Sparse Estimation and Dictionary Learning

(for Biostatistics?)

Julien Mairal

Biostatistics Seminar, UC Berkeley

Julien Mairal Sparse Estimation and Dictionary Learning Methods 1/69



What this talk is about?

Why sparsity, what for and how?
Feature learning / clustering / sparse PCA;

*]

[~}

o Machine learning: selecting relevant features;

@ Signal and image processing: restoration, reconstruction;
o

Biostatistics: you tell me.

Julien Mairal Sparse Estimation and Dictionary Learning Methods 2/69



Part I: Sparse Estimation
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Sparse Linear Model: Machine Learning Point of View
Let (y",x")}’:1 be a training set, where the vectors x’ are in RP and are
called features. The scalars y' are in

o {—1,+1} for binary classification problems.

@ R for regression problems.

T

We assume there is a relation y =~ w ' x, and solve

mln—ZK(y w'x')+ )\w( )

weRP n
regularlzatlon

TV
empirical risk

Julien Mairal Sparse Estimation and Dictionary Learning Methods

4/69



Sparse Linear Models: Machine Learning Point of View

A few examples:

: . 11
Ridge regression: wnéhgpzz 2(y —w ' x)? + Al|lwl3.
Linear SVM: min —

(0.1 y'w'x) + Aw]|3.
weanZmax yiw x4+ Awl|s

Logisti ion: =3 log (14 &™) 4
ogistic regression wnéhgpnz og(l+e + Awl|3.

AN
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Sparse Linear Models: Machine Learning Point of View

A few examples:

: : 1~ 1

Ridge regression: V«';ESIQPE 51 2(y —w'x)2 4+ Al|lwl|3.

Linear SVM: f§: 0,1—y'wx')+ \|wl3.
inear wrréhgpn max( y'w'x') + A[wl3

Logisti ion: =3 log (1 &™)
ogistic regression wnéhgpnz og(l+e + Ajw]3.

The squared />-norm induces “smoothness” in w. When one knows in
advance that w should be sparse, one should use a sparsity-inducing
regularization such as the /;-norm. [Chen et al., 1999, Tibshirani, 1996]
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Sparse Linear Models: Signal Processing Point of View

Let y in R” be a signal.

700 400 600 800 1000 1200 1400 1600 7800 Z0m

Let X = [x},...,xP] € R™P be a set of } A
normalized “basis vectors” . M
We call it dictionary. LUV 4

X is “adapted” to y if it can represent it with a few basis vectors—that
is, there exists a sparse vector w in RP such that y ~ Xw. We call w
the sparse code.

Wi
W>
y ~ xl x2 oo | xP
P
yeR" XeRnXP

——
weRe, Sparse
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The Sparse Decomposition Problem

1
min Sy —Xw[Z +  A(w)
weRp 2 ——
Y sparsity-inducing
regularization

data fitting term
1 induces sparsity in w. It can be
o the o "pseudo-norm”. ||w||o L #{i s.t. w;# 0} (NP-hard)
o the ¢1 norm. [wlj; = 37, |w;| (convex),
° ...

This is a selection problem. When ) is the £1-norm, the problem is
called Lasso [Tibshirani, 1996] or basis pursuit [Chen et al., 1999]
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Why does the ¢1-norm induce sparsity?

Exemple: quadratic problem in 1D

1 2
in—(u— A
i 5 (0= w)*+ Alw
Piecewise quadratic function with a kink at zero.

Derivative at 0: g = —u+AXand 0_: g = —u— A\

Optimality conditions. w is optimal iff:
@ |w|>0and (u—w)+ Asign(w) =0
ow=0and gy >0and g_ <0

The solution is the soft-thresholding operator:

w* = sign(u)(Jul — \)7.
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Why does the ¢1-norm induce sparsity?

(a) soft-thresholding operator, (b) hard-thresholding operator

w = sign(u)(|ul = )", w =15 25
min, 1(u— w)? + A|w| miny 3 (0 — w)? + ALj 50
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Why does the ¢1-norm induce sparsity?

Comparison with ¢>-regularization in 1D

W(w) = -1, ¢ (w)=1

The gradient of the {>-penalty vanishes when w get close to 0. On its
differentiable part, the norm of the gradient of the /1-norm is constant.
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Why does the ¢1-norm induce sparsity?

Physical illustration

E;=0 E;

A

I
o

Yo
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Why does the ¢1-norm induce sparsity?

Physical illustration

E1 = %(YO—Y)z k( )2
Es =F(w—y

E> = mgy
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Why does the ¢1-norm induce sparsity?

Physical illustration

E = %(YO —y)?
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Regularizing with the /;-norm

w1

¢1-ball w2

lwlp < T

The projection onto a convex set is “biased” towards singularities.
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Regularizing with the />-norm

w1

/ﬁ;bﬂl w2

lwll2 < T

The £3-norm is isotropic.
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Regularizing with the /,.-norm

wi
{oo-ball 0
[wlloo < T
The ¢oo-norm encourages |wi| = |wa|.
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In 3D.

Copyright G. Obozinski
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What about more complicated norms?
Copyright G. Obozinski
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What about more complicated norms?
Copyright G. Obozinski
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Examples of sparsity-inducing penalties

Exploiting concave functions with a kink at zero

Y(w) = 37 o(lwil).
o (g-“pseudo-norm”, with 0 < g < 1: p(w) = 3P |w;[9,
o log penalty, 1(w) £ P log(jwi| + €),

¢ is any function that looks like this:

¢(lwl)
W
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Examples of sparsity-inducing penalties

AN
N

N
/

(c) Los-ball, 2-D (d) #:-ball, 2-D (e) Lo-ball, 2-D

Figure: Open balls in 2-D corresponding to several £4-norms and pseudo-norms.
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Examples of sparsity-inducing penalties

@ The ¢1-/5 norm (group Lasso),

ZngH2 = Z(Zwﬁ)lﬂ, with G a partition of {1,...,p}.

g€eg geg jeg

selects groups of variables [Yuan and Lin, 2006].

o the fused Lasso [Tibshirani et al., 2005] or total variation [Rudin

et al., 1992]:
p—1

p(w) = |wjig — wyl.

J=1

Extensions (out of the scope of this talk):
@ hierarchical norms [Zhao et al., 2009].

@ structured sparsity [Jenatton et al., 2009, Jacob et al., 2009, Huang
et al., 2009, Baraniuk et al., 2010]
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Part Il: Dictionary Learning
and Matrix Factorization
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Matrix Factorization and Clustering
Let us cluster some training vectors y!,...,y™ into p clusters using
K-means:
12
min ly" = x"|I3.
J)p 1’(l i=1 lz

It can be equivalently formulated as

P
min Xw/[|% st. w' >0 and wi=1
XER™P,We{0,1}pxm < Z Hy IF - Jz_; J ’
which is a matrix factorization problem:
p .
min Y = XW|Z st. W >0 and ij’ =1,
XeRm™P,We{0,1}Pxm =
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Matrix Factorization and Clustering

Hard clustering

min
XeR*P,We{0,1}pxm

J=1
X = [x1,...,Xp| are the centroids of the p clusters.
Soft clustering
P
min Y = XWI|z st. W>0and > wi=1,
XeRnXp,WeRpxm - 1
j:
X =[x1,...,%p] are the centroids of the p clusters.
Julien Mairal Sparse Estimation and Dictionary Learning Methods
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Other Matrix Factorization Problems
PCA

min fHY XWI|2 st. X"X =1and WW' is diagonal.
WeRPxn 2
XeRM*P

= [x1,...,Xp] are the principal components.
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Other Matrix Factorization Problems

Non-negative matrix factorization [Lee and Seung, 2001]

1
min  Z||[Y — XW||2 st. W>0and X > 0.
WeRPXn 2

XeRM*P
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Dictionary Learning and Matrix Factorization
[Olshausen and Field, 1997]

n

Z 1. - .
min —|ly" — Xw' 2 AMlw!
XGX,WIGRPXm ; 2”y HF + “ “17

=

which is again a matrix factorization problem

. 1
min >[I — XW/[% + AW])1.
WERPxn 2

Xcx
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Why having a unified point of view?

1 )
min Y = XWZ + (W),
XeXx

@ same framework for NMF, sparse PCA, dictionary learning,
clustering, topic modelling;

@ can play with various constraints/penalties on W (coefficients) and
on X (loadings, dictionary, centroids);

@ same algorithms (no need to reinvent the wheel): alternate
minimization, online learning [Mairal et al., 2010].
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Advertisement SPAMS toolbox (open-source)
@ C++ interfaced with Matlab, R, Python.

@ proximal gradient methods for ¢y, /1, elastic-net, fused-Lasso,
group-Lasso, tree group-Lasso, tree-{y, sparse group Lasso,
overlapping group Lasso...

...for square, logistic, multi-class logistic loss functions.

handles sparse matrices, provides duality gaps.

°
°

@ fast implementations of OMP and LARS - homotopy.

@ dictionary learning and matrix factorization (NMF, sparse PCA).
°

coordinate descent, block coordinate descent algorithms.

@ fast projections onto some convex sets.

Try it! http://www.di.ens.fr/willow/SPAMS/
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Part 1lI: A few Image Processing Stories
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The Image Denoising Problem

y — Xorig + W

measurements original image noise
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Sparse representations for image restoration

= Xori + w
y orig \ ,

measurements original image noise

Energy minimization problem - MAP estimation

1
E)= " Sly-xlIz + ¥(x)
—_—— M

. image model (-log prior
relation to measurements g ( g P )

Some classical priors
@ Smoothness \||£x||3
@ Total variation \||Vx|?
@ MREF priors

o ...
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Sparse representations for image restoration

Designed dictionaries
[Haar, 1910], [Zweig, Morlet, Grossman ~70s|, [Meyer, Mallat,
Daubechies, Coifman, Donoho, Candes ~80s-today]. .. (see [Mallat,

1999])
Wavelets, Curvelets, Wedgelets, Bandlets, ... lets

Learned dictionaries of patches

[Olshausen and Field, 1997], [Engan et al., 1999], [Lewicki and
Sejnowski, 2000], [Aharon et al., 2006] , [Roth and Black, 2005], [Lee
et al., 2007]
. 1 2
WT)ére‘c : EHY: — Xwillz + Agp(w;)
I reconstruction sparsity

o (w) = |lwl|jo ("o pseudo-norm”)
o ¢(w) = [lwlly (¢1 norm)
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Sparse representations for image restoration

Solving the denoising problem

[Elad and Aharon, 2006]
o Extract all overlapping 8 x 8 patches vy;.
o Solve a matrix factorization problem:

.1
' ~[lyi — Xw;[|5 + Agp(w),
Jmin > 21y = Xwillz + p(wi)

I= N sparsity
reconstruction

with n > 100, 000

o Average the reconstruction of each patch.
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Sparse representations for image restoration
K-SVD: [Elad and Aharon, 2006]

L]
|8 1P K.
]l | T VE {1
SN VA, 7= Yl

Figure: Dictionary trained on a noisy version of the image
boat.
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Sparse representations for image restoration

Grayscale vs color image patches

Julien Mairal Sparse Estimation and Dictionary Learning Methods  38/69



Sparse representations for image restoration
[Mairal, Sapiro, and Elad, 2008b]
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Sparse representations for image restoration
Inpainting, [Mairal, Elad, and Sapiro, 2008a]

lFI.EJ ., v

Gugh all
]_ 900s,
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Sparse representations for image restoration
Inpainting, [Mairal, Elad, and Sapiro, 2008a]
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Sparse representations for video restoration

Key ideas for video processing
[Protter and Elad, 2009]
o Using a 3D dictionary.
o Processing of many frames at the same time.

o Dictionary propagation.
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Sparse representations for image restoration
Inpainting, [Mairal, Sapiro, and Elad, 2008b]

Figure: Inpainting results.

Julien Mairal Sparse Estimation and Dictionary Learning Methods ~ 43/69



Sparse representations for image restoration
Inpainting, [Mairal, Sapiro, and Elad, 2008b]

Figure: Inpainting results.
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Sparse representations for image restoration
Inpainting, [Mairal, Sapiro, and Elad, 2008b]

Figure: Inpainting results.
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Sparse representations for image restoration
Inpainting, [Mairal, Sapiro, and Elad, 2008b]

Figure: Inpainting results.
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Sparse representations for image restoration
Inpainting, [Mairal, Sapiro, and Elad, 2008b]

Figure: Inpainting results.
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Sparse representations for image restoration
Color video denoising, [Mairal, Sapiro, and Elad, 2008b]

Figure: Denoising results. 0 = 25
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Sparse representations for image restoration
Color video denoising, [Mairal, Sapiro, and Elad, 2008b]

Figure: Denoising results. 0 = 25
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Sparse representations for image restoration
Color video denoising, [Mairal, Sapiro, and Elad, 2008b]

Figure: Denoising results. 0 = 25
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Sparse representations for image restoration
Color video denoising, [Mairal, Sapiro, and Elad, 2008b]

Figure: Denoising results. 0 = 25
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Sparse representations for image restoration
Color video denoising, [Mairal, Sapiro, and Elad, 2008b]

Figure: Denoising results. 0 = 25
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Digital Zooming

Couzinie-Devy, 2010, Original
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Digital Zooming

Couzinie-Devy, 2010, Bicubic
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Digital Zooming

Couzinie-Devy, 2010, Proposed method
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Digital Zooming

Couzinie-Devy, 2010, Original
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Digital Zooming

Couzinie-Devy, 2010, Bicubic
-
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Digital Zooming

Couzinie-Devy, 2010, Proposed approach

Julien Mairal Sparse Estimation and Dictionary Learning Methods ~ 58/69



Inverse half-toning
Original
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Inverse half-toning

Reconstructed image
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Inverse half-toning
Original
13 File Options
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Inverse half-toning

Reconstructed image

2 7ot fraaiGanes Caar (L) 1909, | 986=TENGEN
NLL ILGI 1S RESERVED '
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Inverse half-toning
Original

i Copyright @ 1987 by AcaodemuSoft-ELORG . Macimtosh Uersidm @ 1988 by Sphere, Inc.
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Inverse half-toning

Reconstructed image

Copyr|ght @ |087 by foodesSofi-ELORE Moc|nlosh vers|on & (088 by Sphere, |nc
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Inverse half-toning
Original

By Jonathan Gay &Mﬁrk STEphEﬂ FIETEE R e
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Inverse half-toning




Inverse half-toning
Original
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Inverse half-toning

Reconstructed image
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Conclusion

@ We have seen that many formulations are related to sparse
regularized matrix factorization problems: pca, sparse pca,
clustering, nmf, dictionary learning;

@ we have so successful stories in images processing, computer vision
and neuroscience;

@ there exists efficient software for Matlab/R/Python.
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One short slide on compressed sensing

Important message
Sparse coding is not “compressed sensing” .

Compressed sensing is a theory [see Candes, 2006] saying that a sparse
signal can be recovered from a few linear measurements under some
conditions.

@ Signal Acquisition: Z"y, where Z € R™*5 is a “sensing” matrix

with s < m.

o Signal Decoding: minyege W1 st. ZTy =ZTXw.
with extensions to approximately sparse signals, noisy measurements.
Remark

The dictionaries we are using in this lecture do not satisfy the recovery
assumptions of compressed sensing.
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Greedy Algorithms

Several equivalent non-convex and NP-hard problems:

= X A
min > Sy~ XwiZ+ Awlg

. regularization
residual r &

in ly — Xw|j3 st. |w]o<L
“Q%JPHY w3 st [wlo <L,

: _ 2
min lwlo s.t. [y — Xwl5 <e¢,

The solution is often approximated with a greedy algorithm.

@ Signal processing: Matching Pursuit [Mallat and Zhang, 1993],
Orthogonal Matching Pursuit [?].

@ Statistics: L2-boosting, forward selection.
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Matching Pursuit w = (0,0,0)

y X5

X1

X3
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Matching Pursuit w = (0,0,0)

y X5
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Matching Pursuit w = (0,0,0)
y

X2
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Matching Pursuit w = (0,0,0.75)
Y

X2

X3

X

Julien Mairal Sparse Estimation and Dictionary Learning Methods  81/69



Matching Pursuit w = (0,0,0.75)
Y

X2

X3

X
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Matching Pursuit w = (0,0,0.75)
Y

X2

X3

X

Julien Mairal Sparse Estimation and Dictionary Learning Methods  83/69



Matching Pursuit w = (0,0.24,0.75)

y X5

X1

X3

X
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Matching Pursuit w = (0,0.24,0.75)
y

X1

X3
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Matching Pursuit w = (0,0.24,0.75)
y

X1

X3
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Matching Pursuit w = (0,0.24,0.65)

y X5

X1

X3

X
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Matching Pursuit

i —Xw]? st <L
min |y —Xwl3 st. [wlo <
r

w0
r <y (residual).
while ||w|o < L do
Select the predictor with maximum correlation with the residual

2w

7+ argmax |x "r|
i=1,....p

5:  Update the residual and the coefficients
w; — w;+ x'r
ro— r—(xTrx

6: end while
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Orthogonal Matching Pursuit w = (0,0,0)
Yo% J=10

X3

X
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Orthogonal Matching Pursuit w = (0,0,0.75)
Yo J={3}

X3

X
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Orthogonal Matching Pursuit w = (0,0.29, 0.63)
y %5 J=1{3,2}
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Orthogonal Matching Pursuit

. 2
min —Xw|5 s.t. |wlo <L
min_ly = Xw[} st. wlo <
1: J=10.
2: for iter=1,...,L do
3:  Select the predictor which most reduces the objective

7 < argmin {mi/n ly — XJL_J{,'}W,H%}
i€l w

Update the active set: J < JU {i}.

Update the residual (orthogonal projection)

r— (1= Xy(X] X)) 1X])y.
6:  Update the coefficients
wy <« (X) X)X y.

7: end for
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Orthogonal Matching Pursuit

The keys for a good implementation
o If available, use Gram matrix G = XX,
@ Maintain the computation of X Tr for each signal,
@ Maintain a Cholesky decomposition of (X]—XJ)_1 for each signal.

The total complexity for decomposing n L-sparse signals of size m with a
dictionary of size p is

O(p*>m) + O(nL®)+ O(n(pm + pL?)) = O(np(m + L?))
—_—— N —

Gram matrix ~ Cholesky XTr

It is also possible to use the matrix inversion lemma instead of a
Cholesky decomposition (same complexity, but less numerical stability).
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Coordinate Descent for the Lasso

@ Coordinate descent + nonsmooth objective: WARNING: not
convergent in general

@ Here, the problem is equivalent to a convex smooth optimization
problem with separable constraints

min *Ily Xiwy + X w,||2+)\w+1+)\wT1 s.t. w_,wy >0.

W+,W,

@ For this specific problem, coordinate descent is convergent.

@ Assume the colums of X to have unit £>-norm, updating the
coordinate i:

Wi ¢ arg 1 mm *H y— > wixl —wx'|3 + Alw|
J#
—_—— —

r
— sign(x'Tr)(|x Tr] = X)F
@ = soft-thresholding!
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First-order/proximal methods
min, f(w) + Ap(w)
@ f is strictly convex and differentiable with a Lipshitz gradient.
@ Generalizes the idea of gradient descent

L
w Tl arg min £(w")+ V(W) " (w — wk)+§||w — w2+ (w)
weRp | —

quadratic term

linear approximation

1 1 A
—argmin > w — (wk — V7 (W) |3+ T(w)
weRP

When A = 0, wk*1 < wk — 1Vf(wk), this is equivalent to a
classical gradient descent step.
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First-order/proximal methods

@ They require solving efficiently the proximal operator

min >~ wiB + A (w)

@ For the #/1-norm, this amounts to a soft-thresholding:
w? = sign(u;)(u; — \)*

@ There exists accelerated versions based on Nesterov optimal
first-order method (gradient method with “extrapolation”) [Beck
and Teboulle, 2009, Nesterov, 2007, 1983]

@ suited for large-scale experiments.
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Optimization for Grouped Sparsity

The proximal operator:

.1
min ~flu—wl5+ A [wgllq

weRP e
For g = 2,
u
wy; = ——([lugl2 = \)*, Vgeg
£ Jlugl2""®
For g = oo,

wy =ug — Ny <alug], Vgeg

These formula generalize soft-thrsholding to groups of variables. They
are used in block-coordinate descent and proximal algorithms.
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Smoothing Techniques: Reweighted /5

Let us start from something simple

a’> —2ab+ b*> > 0.

Then
1/a° . o
a< §<3 + b) with equality iff a=b
and ,
1 w(/]?
[wl, = min 5 ; i

The formulation becomes

~ w[j]?
min —Hy Xwl[3 + E — +
=

wnj>5
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DC (difference of convex) - Programming

Remember? Concave functions with a kink at zero
P(w) = ?:1 o(wil).
o (- “pseudo-norm”, with 0 < g < 1: ¢(w) = 3P

@ log penalty, ¥(w) £ P log(|wi| + ¢),

¢ is any function that looks like this:

¢(lwl)
/(
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¢'(Iw Diwl + ¢
|wk .
N—7, 7
d(w) = log(|w| +¢€)
F(w) +¢'(Jw'[)|w| + C
Wk
F(w) + o(|wl)
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DC (difference of convex) - Programming

p

min f(w) + A w;l|).
min f(w)+ 2> (i)
i=1
This problem is non-convex. f is convex, and ¢ is concave on RT.
if wX is the current estimate at iteration k, the algorithm solves

p

whtl arg rﬂgﬁin [f(w) + AZW(M“”W’”’
we i=1

which is a reweighted-¢; problem.

Warning: It does not solve the non-convex problem, only provides
a stationary point.

In practice, each iteration sets to zero small coefficients. After 2 — 3
iterations, the result does not change much.
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