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Paradigm 1: Machine learning as optimization problems

Optimization is central to machine learning. For instance, in supervised
learning, the goal is to learn a prediction function f : X → Y given
labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

[Vapnik, 1995, Bottou, Curtis, and Nocedal, 2016]...
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min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

Example with linear models: logistic regression, SVMs, etc.

f(x) = w>x+ b is parametrized by w, b in Rp+1;

L is a convex loss function;

. . . but n and p may be huge ≥ 106.
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learning, the goal is to learn a prediction function f : X → Y given
labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

Example with deep learning

The “deep learning” space F is parametrized:

f(x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)).

Finding the optimal A1, A2, . . . , Ak yields an (intractable)
non-convex optimization problem in huge dimension.
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Paradigm 1: Machine learning as optimization problems

Optimization is central to machine learning. For instance, in supervised
learning, the goal is to learn a prediction function f : X → Y given
labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

Today’s challenges: develop algorithms that

scale both in the problem size n and dimension p;

are able to exploit the problem structure (sum, composite);

come with convergence and numerical stability guarantees;

come with statistical guarantees.
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Paradigm 2: The sparsity principle

The way we do machine learning follows a classical scientific paradigm:
1 observe the world (gather data);
2 propose models of the world (design and learn);
3 test on new data (estimate the generalization error).

But...

it is not always possible to distinguish the generalization error of
various models based on available data.

when a complex model A performs slightly better than a simple
model B, should we prefer A or B?

generalization error requires a predictive task: what about
unsupervised learning? which measure should we use?

we are also leaving aside the problem of non i.i.d. train/test data,
biased data, testing with counterfactual reasoning...

[Corfield et al., 2009].

[Corfield et al., 2009, Bottou et al., 2013, Schölkopf et al., 2012].
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Paradigm 2: The sparsity principle

(a) Dorothy Wrinch
1894–1980

(b) Harold Jeffreys
1891–1989

The existence of simple laws is, then, apparently, to be
regarded as a quality of nature; and accordingly we may infer
that it is justifiable to prefer a simple law to a more complex
one that fits our observations slightly better.

[Wrinch and Jeffreys, 1921].
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Paradigm 2: The sparsity principle

Remarks: sparsity is...

appealing for experimental sciences for model interpretation;

(too-)well understood in some mathematical contexts:

min
w∈Rp

1

n

n∑
i=1

L
(
yi, w

>xi
)

︸ ︷︷ ︸
empirical risk, data fit

+ λ‖w‖1︸ ︷︷ ︸
regularization

.

extremely powerful for unsupervised learning in the context of
matrix factorization, and simple to use.

Today’s challenges

Develop sparse and stable (and invariant?) models.

Go beyond clustering / low-rank / union of subspaces.

[Olshausen and Field, 1996, Chen, Donoho, and Saunders, 1999, Tibshirani, 1996]...
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Paradigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...
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Paradigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model local stationarity of images at several scales.
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Paradigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

What are the main open problems?

very little theoretical understanding;

they require large amounts of labeled data;

they require manual design and parameter tuning;
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Paradigm 3: Deep Kernel Machines

A quick zoom on kernel methods

1 map data to a Hilbert space:

ϕ : X → H.

2 work with linear forms f in H:

f(x) = 〈ϕ(x), f〉H.

3 run your favorite algorithm in H
(PCA, CCA, SVM, . . . )

Hilbert space H

F

ϕ(x)

ϕ(x′)

all we need is a positive definite kernel function K : X × X → R

K(x, x′) = 〈ϕ(x), ϕ(x′)〉H.
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Paradigm 3: Deep Kernel Machines

A quick zoom on kernel methods

1 map data to a Hilbert space:

ϕ : X → H.

2 work with linear forms f in H:

f(x) = 〈ϕ(x), f〉H.

3 run your favorite algorithm in H
(PCA, CCA, SVM, . . . )

Hilbert space H

F

ϕ(x)

ϕ(x′)

for supervised learning, it also yields the ERM problem

min
f∈H

1

n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2H.
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Paradigm 3: Deep Kernel Machines

What are the main features of kernel methods?

builds well-studied functional spaces to do machine learning;

decoupling of data representation and learning algorithm;

typically, convex optimization problems in a supervised context;

versatility: applies to vectors, sequences, graphs, sets,. . . ;

natural regularization function to control the learning capacity;

But...

decoupling of data representation and learning may not be a good
thing, according to recent supervised deep learning success.

requires kernel design.

[Shawe-Taylor and Cristianini, 2004, Schölkopf and Smola, 2002, Müller et al., 2001]
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Paradigm 3: Deep Kernel Machines

Challenges of deep kernel machines

Build functional spaces for deep learning, where we can quantify
invariance and stability to perturbations, signal recovery
properties, and the complexity of the function class.

do deep learning with a geometrical interpretation (learn
collections of linear subspaces, perform projections).

exploit kernels for structured objects (graph, sequences) within
deep architectures.

show that end-to-end learning is natural with kernel methods.
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Part II: Contributions
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Contributions of this HdR

Axis 1: large-scale optimization for machine learning

Structured MM algorithms for structured problems.

f(x)
gt(x)

ht(x) b

b

xt−1

xt

f(xt) ≤ f(xt−1)

Variance-reduced stochastic optimization for convex optimization.

Acceleration by smoothing.

Axis 2: Deep kernel machines

Convolutional kernel networks.

Applications to image retrieval and image super-resolution.

Axis 3: Sparse estimation and pluri-disciplinary research

Complexity analysis of the Lasso regularization path.

Path selection in graphs and isoform discovery in RNA-Seq data.

A computational model for V4 in neuroscience.
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Part III: Focus on acceleration techniques for
machine learning
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Focus on acceleration techniques for machine learning

Part of the PhD thesis of Honghzou Lin (defense on Nov. 16th).

Publications and pre-prints
H. Lin, J. Mairal and Z. Harchaoui. A Generic Quasi-Newton Algorithm for Faster
Gradient-Based Optimization. arXiv:1610.00960. 2017

H. Lin, J. Mairal and Z. Harchaoui. A Universal Catalyst for First-Order
Optimization. Adv. NIPS 2015.
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Focus on acceleration techniques for machine learning

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

min
x∈Rd

{
f(x)

M
=

1

n

n∑
i=1

fi(x) + ψ(x)

}
,

where each fi is smooth and convex and ψ is a convex regularization
penalty but not necessarily differentiable.

Goal of this work

Design accelerated methods for minimizing large finite sums.

Give a generic acceleration schemes which can be applied to
previously un-accelerated algorithms.
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Consider the minimization of a large sum of convex functions

min
x∈Rd

{
f(x)

M
=

1

n

n∑
i=1

fi(x) + ψ(x)

}
,

where each fi is smooth and convex and ψ is a convex regularization
penalty but not necessarily differentiable.

Goal of this work

Design accelerated methods for minimizing large finite sums.

Give a generic acceleration schemes which can be applied to
previously un-accelerated algorithms.

Two solutions: (2) QuickeNing (Quasi Newton);
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Focus on acceleration techniques for machine learning

Parenthesis: Consider the minimization of a µ-strongly convex and
L-smooth function with a first-order method.

min
x∈Rp

f(x).

The gradient descent method:

xt ← xt−1 −
1

L
∇f(xt−1).

Iteration-complexity to guarantee f(xt)− f? ≤ ε:

O

(
L

µ
log

(
1

ε

))
.
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Focus on acceleration techniques for machine learning

Parenthesis: Consider the minimization of a µ-strongly convex and
L-smooth function with a first-order method.

min
x∈Rp

f(x).

The accelerated gradient descent method [Nesterov, 1983]:

xt ← yt−1 −
1

L
∇f(yt−1) and yt = xt + βt(xt − xt−1).

Iteration-complexity to guarantee f(xt)− f? ≤ ε:

O

(√
L

µ
log

(
1

ε

))
.

Works often in practice, even though the analysis is a worst case.
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Focus on acceleration techniques for machine learning

Parenthesis: Consider the minimization of a µ-strongly convex and
L-smooth function with a first-order method.

min
x∈Rp

f(x).

Limited memory Quasi Newton (L-BFGS):

xt ← xt−1 − ηtHt∇f(xt−1) with Ht ≈ (∇2f(xt−1))−1.

L-BFGS uses implicitly a low-rank matrix Ht.

Iteration-complexity to guarantee f(xt)− f? ≤ ε is no better than
gradient descent.

outstanding performance in practice, when well implemented.

[Nocedal, 1980, Liu and Nocedal, 1989].
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Focus on acceleration techniques for machine learning

The Moreau-Yosida smoothing

Given f : Rd → R a convex function, the Moreau-Yosida smoothing of f
is the function F : Rd → R defined as

F (x) = min
w∈Rd

{
f(w) +

κ

2
‖w − x‖2

}
.

The proximal operator p(x) is the unique minimizer of the problem.

Properties [see Lemaréchal and Sagastizábal, 1997]

minimizing f and F is equivalent.

F is κ-smooth (even when f is nonsmooth) and

∇F (x) = κ(x− p(x)).

the condition number of F is 1 + κ
µ (when µ > 0).
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Focus on acceleration techniques for machine learning

A naive approach consists of minimizing the smoothed objective F
instead of f with a method designed for smooth optimization.

Consider indeed

xt = xt−1 −
1

κ
∇F (xt−1).

By rewriting the gradient ∇F (xt−1) as κ(xt−1 − p(xt−1)), we obtain

xt = p(xt−1) = arg min
w∈Rp

{
f(w) +

κ

2
‖w − xt−1‖2

}
.

This is exactly the proximal point algorithm [Rockafellar, 1976].

Remarks

we can do better than gradient descent;

computing p(xt−1) has a cost.
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Focus on acceleration techniques for machine learning

Catalyst is a particular accelerated proximal point algorithm with
inexact gradients [Güler, 1992].

xt ≈ p(yt−1) and yt = xt + βt(xt − xt−1)

The quantity xt is obtained by using an optimization method for
approximately solving:

xt ≈ arg min
w∈Rp

{
f(w) +

κ

2
‖w − yt−1‖2

}
,

Catalyst provides Nesterov’s acceleration to M with...

restart strategies for solving the sub-problems;

global complexity analysis resulting in theoretical acceleration.

parameter choices (as a consequence of the complexity analysis);
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Focus on acceleration techniques for machine learning

QuickeNing uses a similar strategy with L-BFGS.

Main recipe

L-BFGS applied to the smoothed objective F with inexact
gradients.

inexact gradients are obtained by solving sub-problems using a
first-order optimization method M;

as in Catalyst, one should choose a method M that is able to
adapt to the problem structure (finite sum, composite).

replace L-BFGS steps by proximal point steps if no sufficient
decrease is estimated ⇒ no line search on F ;

Remark

often outperform Catalyst in practice (but not in theory).
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Focus on acceleration techniques for machine learning

QuickeNing-SVRG ≥ SVRG;

QuickeNing-SVRG ≥ Catalyst-SVRG in 10/12 cases.
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Part IV: Focus on convolutional kernel networks
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Focus on convolutional kernel networks

I0

x

x′

kernel trick

projection on F1

M1

ψ1(x)

ψ1(x
′)

I1
linear pooling

Hilbert space H1

F1

ϕ1(x)

ϕ1(x
′)

Publications and pre-prints

A. Bietti and J. Mairal. Invariance and Stability of Deep Convolutional
Representations. Adv. NIPS 2017.
J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel
Networks. Adv. NIPS 2016.
J. Mairal, P. Koniusz, Z. Harchaoui and C. Schmid. Convolutional Kernel Networks.
Adv. NIPS 2014.
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Focus on convolutional kernel networks

x : Ω→ A
x(u) ∈ A P0x(v1) ∈ P0 (patch)

x0 : Ω0 → H0

x0(v1) = ϕ0(P0x(v1)) ∈ H0

domain-specific kernel
P1x0(v2) ∈ P1

x0.5 : Ω0 → H1

x0.5(v2) = ϕ1(P1x0(v2)) ∈ H1

dot-product kernel

x1 : Ω1 → H1

x1(v3) ∈ H1

linear pooling

xk ∈ Hk y
prediction layer

embedding
layer

convolutional
kernel layer

Illustration of multilayer convolutional kernel for 1D discrete signals.
(Figure produced by Dexiong Chen)
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Focus on convolutional kernel networks

xk–1 : Ω→ Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

xk–0.5(v) = ϕk(Pkxk–1(v)) ∈ Hk
xk–0.5 : Ω→ Hk

xk : Ω→ Hk

linear pooling
xk(w) ∈ Hk

Illustration of multilayer convolutional kernel for 2D continuous signals.
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Focus on convolutional kernel networks

I0

x

x′

kernel trick

projection on F1

M1

ψ1(x)

ψ1(x
′)

I1
linear pooling

Hilbert space H1

F1

ϕ1(x)

ϕ1(x
′)

Learning mechanism of CKNs between layers 0 and 1.
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Focus on convolutional kernel networks

Main principles

A multilayer kernel, which builds upon similar principles as a
convolutional neural net (multiscale, local stationarity).

When going up in the hierarchy, we represent larger
neighborhoods with more invariance;

The first layer may encode domain-specific knowledge;

We build a sequence of functional spaces and data representations
that are decoupled from learning...

But, we learn linear subspaces in RKHSs, where we project data,
providing a new type of CNN with a geometric interpretation.

Learning may be unsupervised (reduce approximation error) or
supervised (via backpropagation).
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Focus on convolutional kernel networks

Remarks - In practice

extremely simple to use in unsupervised setting. Is it easier to use
than regular CNNs for supervised learning?

competitive results for various tasks (super-resolution, retrieval,. . . ).

Remarks - In theory [Bietti and Mairal, 2017]

invariance and stability to deformations.

may encode invariance to various groups of transformations.

The kernel representation does not lose signal information.

Our RKHSs contain classical CNNs with homogeneous activation
functions. Can we say something about them?

[Mallat, 2012]
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Focus on convolutional kernel networks

Bicubic CNN SCKN (Ours)

Figure: Results for x3 upscaling.

Julien Mairal Soutenance HdR 30/33



Focus on convolutional kernel networks

Figure: Bicubic.
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Focus on convolutional kernel networks

Figure: SCKN.
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Part V: Conclusion and perspectives
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Main perspectives

Beyond the challenges already raised for each paradigm, which remain
unsolved in large parts, here is a selection of three perspectives.

on optimization

go beyond the ERM formulation. Develop algorithms for Nash
equilibriums, saddle-point problems, active learning. . .

on deep kernel machines

work with structured data (sequences, graphs...) and develop
pluri-disciplinary collaborations.

on sparsity

simplicity, stability, and compositional principles are needed for
unsupervised learning, but where?
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