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What this work is about

Group sparsity with overlapping groups.

Hierarchical, topographic dictionary learning,

More generally: structured dictionaries of natural image
patches.

Related publications:

[1] J. Mairal, R. Jenatton, G. Obozinski and F. Bach. Network Flow
Algorithms for Structured Sparsity. NIPS, 2010.

[2] R. Jenatton, J. Mairal, G. Obozinski and F. Bach. Proximal Methods for
Hierarchical Sparse Coding. JMLR, 2011.
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Part I: Introduction to Dictionary Learning
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What is a Sparse Linear Model?

Let x in R
m be a signal.

Let D = [d1, . . . ,dp] ∈ R
m×p be a set of

normalized “basis vectors”.
We call it dictionary.

D is “adapted” to x if it can represent it with a few basis vectors—that
is, there exists a sparse vector α in R

p such that x ≈ Dα. We call α
the sparse code.
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The Sparse Decomposition Problem

min
α∈Rp

1

2
‖x−Dα‖22

︸ ︷︷ ︸

data fitting term

+ λψ(α)
︸ ︷︷ ︸

sparsity-inducing
regularization

ψ induces sparsity in α:

the ℓ0 “pseudo-norm”. ‖α‖0
△

= #{i s.t. αi 6= 0} (NP-hard)

the ℓ1 norm. ‖α‖1
△

=
∑p

i=1 |αi | (convex),

. . .

This is a selection problem. When ψ is the ℓ1-norm, the problem is
called Lasso [Tibshirani, 1996] or basis pursuit [Chen et al., 1999]
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Sparse representations for image restoration

Designed dictionaries

[Haar, 1910], [Zweig, Morlet, Grossman ∼70s], [Meyer, Mallat,
Daubechies, Coifman, Donoho, Candes ∼80s-today]. . .
Wavelets, Curvelets, Wedgelets, Bandlets, . . . lets

Learned dictionaries of patches

[Olshausen and Field, 1997, Engan et al., 1999, Lewicki and Sejnowski,
2000, Aharon et al., 2006],. . .

min
αi ,D∈D

n∑

i=1

1

2
‖xi −Dαi‖22

︸ ︷︷ ︸

reconstruction

+λψ(αi )
︸ ︷︷ ︸

sparsity

ψ(α) = ‖α‖0 (“ℓ0 pseudo-norm”)

ψ(α) = ‖α‖1 (ℓ1 norm)
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Sparse representations for image restoration
Grayscale vs color image patches

Figure: Left: learned on grayscale image patches. Right: learned on color
image patches (after removing the mean color from each patch)
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Algorithms

min
α∈Rp×n

D∈D

n∑

i=1

1

2
‖xi −Dαi‖22 + λψ(αi ).

How do we optimize that?

alternate between D and α [Engan et al., 1999], or other variants
[Elad and Aharon, 2006]

online learning [Olshausen and Field, 1997, Mairal et al., 2009,
Skretting and Engan, 2010]

Code SPAMS available: http://www.di.ens.fr/willow/SPAMS/,
now open-source!
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Part II: Introduction to Structured Sparsity
(Let us play with ψ)
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Group Sparsity-Inducing Norms

min
α∈Rp

1

2
‖x−Dα‖22 + λ ψ(α)

︸ ︷︷ ︸

sparsity-inducing norm

The most popular choice for ψ:

The ℓ1 norm, ψ(α) = ‖α‖1.

However, the ℓ1 norm encodes poor information, just cardinality!

Another popular choice for Ω:

The ℓ1-ℓq norm [Turlach et al., 2005], with q = 2 or q =∞

∑

g∈G

‖αg‖q with G a partition of {1, . . . , p}.

The ℓ1-ℓq norm sets to zero groups of non-overlapping variables
(as opposed to single variables for the ℓ1 norm).

Julien Mairal, UC Berkeley Topographic Dictionary Learning 10/32



Structured Sparsity with Overlapping Groups

Warning: Under the name “structured sparsity” appear in fact
significantly different formulations!

1 non-convex

zero-tree wavelets [Shapiro, 1993]
sparsity patterns are in a predefined collection: [Baraniuk et al., 2010]
select a union of groups: [Huang et al., 2009]
structure via Markov Random Fields: [Cehver et al., 2008]

2 convex

tree-structure: [Zhao et al., 2009]
non-zero patterns are a union of groups: [Jacob et al., 2009]
zero patterns are a union of groups: [Jenatton et al., 2009]
other norms: [Micchelli et al., 2010]
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Structured Sparsity with Overlapping Groups

ψ(α) =
∑

g∈G

‖αg‖q

What happens when the groups overlap? [Jenatton et al., 2009]

Inside the groups, the ℓ2-norm (or ℓ∞) does not promote sparsity.

Variables belonging to the same groups are encouraged to be set to
zero together.
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Examples of set of groups G
[Jenatton et al., 2009]

Selection of contiguous patterns on a sequence, p = 6.

G is the set of blue groups.

Any union of blue groups set to zero leads to the selection of a
contiguous pattern.
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Hierarchical Norms
[Zhao et al., 2009]

A node can be active only if its ancestors are active.
The selected patterns are rooted subtrees.
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Algorithms/Difficulties
[Jenatton et al., 2010, Mairal et al., 2011]

min
α∈Rp

1

2
‖x−Dα‖22 + λ

∑

g∈G

‖αg‖q.

The function is convex non-differentiable; the sum is a sum of simple
non-separable regularizers.

How do we optimize that?

hierarchical norms: same complexity as ℓ1 with proximal methods.

general case: Augmenting Lagrangian Techniques.

general case with ℓ∞-norms: proximal methods combine with
network flow optimization.

Also implemented in the toolbox SPAMS
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Part III: Learning Structured Dictionaries
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Topographic Dictionary Learning

[Kavukcuoglu et al., 2009]: organize the dictionary elements on a
2D-grids and use ψ with e × e overlapping groups.

[Garrigues and Olshausen, 2010]: sparse coding + probabilistic
model to model lateral interactions.

topographic ICA by Hyvärinen et al. [2001]:
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Topographic Dictionary Learning
[Mairal, Jenatton, Obozinski, and Bach, 2011], 3× 3-neighborhoods
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Topographic Dictionary Learning
[Mairal, Jenatton, Obozinski, and Bach, 2011],4× 4-neighborhoods
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Hierarchical Dictionary Learning
[Jenatton, Mairal, Obozinski, and Bach, 2010]
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Conclusion / Discussion

Structured sparsity is a natural framework for learning structured
dictionaries...

...and has efficient optimization tools.

other applications in natural language processing, bio-informatics,
neuroscience...
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SPAMS toolbox (open-source)

C++ interfaced with Matlab.

proximal gradient methods for ℓ0, ℓ1, elastic-net, fused-Lasso,
group-Lasso, tree group-Lasso, tree-ℓ0, sparse group Lasso,
overlapping group Lasso...

...for square, logistic, multi-class logistic loss functions.

handles sparse matrices,

provides duality gaps.

also coordinate descent, block coordinate descent algorithms.

fastest available implementation of OMP and LARS.

dictionary learning and matrix factorization (NMF, sparse PCA).

fast projections onto some convex sets.

Try it! http://www.di.ens.fr/willow/SPAMS/
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First-order/proximal methods

min
α∈Rp

f (α) + λΩ(α)

f is strictly convex and differentiable with a Lipshitz gradient.

Generalizes the idea of gradient descent

αk+1←argmin
α∈Rp

f (αk)+∇f (αk)⊤(α−αk)
︸ ︷︷ ︸

linear approximation

+
L

2
‖α−αk‖22

︸ ︷︷ ︸

quadratic term

+λΩ(α)

← argmin
α∈Rp

1

2
‖α− (αk −

1

L
∇f (αk))‖22 +

λ

L
Ω(α)

When λ = 0, αk+1 ← αk − 1
L
∇f (αk), this is equivalent to a

classical gradient descent step.
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First-order/proximal methods

They require solving efficiently the proximal operator

min
α∈Rp

1

2
‖u−α‖22 + λΩ(α)

For the ℓ1-norm, this amounts to a soft-thresholding:

α⋆

i = sign(ui )(ui − λ)
+.

There exists accelerated versions based on Nesterov optimal
first-order method (gradient method with “extrapolation”) [Beck
and Teboulle, 2009, Nesterov, 2007, 1983]

suited for large-scale experiments.
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Tree-structured groups

Proposition [Jenatton, Mairal, Obozinski, and Bach, 2010]

If G is a tree-structured set of groups, i.e., ∀g , h ∈ G,

g ∩ h = ∅ or g ⊂ h or h ⊂ g

For q = 2 or q =∞, we define Proxg and ProxΩ as

Proxg :u→ argmin
α∈Rp

1

2
‖u−α‖+ λ‖αg‖q,

ProxΩ :u→ argmin
α∈Rp

1

2
‖u−α‖+ λ

∑

g∈G

‖αg‖q,

If the groups are sorted from the leaves to the root, then

ProxΩ = Proxgm ◦ . . . ◦ Proxg1 .

→ Tree-structured regularization : Efficient linear time algorithm.
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General Overlapping Groups for q =∞
[Mairal, Jenatton, Obozinski, and Bach, 2011]

Dual formulation

The solutions α⋆ and ξ⋆ of the following optimization problems

min
α∈Rp

1

2
‖u−α‖+ λ

∑

g∈G

‖αg‖∞, (Primal)

min
ξ∈Rp×|G|

1

2
‖u−

∑

g∈G

ξg‖22 s.t. ∀g ∈ G, ‖ξg‖1 ≤ λ and ξ
g
j = 0 if j /∈ g ,

(Dual)
satisfy

α⋆ = u−
∑

g∈G

ξ⋆g . (Primal-dual relation)

The dual formulation has more variables, but is equivalent to quadratic
min-cost flow problem.
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