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Disclaimer

There will be a probabilistic model and a graph

6=

Bayesian graphical model or

Markov Random Field
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DNA Transcription/Translation (Central Dogma, 1958)
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Modern Biology and Challenges

DOE Joint Genome institute

biology is producing massive amount of data;

sequencing one genome now costs about 1000$ (vs 0.1 billion $ in
2001), and produces about a few gigabytes of data;

prediction from DNA data.
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Alternative Splicing: 1 Gene = Many Proteins

In human, 28k genes give 120k known transcripts (Pal et al., 2012)
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Importance of Alternative Splicing

(Pal et al., 2012)
J. Mairal FlipFlop 6/39

http://dx.doi.org/10.1016/j.pharmthera.2012.08.005


Opportunities for Drug Developments...

(Pal et al., 2012)
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RNA-Seq or Next-Generation Sequencing

What is RNA-Seq?

RNA-Seq measures abundance of RNA;
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The Isoform Identification and Quantification Problem

Given a biological sample can we:

1 identify the isoform(s) of each gene present in the sample?

2 quantify their abundance?
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From RNA-Seq Reads to Isoforms

library preparation

RNA sample
transcripts

reads
50-200pb

?

De Novo 
approaches

- Trinity (Grabherr et al. 2011)

- OASES (Schultz et al. 2012)

- Kissplice (Sacomoto et al. 2012)

 

Transcripts 
Quantification using 

annotations
- RQuant (Bohnert et al. 2009)

- FluxCapacitor (Montgomery et al. 2010)

- IsoEM (Nicolae et al. 2011)

- eXpress (Roberts et al. 2013)

Genome-based 
Transcripts 

Reconstruction
- Scripture (Guttman et al. 2010)

- Cufflinks (Trapnell et al. 2010)

- IsoLasso (Li et al. 2011a)

- NSMAP (Xia et al. 2011)

- SLIDE (Li et al. 2011b)

- iReckon (Mezlini et al. 2012)

- MiTie (Behr et al. 2013)

- FlipFlop
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De Novo methods

De Novo 
approaches

- OASES (Schultz et al. 2012)

- Trinity (Grabherr et al. 2011)

- Kissplice (Sacomoto et al. 2012)
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Genome-Based Methods

Genome-based 
Transcripts 

Reconstruction
- Scripture (Guttman et al. 2010)

- Cufflinks (Trapnell et al. 2010)

- IsoLasso (Li et al. 2011a)

- NSMAP (Xia et al. 2011)

- SLIDE (Li et al. 2011b)

- iReckon (Mezlini et al. 2012)

- FlipFlop
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Genome-Based Isoforms Reconstruction

Input: 
spliced alignment of reads 
against reference genome

Job: 
reconstruct transcripts
multi-assembly problem
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Place in the literature

library preparation

RNA sample
transcripts

reads
50-200pb

?

Genome-based 
Transcripts 

Reconstruction
- Scripture (Guttman et al. 2010)

- Cufflinks (Trapnell et al. 2010)

- IsoLasso (Li et al. 2011a)

- NSMAP (Xia et al. 2011)

- SLIDE (Li et al. 2011b)

- iReckon (Mezlini et al. 2012)

- MiTie (Behr et al. 2013)

- FlipFlop

What is new ?

mardi 17 décembre 13

J. Mairal FlipFlop 14/39



Contributions

- NO NEED for FILTERING 
of candidate isoforms

- FASTER than existing methods 
that solve the same problem

- adapted to LONG READS

- R package

flow 
method

mardi 17 décembre 13

J. Mairal FlipFlop 15/39



Contributions

- NO NEED for FILTERING 
of candidate isoforms

- FASTER than existing methods 
that solve the same problem

- adapted to LONG READS

- R package

particular 
splicing graph

mardi 17 décembre 13

J. Mairal FlipFlop 15/39



Contributions

- NO NEED for FILTERING 
of candidate isoforms

- FASTER than existing methods 
that solve the same problem

- adapted to long reads

- R package

mardi 17 décembre 13

J. Mairal FlipFlop 15/39



Contributions
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Outline

1 Formulation as a Path Selection Problem

2 Sparse Probabilistic Model and Optimization: FlipFlop

3 Results and Perspectives
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Isoforms are Paths in a Graph
Splicing graph for a gene with 5 exons:
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FlipFlop graph: 1 type of read ↔ 1 node
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Graph adapted to long reads
Splicing graph for a gene with 5 exons:
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FlipFlop graph:

s

1

1-2

2 2-3 3

3-4

41-4

3-5

4-5

5

t

J. Mairal FlipFlop 18/39



Graph adapted to long reads
Splicing graph for a gene with 5 exons:

1

2 3

4

5
1 2 3

FlipFlop graph:

s

1

1-2

2 2-3 3

3-4

41-4

3-5

4-5

5

t

J. Mairal FlipFlop 18/39



Graph adapted to long reads
Splicing graph for a gene with 5 exons:

1

2 3

4

5
1 2 3

FlipFlop graph:

s

1

1-2

2

2-3 3

3-4

41-4

3-5

4-5

5

t

J. Mairal FlipFlop 18/39



Graph adapted to long reads
Splicing graph for a gene with 5 exons:

1

2 3

4

5
1 2 3

FlipFlop graph:

s

1

1-2

2 2-3 3

3-4

41-4

3-5

4-5

5

t

J. Mairal FlipFlop 18/39



Graph adapted to long reads
Splicing graph for a gene with 5 exons:

1

2 3

4

5
1 2 3

FlipFlop graph:

s

1

1-2

2

1-2-3

2-3 3

3-4

41-4

3-5

4-5

5

t

J. Mairal FlipFlop 18/39



Graph adapted to long reads
Splicing graph for a gene with 5 exons:

1

2 3

4

5

FlipFlop graph:

s

1

1-2

2

1-2-3 2-3 3

3-4

41-4

3-5

4-5

5 t

J. Mairal FlipFlop 18/39



Graph adapted to long reads
Splicing graph for a gene with 5 exons:

1

2 3

4
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FlipFlop graph: one path with abundance β1
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Graph adapted to long reads
Splicing graph for a gene with 5 exons:
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FlipFlop graph: another path with abundance β2 ...
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Select a Small Number of Paths?

n exons →∼ 2n paths/candidate isoforms
feature selection problem with ∼ 1000 candidates for 10 exons and ∼ 1000000 for 20 exons

Minimal path cover

Cufflinks

Regularization approach

IsoLasso, NSMAP, SLIDE,
iReckon, MiTie, FlipFlop
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Select a Small Number of Paths?

Cufflinks strategy

A two-step approach

1 find a set of minimal paths to explain read positions (independent
from read counts)

2 estimate isoform abundances using read counts
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junction (Supplementary Table 1). Of the splice junctions spanned 
by fragment alignments, 70% were present in transcripts annotated 
by the UCSC, Ensembl or VEGA groups (known genes).

To recover the minimal set of transcripts supported by our frag-
ment alignments, we designed a comparative transcriptome assem-
bly algorithm. Expressed sequence tag (EST) assemblers such as 
PASA introduced the idea of collapsing alignments to transcripts 
on the basis of splicing compatibility17, and Dilworth’s theorem18 
has been used to assemble a parsimonious set of haplotypes from 
virus population sequencing reads19. Cufflinks extends these ideas, 
reducing the transcript assembly problem to finding a maximum 
matching in a weighted4 bipartite graph that represents com-
patibilities17 among fragments (Fig. 1a–c and Supplementary 
Methods, section 4). Noncoding RNAs20 and microRNAs21 have 
been reported to regulate cell differentiation and development, and 
coding genes are known to produce noncoding isoforms as a means 
of regulating protein levels through nonsense-mediated decay22. 
For these biologically motivated reasons, the assembler does not 
require that assembled transcripts contain an open reading frame 
(ORF). As Cufflinks does not make use of existing gene annotations 

during assembly, we validated the transcripts by first comparing 
individual time point assemblies to existing annotations.

We recovered a total of 13,692 known isoforms and 12,712 new iso-
forms of known genes. We estimate that 77% of the reads originated 
from previously known transcripts (Supplementary Table 2). Of the 
new isoforms, 7,395 (58%) contain novel splice junctions, with the 
remainder being novel combinations of known splicing outcomes; 
11,712 (92%) have an ORF, 8,752 of which end at an annotated stop 
codon. Although we sequenced deeply by current standards, 73% of 
the moderately abundant transcripts (15–30 expected fragments per 
kilobase of transcript per million fragments mapped, abbreviated 
FPKM; see below for further explanation) detected at the 60-h time 
point with three lanes of GAII transcriptome sequencing were fully 
recovered with just a single lane. Because distinguishing a full-length 
transcript from a partially assembled fragment is difficult, we con-
servatively excluded from further analyses the novel isoforms that 
were unique to a single time point. Out of the new isoforms, 3,724 
were present in multiple time points, and 581 were present at all 
time points; 6,518 (51%) of the new isoforms and 2,316 (62%) of 
the multiple time point novel isoforms were tiled by high-identity 
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Map paired cDNA
fragment sequences

to genome
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Spliced fragment
alignments

Abundance estimationAssembly
Mutually

incompatible
fragments

Transcript coverage
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Figure 1 Overview of Cufflinks. (a) The algorithm takes as input cDNA 
fragment sequences that have been aligned to the genome by software 
capable of producing spliced alignments, such as TopHat. (b–e) With 
paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as 
a single alignment. The algorithm assembles overlapping ‘bundles’ of 
fragment alignments (b,c) separately, which reduces running time and 
memory use, because each bundle typically contains the fragments from 
no more than a few genes. Cufflinks then estimates the abundances of 
the assembled transcripts (d,e). The first step in fragment assembly is 
to identify pairs of ‘incompatible’ fragments that must have originated 
from distinct spliced mRNA isoforms (b). Fragments are connected in an 
‘overlap graph’ when they are compatible and their alignments overlap 
in the genome. Each fragment has one node in the graph, and an edge, 
directed from left to right along the genome, is placed between each 
pair of compatible fragments. In this example, the yellow, blue and red 
fragments must have originated from separate isoforms, but any other 
fragment could have come from the same transcript as one of these 
three. Isoforms are then assembled from the overlap graph (c). Paths 
through the graph correspond to sets of mutually compatible fragments 
that could be merged into complete isoforms. The overlap graph here can 
be minimally ‘covered’ by three paths (shaded in yellow, blue and red), 
each representing a different isoform. Dilworth’s Theorem states that 
the number of mutually incompatible reads is the same as the minimum 
number of transcripts needed to ‘explain’ all the fragments. Cufflinks 
implements a proof of Dilworth’s Theorem that produces a minimal set 
of paths that cover all the fragments in the overlap graph by finding the 
largest set of reads with the property that no two could have originated 
from the same isoform. Next, transcript abundance is estimated  
(d). Fragments are matched (denoted here using color) to the transcripts 
from which they could have originated. The violet fragment could have 
originated from the blue or red isoform. Gray fragments could have come 
from any of the three shown. Cufflinks estimates transcript abundances 
using a statistical model in which the probability of observing each 
fragment is a linear function of the abundances of the transcripts from 
which it could have originated. Because only the ends of each fragment 
are sequenced, the length of each may be unknown. Assigning a fragment 
to different isoforms often implies a different length for it. Cufflinks 
incorporates the distribution of fragment lengths to help assign fragments 
to isoforms. For example, the violet fragment would be much longer, and 
very improbable according to the Cufflinks model, if it were to come from 
the red isoform instead of the blue isoform. Last, the program numerically 
maximizes a function that assigns a likelihood to all possible sets of 
relative abundances of the yellow, red and blue isoforms ( 1, 2, 3)  
(e), producing the abundances that best explain the observed fragments, 
shown as a pie chart.
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Select a small number of paths?

Regularization approach

1 Suppose there are c candidate isoforms (c large)

2 Let β the unknown c-dimensional vector of abundance

3 Let L(β) quantify whether β explains the observed read counts

e.g., Poisson negative log-likelihood:

L(β)=
∑

node u

− log p(Xu) with Xu ∼ P(δu) and δu ∝ lu
∑

path p3u
βp

4 Regularization-based approaches try to solve:

min
β∈Rc

+

L(β) such that β is sparse
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Isoform Deconvolution with the `1-norm

`1-regularization

Estimate β sparse by solving:

min
β∈Rc

+

L(β) + λ‖β‖1 ,

with L a convex loss function.

Computationally challenging:
→ IsoLasso: strong filtering
→ NSMAP, SLIDE: number of exons cut-off

FlipFlop: Fast Lasso-based Isoform Prediction as a FLOw Problem
→ no filtering
→ no exons restrictions

J. Mairal FlipFlop 22/39



Regularizing with the `1-norm

w1

w2`1-ball

‖β‖1 ≤ T

The projection onto a convex set is “biased” towards singularities.
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Regularizing with the `2-norm

w1

w2`2-ball

‖β‖2 ≤ T

The `2-norm is isotropic.
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Regularizing with the `∞-norm

w1

w2`∞-ball

‖β‖∞ ≤ T

The `∞-norm encourages |β1| = |β2|.
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In 3D.
Copyright G. Obozinski

J. Mairal FlipFlop 26/39



Fast Isoform Deconvolution with the lasso

Theoretical (practical) result

The isoform deconvolution problem

min
β∈Rc

+

L(β) + λ‖β‖1 ,

can be solved in polynomial time with the number of nodes of the
splicing graph.

Ideas:

1 the sum of isoform abundances correspond to a flow on the graph

2 reformulation as a convex cost flow problem (Mairal and Yu, 2012)

3 recover isoforms by flow decomposition algorithm

J. Mairal FlipFlop 27/39



Combinations of isoforms are flows

s

1 11

1

1 t

(a) Reads at every node corresponding to one isoform.

s

1

3 3 3

3

41

4

4 t

(b) Reads at every node after adding another isoform.

Linear combinations of isoforms ⇒ Flow value on every edges

Flow value on every edges ⇒
Flow Decomposition

(linear time algorithm)

Paths with given value/abundance

Flux Capacitor. 2008. A Novel Min-Cost Flow Method for Estimating Transcript Expression with RNA-Seq.
RECOMB-2013.
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Equivalent flow problem (simpler!)

s

1 11

1

1 t

(c) Reads at every node corresponding to one isoform.

s

1

3 3 3

3

41

4

4 t

(d) Reads at every node after adding another isoform.

For each edge sum abundances of isoforms that include the edge :

fuv =
∑

path p3(u,v)

βp is a flow

Moreover
‖β‖1 =

∑
path p

βp = ft

Therefore

min
β∈Rc

+

L(β) + λ‖β‖1 is equivalent to min
f flow

L̃(f ) + λft
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Technical details
Poisson Loss (with binary matrix U):

L(UTβ) =
∑
u∈V

[
Nlu(UTβ)u − yu log(Nlu(UTβ)u)

]
Flow Decomposition:

fuv =
∑
p∈P ′

βp1{(u,v)∈p}

⇒ fv =
∑
u∈V ′

fuv = (UTβ)v

Convex Cost Flow:

min
f flow

∑
u∈V

[Nlufu − yu log(fu)] + λft

Solved using ε-relaxation method (Bertsekas 1998).
J. Mairal FlipFlop 30/39



Summary

Isoform Detection=Path Selection Problem

∼ 2n variables (all paths in the splicing graph)

m

Equivalent Network Flow Problem

∼ n2

2 variables (all exons and exon-exon junctions in the splicing graph)

↓

Network Flow Algorithms

Efficient Algorithms ! Polynomial Time.
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Performance increases with read length

Human Simulation: hg19, 1137 genes on chr1, 1million reads by transcript levels.

Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

100 bp (1M reads) 200 bp (1M reads) 300 bp (1M reads)

25

50

75

100

40 60 80 100 40 60 80 100 40 60 80 100
PRECISION

R
E

C
A

L
L

IsoLasso
Cufflinks
FlipFlop
NSMAP
1 transcript
2 transcripts
3−4 transcripts
5−7 transcripts
8−43 transcripts

J. Mairal FlipFlop 32/39

http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html


Performance increases with coverage

Human Simulation: hg19, 1137 genes on chr1, 1million reads by transcript levels.

Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
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Extension to paired-end reads OK

Human Simulation: hg19, 1137 genes on chr1, 1 million reads by transcript levels.

Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
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Speed Trial
Human Simulation: hg19, 1137 genes on chr1, 1 million reads by transcript levels.
Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
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GC bias - Precision-Recall curve

Human Simulation: hg19, chr1, 150bp single-end reads, 2 million, 4140 transcripts.

FluxSimulator, Griebel et al, 2012.

Model selection: set of solutions minimizing L(β) + λ‖β‖1 for
different values of λ → BIC criteria
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Real Data OK

Human: 50 million 75bp paired-end reads.

paired−end single−end
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Conclusion/Discussion

FlipFlop → transcripts reconstruction over an exponential number of
candidates in polynomial time

1 Hard combinatorial ill-posed prediction problem !

2 Model Selection: Cross Validation, Stability Selection?

3 Multiple-samples: on-going work with promising preliminary
results.

4 Differential Expression testing at the isoform level ?
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Conclusion/Discussion: get FlipFlop for free!
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Precision-Recall curves on real data
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Speed comparison on real data
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Stability study
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Human Simulation: Abundances
hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels.
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Simulation: Deviation
hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels.
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Part IV: Back to Structured Sparsity
(depending on time)

J. Mairal FlipFlop 40/39



What about more complicated norms?
Copyright G. Obozinski
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What about more complicated norms?
Copyright G. Obozinski
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Group Lasso
[Turlach et al., 2005, Yuan and Lin, 2006]

the `1/`q-norm : Ω(β) =
∑
g∈G
‖βg‖q.

G is a partition of {1, . . . , p};
q = 2 or q =∞ in practice;

can be interpreted as the `1-norm of [‖βg‖q]g∈G .

Ω(β) = ‖β{1,2}‖2 + |β3|.
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Structured sparsity with overlapping groups

Warning: Under the name “structured sparsity” appear in fact
significantly different formulations!

1 non-convex

zero-tree wavelets [Shapiro, 1993];
predefined collection of sparsity patterns: [Baraniuk et al., 2010];
select a union of groups: [Huang et al., 2009];
structure via Markov Random Fields: [Cehver et al., 2008];

2 convex (norms)

tree-structure: [Zhao et al., 2009];
select a union of groups: [Jacob et al., 2009];
zero-pattern is a union of groups: [Jenatton et al., 2009];
other norms: [Micchelli et al., 2010].
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Group Lasso with overlapping groups
[Jenatton, Audibert, and Bach, 2009]

Ω(β) =
∑
g∈G
‖βg‖q.

What happens when the groups overlap?

the pattern of non-zero variables is an intersection of groups;

the zero pattern is a union of groups.

Ω(β) = ‖β‖2 + |β2|+ |β3|.
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Hierarchical Norms
[Zhao, Rocha, and Yu, 2009]

A node can be active only if its ancestors are active.
The selected patterns are rooted subtrees.
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Modelling Patterns as Unions of Groups
the non-convex penalty of Huang, Zhang, and Metaxas [2009]

Warning: different point of view than the two previous slides

ϕ(β)
M
= min
J⊆G

{ ∑
g∈J

ηg s.t. Supp(β) ⊆
⋃
g∈J

g
}
.

the penalty is non-convex.

is NP-hard to compute (set cover problem).

The pattern of non-zeroes in β is a union of (a few) groups.

It can be rewritten as a boolean linear program:

ϕ(β) = min
x∈{0,1}|G|

{
η>x s.t. Nx ≥ Supp(β)

}
.
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Modelling Patterns as Unions of Groups
convex relaxation and the penalty of Jacob, Obozinski, and Vert [2009]

The penalty of Huang et al. [2009]:

ϕ(β) = min
x∈{0,1}|G|

{
η>x s.t. Nx ≥ Supp(β)

}
.

A convex LP-relaxation:

ψ(β)
M
= min

x∈R|G|+

{
η>x s.t. Nx ≥ |β|

}
.

Lemma: ψ is the penalty of Jacob et al. [2009] with the `∞-norm:

ψ(β)= min
(ξg∈Rp)g∈G

∑
g∈G

ηg‖ξg‖∞ s.t. β=
∑
g∈G

ξg and ∀g , Supp(ξg ) ⊆ g ,
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Modelling Patterns as Unions of Groups
The norm of Jacob et al. [2009] in 3D

ψ(β) with G = {{1, 2}, {2, 3}, {1, 3}}.
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Graph sparsity
G = (V ,E ), with V = {1, . . . , p}
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Graph sparsity
Encouraging patterns with a small number of connected components

1

3

6

2

4

5
7

8

9

10

11

12

13

J. Mairal FlipFlop 51/39



Formulation

min
β∈Rp

R(β)︸ ︷︷ ︸
convex, smooth

+ λΩ(β)︸ ︷︷ ︸
regularization

,

Ω should encourage connected patterns in the graph.

the penalty of Huang et al. [2009]:

ϕ(β) = min
x∈{0,1}|G|

{
η>x s.t. Nx ≥ Supp(β)

}
.

a convex LP-relaxation (penalty of Jacob et al. [2009]):

ψ(β)
M
= min

x∈R|G|+

{
η>x s.t. Nx ≥ |β|

}
.
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Structured sparsity for graphs
Group structure for graphs.

Natural choices to encourage connectivity in the graph is to define G as

1 pairs of vertices linked by an arc. only models local interactions;

2 all connected subgraphs up to a size L. cumbersome/intractable;

3 all connected subgraphs. intractable.

Question

Can we replace connected subgraphs by another structure which (i) is
rich enough to model long-range interactions in the graph, and (ii) leads
to computationally feasible penalties?
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A solution when the graph is a DAG (Mairal and Yu, 2012)
1 Define G to be the set of all paths in the DAG.
2 Define ηg to be γ + |g | (the cost of selecting a path g).
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Graph sparsity for DAGs

Decomposability of the weights ηg = γ + |g |
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Equivalence to network flows

An optimization problem on paths might be transformed into an
equivalent flow problem.

Proposition 1

ϕ(β) = min
f ∈F

∑
(u,v)∈E ′

fuvcuv s.t. sj(f ) ≥ 1, ∀j ∈ Supp(β),

Proposition 2

ψ(β) = min
f ∈F

∑
(u,v)∈E ′

fuvcuv s.t. sj(f ) ≥ |βj |, ∀j ∈ {1, . . . , p},

ϕ(β), ψ(β) and similarly the proximal operators, the dual norm of ψ can
be computed in polynomial time using network flow optimization.
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