requires reformulation (Bach et al., 2008)
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