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Convolutional Neural Networks Behind the Scenes

The goal is to learn a prediction function f : R? — R given labeled
training data (z;, y;)i=1,...» with z; in RP, and y; in R:
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Convolutional Neural Networks Behind the Scenes

The goal is to learn a prediction function f : RP — R given labeled
training data (24, yi)i=1,....n With 2; in R?, and y; in R:

L(yi, f(xi AQ(f
min nz (i, f(2:)) + (f)

regularization

empirical risk, data fit

What is specific to multilayer neural networks?

@ The “neural network” space F is explicitly parametrized by:

f(@) = ok (Akop-1(Ag—q . .. 02(Ag01(A12)) .. .)).

@ Linear operations are either unconstrained (fully connected) or
involve parameter sharing (e.g., convolutions).

o Finding the optimal Ay, Ao, ..., A yields a non-convex
optimization problem in huge dimension.
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Convolutional Neural Networks Behind the Scenes

Picture from LeCun et al. [1998]
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What are the main features of CNNs?
@ they capture compositional and multiscale structures in images;
@ they provide some invariance;
o they model local stationarity of images at several scales;

@ they are state-of-the-art in many fields.
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Convolutional Neural Networks in Front of the Scene
Picture from Olah et al. [2017]:

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a)
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Convolutional Neural Networks in Front of the Scene
Picture from Olah et al. [2017]:

Patterns (layer mixed4a) Objects (layers mixed4d & mixed4e)
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Future of Convolutional Neural Networks

What are current high-potential problems to solve?
@ lack of robustness (see next slide).
@ learning with few labeled data.

© learning with no supervision (see Tab. from Bojanowski and Joulin, 2017).

Method Acc@ 1
Random (Noroozi & Favaro, 2016) 12.0
SIFT+FV (Sdnchez et al., 2013) 55.6
Wang & Gupta (2015) 29.8
Doersch et al. (2015) 304
Zhang et al. (2016) 35.2
'Noroozi & Favaro (2016) 38.1
BiGAN (Donahue et al., 2016) 322
NAT 36.0

Table 3. Comparison of the proposed approach to state-of-the-art
unsupervised feature learning on ImageNet. A full multi-layer
perceptron is retra.lned on top of the features. We compare to sev-
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Future of Convolutional Neural Networks

lllustration of instability. Picture from Kurakin et al. [2016].

(a) Image from dataset (b) Clean image (c) Adv. image, e = 4 (d) Adv. image, e =8

Figure: Adversarial examples are generated by computer; then printed on paper;
a new picture taken on a smartphone fools the classifier.
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Future of Convolutional Neural Networks

L(yi, f () AQ
min nz (i, f(2:)) + (f)

regularization

empirical risk, data fit

The issue of regularization

@ today, heuristics are used (DropOut, weight decay, early stopping)...

@ ...but they are not sufficient.

@ how to control variations of prediction functions?
|f(z) — f(2')| should be close if x and " are “similar”.

@ what does it mean for x and 2’ to be “similar’?

@ what should be a good regularization function 27
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Back to the Past: Kernel Methods

L( MIFI13,-
min nz (yi, f(z2)) + AN

@ map data z in X to a Hilbert space and work with linear forms:

p: X —=H and  f(x) = (p(2), Hin
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Back to the Past: Kernel Methods

2
min nZL vi, f (1)) + A fI3-

Main purpose: embed data in a vectorial space where

e many geometrical operations exist (angle computation, projection
on linear subspaces, definition of barycenters....).

@ one may learn potentially rich infinite-dimensional models.

o regularization is natural:

(@) = f@)] < [Ifllaclle@) — o)l
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Back to the Past: Kernel Methods

Second purpose: unhappy with the current Euclidean structure?

e lift data to a higher-dimensional space with nicer properties (e.g.,
linear separability, clustering structure).

o then, the linear form f(x) = (p(z), f)% in H may correspond to a
non-linear model in X.
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Back to the Future: Deep Kernel Machines

What is the relation with deep neural networks?

@ it is possible to design functional spaces H where deep neural
networks live [Mairal, 2016].

f(7) = op(Apop-1(Ap-1...02(A201 (A1) ...)) = (f, 0(z))%.
@ we call the construction “convolutional kernel networks" .

Why do we care?

@ o(x) is related to to network architecture and is independent of
training data. Is it stable? Does it lose signal information?
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Back to the Future: Deep Kernel Machines

What is the relation with deep neural networks?

@ it is possible to design functional spaces H where deep neural
networks live [Mairal, 2016].

f(7) = op(Apop-1(Ap-1...02(A201 (A1) ...)) = (f, 0(z))%.
@ we call the construction “convolutional kernel networks" .

Why do we care?

@ o(x) is related to to network architecture and is independent of
training data. Is it stable? Does it lose signal information?

o f is a predictive model. Can we control its stability?

(@) = f@D)] < [ flaclle(@) = o)l
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Back to the Future: Deep Kernel Machines

What is ¢(z)?
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Back to the Future: Deep Kernel Machines

Convolutional kernel networks in practice.

linear pooling T .
©1(x) Hilbert space H1

P1(x)
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Back to the Future: Deep Kernel Machines

Technical details
Formally, a CKN is a sequence of operators

@n(x) = AnMnPnAn—an—lpn—l e A1M1P1A0[E.

@ P, performs patch extraction;

@ M performs kernel mapping
z,2)
K ) = Bl (5 ).
el el

@ Ay performs linear pooling with a Gaussian filter.

The projection of a patch onto a finite-dimensional subspace yields a
convnet-type of operation:

-1/2 wT

W(z) = ||2|| (WTw) K ( H Hz) .
z
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Back to the Future: Deep Kernel Machines

Short summary
@ We have designed a functional space H to do deep learning.

@ Approximation of the kernel map yields the CKN model, whose
parameters can be learned with or without supervision.

@ Each layer of CKNs perform a geometrical operation (projection).

@ The functional space contains also classical convolutional neural
networks with smooth homogeneous activation functions.

@ For all these models f(z) = (f, ¢(x)), and we study ¢(z) and f.
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Back to the Future: Deep Kernel Machines

Short summary
@ We have designed a functional space H to do deep learning.

@ Approximation of the kernel map yields the CKN model, whose
parameters can be learned with or without supervision.

@ Each layer of CKNs perform a geometrical operation (projection).

@ The functional space contains also classical convolutional neural
networks with smooth homogeneous activation functions.

@ For all these models f(z) = (f, ¢(x)), and we study ¢(z) and f.

Performance of CKNs

@ same as classical convnets in fully supervised setting (92% on
CIFAR-10 with VGG-like architecture and simple DA).

@ very competitive results for unsupervised learning on CIFAR-10.

@ seems robust to learning parameter choices.

Julien Mairal Future of Random Projections 16/20



Back to the Future: Deep Kernel Machines

o 7:0Q — Q: C'-diffeomorphism

L;x(u) = x(u — 7(u)): action operator

@ Much richer group of transformations than translations

FUHY Y ahd yyn
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Representation ¢(-) is stable [Mallat, 2012] if:

le(Lrz) — @(@)[| < (C1l[VTloo + CallTloo) ]l

|IVT|leo = sup,, [|[V7(u)|| controls deformation

@ ||7]|coc = sup,, |7(u)| controls translation
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Back to the Future: Deep Kernel Machines

Proposition [Bietti and Mairal, 2017]
if |V7|lso <1/2 and @, is the representation at layer n,

C
[a(Lr0) = @)l < (€1 (14 ) 970 + e ) e

n

Remarks and additional results
@ The result requires small patches, as in recent architectures.
e signal recovery: x can be recovered from ¢(x).
@ It is possible to gain invariance to any group of transformation.

@ For a given deep network

f(x) = ok (Aroka(Apr - 02(Ag01 (A1) .. ) = (f, o(2))n
the norm || f||3 is controlled by the product [, || Aill2.
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Papers

First model (not the right one)
@ J. Mairal, P. Koniusz, Z. Harchaoui and C. Schmid. Convolutional Kernel
Networks. NIPS 2014.
The right model with unsupervised and supervised learning
@ J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel

Networks. NIPS 2016.

Theoretical foundations

@ A. Bietti and J. Mairal. Group Invariance, Stability to Deformations, and
Complexity of Deep Convolutional Representations. preprint arXiv:1706.03078.
2018. (also NIPS 2017).

Practical application to biological sequences (ongoing work)

@ D. Chen, L. Jacob, and J. Mairal. Predicting Transcription Factor Binding Sites
with Convolutional Kernel Networks. preprint BiorXiv. 2017.
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Conclusion and Perspectives

Stability and generalization are related through regularization. There
are two types of perpectives for this approach:

For existing deep networks

@ new regularization functions, along with algorithmic tools to learn
with less labeled data, and obtain more stable models?

For designing new deep models

@ design deep models that are stable by design and that are easy to
regularize? = We already have models that are stable w.r.t
hyper-parameter choices.
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