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What this work is about

Sparse and structured linear models.

Optimization for group Lasso with overlapping groups.

Links between sparse regularization and network flow
optimization.

Related publications:

[1] J. Mairal, R. Jenatton, G. Obozinski and F. Bach. Network Flow
Algorithms for Structured Sparsity. NIPS, 2010.

[2] R. Jenatton, J. Mairal, G. Obozinski and F. Bach. Proximal Methods for
Hierarchical Sparse Coding. JMLR, to appear.

[3] R. Jenatton, J. Mairal, G. Obozinski and F. Bach. Proximal Methods for
Sparse Hierarchical Dictionary Learning. ICML, 2010.
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Part I: Introduction to Structured Sparsity
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Sparse Linear Model: Machine Learning Point of View

Let (y i , xi )ni=1 be a training set, where the vectors xi are in R
p and are

called features. The scalars y i are in

{−1,+1} for binary classification problems.

R for regression problems.

We assume there is a relation y ≈ w⊤x, and solve

min
w∈Rp

1

n

n∑

i=1

ℓ(y i ,w⊤xi )

︸ ︷︷ ︸

empirical risk

+ λΩ(w)
︸ ︷︷ ︸

regularization

.
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Sparse Linear Models: Machine Learning Point of View

A few examples:

Ridge regression: min
w∈Rp

1

2n

n∑

i=1

(y i −w⊤xi )2 + λ‖w‖22.

Linear SVM: min
w∈Rp

1

n

n∑

i=1

max(0, 1− y iw⊤xi ) + λ‖w‖22.

Logistic regression: min
w∈Rp

1

n

n∑

i=1

log
(

1 + e−y iw⊤xi
)

+ λ‖w‖22.

The squared ℓ2-norm induces “smoothness” in w. When one knows in
advance that w should be sparse, one should use a sparsity-inducing
regularization such as the ℓ1-norm. [Chen et al., 1999, Tibshirani, 1996]

How can one add a-priori knowledge in the regularization?
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Sparse Linear Models: Signal Processing Point of View

Let y in R
n be a signal.

Let X = [x1, . . . , xp] ∈ R
n×p be a set of

normalized “basis vectors”.
We call it dictionary.

X is “adapted” to y if it can represent it with a few basis vectors—that
is, there exists a sparse vector w in R

p such that x ≈ Xw. We call w
the sparse code.



y





︸ ︷︷ ︸

y∈Rn

≈



 x1 x2 · · · xp





︸ ︷︷ ︸

X∈Rn×p








w1

w2

...
wp








︸ ︷︷ ︸

w∈Rp
,sparse
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Sparse Linear Models: the Lasso/ Basis Pursuit

Signal processing: X is a dictionary in R
n×p,

min
w∈Rp

1

2
‖y − Xw‖22 + λ‖w‖1.

Machine Learning:

min
w∈Rp

1

2n

n∑

i=1

(y i − xi⊤w)2 + λ‖w‖1 = min
w∈Rp

1

2n
‖y−X⊤w‖22 + λ‖w‖1,

with X
△

= [x1, . . . , xn], and y
△

= [y1, . . . , yn]⊤.

Useful tool in signal processing, machine learning, statistics,
neuroscience,. . . as long as one wishes to select features.
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Group Sparsity-Inducing Norms

min
w∈Rp

data fitting term
︷︸︸︷

f (w) + λ Ω(w)
︸ ︷︷ ︸

sparsity-inducing norm

The most popular choice for Ω:

The ℓ1 norm, ‖w‖1 =
∑p

j=1 |wj |.

However, the ℓ1 norm encodes poor information, just cardinality!

Another popular choice for Ω:

The ℓ1-ℓq norm [Turlach et al., 2005], with q = 2 or q =∞

∑

g∈G

‖wg‖q with G a partition of {1, . . . , p}.

The ℓ1-ℓq norm sets to zero groups of non-overlapping variables
(as opposed to single variables for the ℓ1 norm).
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Structured Sparsity with Overlapping Groups

Warning: Under the name “structured sparsity” appear in fact
significantly different formulations!

1 non-convex

zero-tree wavelets [Shapiro, 1993]
sparsity patterns are in a predefined collection: [Baraniuk et al., 2010]
select a union of groups: [Huang et al., 2009]
structure via Markov Random Fields: [Cehver et al., 2008]

2 convex

tree-structure: [Zhao et al., 2009]
non-zero patterns are a union of groups: [Jacob et al., 2009]
zero patterns are a union of groups: [Jenatton et al., 2009]
other norms: [Micchelli et al., 2010]
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Sparsity-Inducing Norms

Ω(w) =
∑

g∈G

‖wg‖q

What happens when the groups overlap? [Jenatton et al., 2009]

Inside the groups, the ℓ2-norm (or ℓ∞) does not promote sparsity.

Variables belonging to the same groups are encouraged to be set to
zero together.
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Examples of set of groups G
[Jenatton et al., 2009]

Selection of contiguous patterns on a sequence, p = 6.

G is the set of blue groups.

Any union of blue groups set to zero leads to the selection of a
contiguous pattern.
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Hierarchical Norms
[Zhao et al., 2009]

A node can be active only if its ancestors are active.
The selected patterns are rooted subtrees.
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Part II: How do we optimize these cost functions?
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Different strategies

min
w∈Rp

f (w) + λ
∑

g∈G

‖wg‖q

generic methods: QP, CP, subgradient descent.

Augmented Lagrangian, ADMM [Mairal et al., 2011, Qi and
Goldfarb, 2011]

Nesterov smoothing technique [Chen et al., 2010]

hierarchical case: proximal methods [Jenatton et al., 2010a]

for q=∞: proximal gradient methods with network flow
optimization. [Mairal et al., 2010]

also proximal gradient methods with inexact proximal
operator [Jenatton et al., 2010a, Liu and Ye, 2010]

for q=2, reweighted-ℓ2 [Jenatton et al., 2010b, Micchelli et al.,
2010]
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First-order/proximal methods

min
w∈Rp

f (w) + λΩ(w)

f is strictly convex and differentiable with a Lipshitz gradient.

Generalizes the idea of gradient descent

wk+1←argmin
w∈Rp

f (wk)+∇f (wk)⊤(w −wk)
︸ ︷︷ ︸

linear approximation

+
L

2
‖w − wk‖22

︸ ︷︷ ︸

quadratic term

+λΩ(w)

← argmin
w∈Rp

1

2
‖w − (wk −

1

L
∇f (wk))‖22 +

λ

L
Ω(w)

When λ = 0, wk+1 ← wk − 1
L
∇f (wk), this is equivalent to a

classical gradient descent step.

Julien Mairal, UC Berkeley Network Flow Algorithms for Structured Sparsity 15/50



First-order/proximal methods

They require solving efficiently the proximal operator

min
w∈Rp

1

2
‖u−w‖22 + λΩ(w)

For the ℓ1-norm, this amounts to a soft-thresholding:

w⋆

i = sign(ui )(ui − λ)+.

There exists accelerated versions based on Nesterov optimal
first-order method (gradient method with “extrapolation”) [Beck
and Teboulle, 2009, Nesterov, 2007, 1983]

suited for large-scale experiments.
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Tree-structured groups

Proposition [Jenatton, Mairal, Obozinski, and Bach, 2010a]

If G is a tree-structured set of groups, i.e., ∀g , h ∈ G,

g ∩ h = ∅ or g ⊂ h or h ⊂ g

For q = 2 or q =∞, we define Proxg and ProxΩ as

Proxg :u→ argmin
w∈Rp

1

2
‖u−w‖+ λ‖wg‖q,

ProxΩ :u→ argmin
w∈Rp

1

2
‖u−w‖+ λ

∑

g∈G

‖wg‖q,

If the groups are sorted from the leaves to the root, then

ProxΩ = Proxgm ◦ . . . ◦ Proxg1 .

→ Tree-structured regularization : Efficient linear time algorithm.

Julien Mairal, UC Berkeley Network Flow Algorithms for Structured Sparsity 17/50



General Overlapping Groups for q =∞

Dual formulation [Jenatton, Mairal, Obozinski, and Bach, 2010a]

The solutions w⋆ and ξ⋆ of the following optimization problems

min
w∈Rp

1

2
‖u−w‖+ λ

∑

g∈G

‖wg‖∞, (Primal)

min
ξ∈Rp×|G|

1

2
‖u−

∑

g∈G

ξg‖22 s.t. ∀g ∈ G, ‖ξg‖1 ≤ λ and ξ
g
j = 0 if j /∈ g ,

(Dual)
satisfy

w⋆ = u−
∑

g∈G

ξ⋆g . (Primal-dual relation)

The dual formulation has more variables, but no overlapping
constraints.
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General Overlapping Groups for q =∞
[Mairal, Jenatton, Obozinski, and Bach, 2010]

First Step: Flip the signs of u
The dual is equivalent to a quadratic min-cost flow problem.

min
ξ∈R

p×|G|
+

1

2
‖u−

∑

g∈G

ξg‖22 s.t. ∀g ∈ G,
∑

j∈g

ξ
g
j ≤ λ and ξ

g
j = 0 if j /∈ g ,
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Quick introduction to network flows

References:

Ahuja, Magnanti and Orlin. Network Flows, 1993

Bertsekas. Network Optimization, 1998.

A flow is a non-negative function on arcs that respects conservation
constraints (Kirchhoff’s law)

1

1

2
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Quick introduction to network flows

References:

Ahuja, Magnanti and Orlin. Network Flows, 1993

Bertsekas. Network Optimization, 1998

A flow is a non-negative function on arcs that respects conservation
constraints (Kirchhoff’s law)

s t

1

1

2

1

1

2

Flows usually go from a source node s to a sink node t.
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Quick introduction to network flows

For a graph G = (V ,E ):

An arc (u, v) in E might have capacity constraints.

Sending the maximum amount of flow in a network under capacity
constraints is called maximum flow problem.

This problem is dual to the minimum cut problem: finding a
partition (Vs ,Vt) of V , with s ∈ Vs and t ∈ Vt with minimal
capacity (sum of capacities of all arcs going from Vs to Vt). [Ford
and Fulkerson, 1956]

it is a linear program, but there exists efficient dedicated
algorithms [Goldberg and Tarjan, 1986] (|V | = 1000 000 is “fine”).

Finding a flow that minimizes a linear cost is called a minimum
cost flow problem.
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General Overlapping Groups for q =∞
Example: G = {g = {1, . . . , p}}

min
ξg∈R

p
+

1

2
‖u− ξg‖22 s.t.

p
∑

j=1

ξ
g
j ≤ λ.

s

g

ξ
g
1+ξ

g
2+ξ

g
3 ≤λ

u2

ξ
g
2

u1

ξ
g
1

u3

ξ
g
3

t

ξ̄1, c1 ξ̄2, c2 ξ̄3, c3

Figure: G={g={1, 2, 3}}, ∀j , cj =
1
2 (uj − ξ̄j)

2.
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General Overlapping Groups for q =∞
Example with two overlapping groups

min
ξ∈R

p×|G|
+

1

2
‖u−

∑

g∈G

ξg‖22 s.t. ∀g ∈ G,
∑

j∈g

ξ
g
j ≤ λ and ξ

g
j = 0 if j /∈ g ,

s

g

ξ
g
1+ξ

g
2 ≤λ

h

ξh2+ξh3≤λ

u2

ξh2ξ
g
2

u1

ξ
g
1

u3

ξh3

t

ξ̄1, c1 ξ̄2, c2 ξ̄3, c3

Figure: G={g={1, 2}, h={2, 3}}, ∀j , cj =
1
2 (uj − ξ̄j)

2.
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General Overlapping Groups for q =∞
[Mairal, Jenatton, Obozinski, and Bach, 2010]

Main ideas of the algorithm: Divide and conquer

1 Solve a relaxed problem in linear time.

2 Test the feasability of the solution for the “non-relaxed” problem
with a max-flow.

3 If the solution is feasible, it is optimal and stop the algorithm.

4 If not, find a minimum cut and removes the arcs along the cut.

5 Recursively process each subgraph defined by the cut.

The algorithm converges to the solution.
Related works:

network flow optimization and total-variation [Chambolle and
Darbon, 2009].

similar algorithms exist in the optimization literature of submodular
functions [Groenevelt, 1991].
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Part III: Applications of Structured Sparsity
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Background Subtraction
Given a video sequence, how can we remove foreground objects?

x
︸︷︷︸

frame

≈ Xw
︸︷︷︸

linear combination of background frames

+ e.
︸︷︷︸

foreground

Solved by

min
w∈Rp ,e∈Rm

1

2
‖x− Xw − e‖22 + λ1‖w‖+ λ2Ω(e).

Same idea as Wright et al. [2009] for robust face recognition,
where Ω = ℓ1.

Same task as Cehver et al. [2008], Huang et al. [2009] who used
structured sparsity + background subtraction.

We are going to use overlapping groups with 3× 3 neighborhoods to
add spatial consistency.

Julien Mairal, UC Berkeley Network Flow Algorithms for Structured Sparsity 27/50



Background Subtraction

(a) input (b) estimated background (c) foreground, ℓ1

(d) foreground, ℓ1+struct (e) other example
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Background Subtraction

(a) input (b) estimated background (c) foreground, ℓ1

(d) foreground, ℓ1+struct (e) other example
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Speed Benchmark
[Mairal, Jenatton, Obozinski, and Bach, 2011]
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Figure: Distance to the optimal primal value versus CPU time (log-log scale).
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Speed Benchmark
[Mairal, Jenatton, Obozinski, and Bach, 2011]
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Speed Benchmark
[Mairal, Jenatton, Obozinski, and Bach, 2011]
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Structured Dictionary Learning

min
X∈X ,W∈Rp×n

n∑

i=1

1

2
‖yi − Xwi‖22 + λΩ(wi ).

structure X? [Jenatton et al., 2010b]

structure W? [Kavukcuoglu et al., 2009, Jenatton et al., 2010a,
Mairal et al., 2011]

Optimization

Alternate minimization between X and W.

online learning techniques [Olshausen and Field, 1997, Mairal et al.,
2009].
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Hierarchical Dictionary Learning
[Jenatton, Mairal, Obozinski, and Bach, 2010a]
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Topographic Dictionary Learning
[Mairal, Jenatton, Obozinski, and Bach, 2011]

Julien Mairal, UC Berkeley Network Flow Algorithms for Structured Sparsity 35/50



Wavelet denoising with structured sparsity
[Mairal, Jenatton, Obozinski, and Bach, 2011]

Classical wavelet denoising [Donoho and Johnstone, 1995]:

min
w∈Rp

1

2
‖y − Xw‖22 + λ‖w‖1,

When X is orthogonal, the solution is obtained via soft-thresholding.
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Wavelet denoising with hierarchical norms
[Mairal, Jenatton, Obozinski, and Bach, 2011]

Benchmark on a database of 12 standard images:

PSNR IPSNR vs. ℓ1
σ ℓ1 Ωtree Ωgrid ℓ1 Ωtree Ωgrid

5 35.67 35.98 36.15 0.00± .0 0.31± .18 0.48± .25

10 31.00 31.60 31.88 0.00± .0 0.61± .28 0.88± .28

25 25.68 26.77 27.07 0.00± .0 1.09± .32 1.38± .26

50 22.37 23.84 24.06 0.00± .0 1.47± .34 1.68± .41

100 19.64 21.49 21.56 0.00± .0 1.85± .28 1.92± .29
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CUR Matrix Decomposition
[Mairal, Jenatton, Obozinski, and Bach, 2011]

CUR matrix decomposition [Mahoney and Drineas, 2009]

Let X in R
n×p. The goal is to find an low-rank approximation:

X ≈ CUR,

where C and R are respectively subsets of columns and rows of X.

Bien et al. [2010] uses the Group Lasso for decomposing X ≈ CW.
We use here structured sparsity:

min
W∈Rp×n

1

2
‖X− XWX‖2F + λrow

n∑

i=1

‖Wi‖∞ + λcol

p
∑

j=1

‖Wj‖∞.

The performance is experimentally similar to the sampling
procedure of Mahoney and Drineas [2009].
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Hierarchical Topic Models for text corpora
[Jenatton, Mairal, Obozinski, and Bach, 2010a]

Each document is modeled through word counts

Low-rank matrix factorization of word-document matrix

Probabilistic topic models such as Latent Dirichlet Allocation [Blei
et al., 2003]

Organise the topics in a tree.

Previously approached using non-parametric Bayesian
methods (Hierarchical Chinese Restaurant Process and nested
Dirichlet Process): [Blei et al., 2010]

Can we achieve similar performance with simple matrix
factorization formulation?
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Tree of Topics

Julien Mairal, UC Berkeley Network Flow Algorithms for Structured Sparsity 40/50



Classification based on topics

Comparison on predicting newsgroup article subjects

20 newsgroup articles (1425 documents, 13312 words)
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Conclusion / Discussion

Network Flow Optimization can handle structured sparse
regularization functions based on the ℓ∞-norm.

Hierarchical norms lead to the same complexity as the Lasso.

We have presented new applications to matrix factorization,
dictionary learning, topic modelling. . .

Code SPAMS available: http://www.di.ens.fr/willow/SPAMS/,
now open-source!
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SPAMS toolbox (open-source)

C++ interfaced with Matlab.

proximal gradient methods for ℓ0, ℓ1, elastic-net, fused-Lasso,
group-Lasso, tree group-Lasso, tree-ℓ0, sparse group Lasso,
overlapping group Lasso...

...for square, logistic, multi-class logistic loss functions.

handles sparse matrices,

provides duality gaps.

also coordinate descent, block coordinate descent algorithms.

fastest available implementation of OMP and LARS.

dictionary learning and matrix factorization (NMF, sparse PCA).

fast projections onto some convex sets.

Try it! http://www.di.ens.fr/willow/SPAMS/
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