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Part I: Scientific Context
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Adaline: a physical neural net for least square regression

Figure: Adaline, [Widrow and Hoff, 1960]: A physical device that performs
least square regression using stochastic gradient descent.
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A quick zoom on multilayer neural networks

The goal is to learn a prediction function f : X → Y given labeled
training data (xi , yi )i=1,...,n with xi in X , and yi in Y:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi ))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f )︸ ︷︷ ︸
regularization

.
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empirical risk, data fit

+ λΩ(f )︸ ︷︷ ︸
regularization

.

What is specific to multilayer neural networks?

The “neural network” space F is explicitly parametrized by:

f (x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)).

Finding the optimal A1,A2, . . . ,Ak yields a non-convex
optimization problem in huge dimension.
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A quick zoom on convolutional neural networks

Figure: Picture from LeCun et al. [1998]

CNNs perform “simple” operations such as convolutions, pointwise
non-linearities and subsampling.

for most successful applications of CNNs, training is supervised.
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A quick zoom on convolutional neural networks

Figure: Picture from Yann LeCun’s tutorial, based on Zeiler and Fergus [2014].
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A quick zoom on convolutional neural networks

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model local stationarity of images at several scales.

What are the main open problems?

very little theoretical understanding;

they require large amounts of labeled data;

they require manual design and parameter tuning;

Nonetheless...

they are the focus of a huge academic and industrial effort;

there is efficient and well-documented open-source software.

[Choromanska et al., 2015, Livni et al., 2014, Saxena and Verbeek, 2016].
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Context of kernel methods
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Idea: representation by pairwise comparisons

Define a “comparison function”: K : X × X 7→ R.
Represent a set of n data points S = {x1, . . . , xn} by the n × n
matrix:

Kij := K (xi , xj).

[Shawe-Taylor and Cristianini, 2004, Schölkopf and Smola, 2002].
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Context of kernel methods

Theorem (Aronszajn, 1950)

K : X × X → R is a positive definite kernel if and only if there exists a
Hilbert space H and a mapping

ϕ : X → H,

such that, for any x, x in X ,

K (x, x′) = 〈ϕ(x), ϕ(x′)〉H.
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Context of kernel methods

2R

x1

x2

x1

x2

2

The classical challenge of kernel methods

Find a kernel K such that

the data in the feature space H has nice properties, e.g., linear
separability, cluster structure.

K is fast to compute.
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Context of kernel methods

Mathematical details

the only thing we require about K is symmetry and positive
definiteness

∀x1, . . . , xn ∈ X , α1, . . . , αn ∈ R,
∑
ij

αiαjK (xi , xj) ≥ 0.

then, there exists a Hilbert space H of functions f : X → R, called
the reproducing kernel Hilbert space (RKHS) such that

∀f ∈ H, x ∈ X , f (x) = 〈ϕ(x), f 〉H,

and the mapping ϕ : X → H (from Aronszajn’s theorem) satisfies

ϕ(x) : y 7→ K (x, y).
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Context of kernel methods

Why mapping data in X to the functional space H?

it becomes feasible to learn a prediction function f ∈ H:

min
f ∈H

1

n

n∑
i=1

L(yi , f (xi ))︸ ︷︷ ︸
empirical risk, data fit

+ λ‖f ‖2
H︸ ︷︷ ︸

regularization

.

(why? the solution lives in a finite-dimensional hyperplane).

non-linear operations in X become inner-products in H since

∀f ∈ H, x ∈ X , f (x) = 〈ϕ(x), f 〉H.

the norm of the RKHS is a natural regularization function:

|f (x)− f (x′)| ≤ ‖f ‖H‖ϕ(x)− ϕ(x′)‖H.
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Context of kernel methods

What are the main features of kernel methods?

decoupling of data representation and learning algorithm;

a huge number of unsupervised and supervised algorithms;

typically, convex optimization problems in a supervised context;

versatility: applies to vectors, sequences, graphs, sets,. . . ;

natural regularization function to control the learning capacity;

well studied theoretical framework.

But...

poor scalability in n, at least O(n2);

decoupling of data representation and learning may not be a good
thing, according to recent supervised deep learning success.
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Context of kernel methods

Challenges

Scaling-up kernel methods with approximate feature maps;

K (x, x′) ≈ 〈ψ(x), ψ(x′)〉.

[e.g., Williams and Seeger, 2001, Rahimi and Recht, 2007, Vedaldi
and Zisserman, 2012]

Design data-adaptive and task-adaptive kernels;

Build kernel hierarchies to capture compositional structures.
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[e.g., Williams and Seeger, 2001, Rahimi and Recht, 2007, Vedaldi
and Zisserman, 2012]

Design data-adaptive and task-adaptive kernels;

Build kernel hierarchies to capture compositional structures.

We need deep kernel
machines!
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Context of kernel methods

Challenges

Scaling-up kernel methods with approximate feature maps;

K (x, x′) ≈ 〈ψ(x), ψ(x′)〉.

[e.g., Williams and Seeger, 2001, Rahimi and Recht, 2007, Vedaldi
and Zisserman, 2012]

Design data-adaptive and task-adaptive kernels;

Build kernel hierarchies to capture compositional structures.

Remark

there exists already successful data-adaptive kernels that rely on
probabilistic models, e.g., Fisher kernel.

[Jaakkola and Haussler, 1999, Perronnin and Dance, 2007].
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Part II: Convolutional Kernel Networks
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Convolutional kernel networks

In a nutshell...

the (happy?) marriage of kernel methods and CNNs;

a hierarchy of kernels for local image neighborhoods;

kernel approximations with unsupervised or supervised training;

applications to image retrieval and image super-resolution.

First proof of concept with unsupervised learning

J. Mairal, P. Koniusz, Z. Harchaoui and C. Schmid. Convolutional Kernel
Networks. NIPS 2014.

More mature model, compatible with supervised learning

J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel
Networks. NIPS 2016.

This presentation follows the NIPS’16 paper.
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Convolutional kernel networks

Idea 1

use the kernel trick to represent image neighborhoods in a RKHS.

Consider an image I0 : Ω0 → Rp0 with p0 channels. Given two image
patches x, x′ of size e0 × e0, represented as vectors in Rp0e2

0 , define

K1(x, x′) = ‖x‖ ‖x′‖κ1

(〈
x

‖x‖ ,
x′

‖x′‖

〉)
if x, x′ 6= 0 and 0 otherwise,

To ensure positive-definiteness, κ1 needs to be smooth and its Taylor
expansion have non-negative coefficients (exercise)

, e.g.,

κ1(〈y, y′〉) = eα1(〈y,y′〉−1) = e−
α1
2
‖y−y′‖2

2 .

Then, we have implicitly defined the RKHS H1 associated to K1

and a mapping ϕ1 : Rp0e2
0 → H1.
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Convolutional kernel networks

Idea 1

use the kernel trick to represent image neighborhoods in a RKHS.

I0

x

x′

kernel trick

projection on F1

M1

ψ1(x)

ψ1(x
′)

I1
linear pooling

Hilbert space H1

F1

ϕ1(x)

ϕ1(x
′)
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Convolutional kernel networks

Idea 2

project onto a finite-dimensional subspace F1 of the RKHS H1

I0

x

x′

kernel trick

projection on F1

M1

ψ1(x)

ψ1(x
′)

I1
linear pooling

Hilbert space H1

F1

ϕ1(x)

ϕ1(x
′)
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Convolutional kernel networks

Idea 2

project onto a finite-dimensional subspace F1 of the RKHS H1

F1 is defined as the span of p1 anchor points:

F1 =Span(ϕ1(z1), . . . , ϕ1(zp1)).

The zj ’s are vectors in Rp0e2
0 with unit `2-norm;

the orthogonal projection of ϕ1(x) onto F1 is defined as

fx := arg min
f ∈F1

‖ϕ1(x)− f ‖2
H1
,

which is equivalent to

fx :=

p1∑
j=1

α?j ϕ1(zj) with α? ∈ arg min
α∈Rp1

∥∥∥∥∥∥ϕ1(x)−
p1∑
j=1

αjϕ1(zj)

∥∥∥∥∥∥
2

H1

.

Julien Mairal Towards deep kernel machines 21/58



Convolutional kernel networks

Idea 2

project onto a finite-dimensional subspace F1 of the RKHS H1

for normalized patches x, we have α? = κ1(Z>Z)−1κ1(Z>x)

we can define a mapping ψ1 : Rp0e2
0 → Rp1 such that

〈fx, fx′〉H1 =
〈
ψ1(x), ψ1(x′)

〉
,

with

ψ1(x) := ‖x‖κ1(Z>Z)−1/2κ1

(
Z>

x

‖x‖

)
if x 6= 0 and 0 otherwise,

and subsequently define the map M1 : Ω0 → Rp1 that encodes
patches from I0 centered at positions in Ω0.

interpretation: convolution, point-wise non-linearities, 1× 1
convolution, contrast normalization.
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Convolutional kernel networks

Idea 2

project onto a finite-dimensional subspace F1 of the RKHS H1

I0

x

x′
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Convolutional kernel networks

Idea 2

project onto a finite-dimensional subspace F1 of the RKHS H1

with kernels, we map patches in infinite dimension; with the
projection, we manipulate finite-dimensional objects.

the projection is classical in kernel approximation techniques
(Nyström method [Williams and Seeger, 2001]). The goal is to
align the subspace F1 with the data, or minimize residuals.
Then,

K1(x, x′) = 〈ϕ1(x), ϕ1(x′)〉H1 ≈ 〈fx, fx′〉H1 =
〈
ψ1(x), ψ1(x′)

〉
.

this provides us simple techniques for unsupervised learning of Z,
e.g., K-means algorithm [Zhang et al., 2008].

for supervised learning, things are a bit more involved (see later).
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Convolutional kernel networks

Idea 3

Linear pooling on M1 is equivalent to pooling on F1.

I0

x

x′
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linear pooling

Hilbert space H1

F1
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Convolutional kernel networks

Idea 3

Linear pooling on M1 is equivalent to pooling on F1.

like in classical CNNs, we need subsampling to reduce the
dimension of feature maps.

we compute I1 : Ω1 → Rp1 as:

I1(z) =
∑
z ′∈Ω0

M1(z ′)e−β1‖z ′−z‖2
2 .

linear pooling does not break the interpretation in terms of
subspace learning in H1: a linear combinations of points in F1 is
still a point in F1.
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Convolutional kernel networks

Idea 4

Build a multilayer image representation by stacking and
composing kernels.

we obtain a hierarchy of feature maps I0, I1, . . . , Ik , similar to CNNs;

we define a hierarchy of kernels K1, . . . ,Kk for increasing sizes of
image neighborhoods (receptive fields);

A kernel Kk is defined on ek × ek patches of the map Ik−1,
equivalently it is defined on the Cartesian product space Hek×ek

k−1 .

Julien Mairal Towards deep kernel machines 27/58



Convolutional kernel networks

Remark on input image pre-processing

CKNs seem to be sensitive to pre-processing; we have experimented with

RAW RGB input;

local centering of every color channel;

local whitening of each color channel;

2D image gradients.

(a) RAW RGB (b) centering
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Convolutional kernel networks

Remark on pre-processing with image gradients and 1× 1 patches

Every pixel/patch can be represented as a two dimensional vector

x = ρ[cos(θ), sin(θ)],

where ρ = ‖x‖ is the gradient intensity and θ is the orientation.

A natural choice of filters Z would be

zj = [cos(θj), sin(θj)] with θj = 2jπ/p0.

Then, the vector ψ(x) = ‖x‖κ1(Z>Z)−1/2κ1

(
Z> x
‖x‖

)
, can be

interpreted as a “soft-binning” of the gradient orientation.

After pooling, the representation of this first layer is very close
to SIFT/HOG descriptors.

Idea borrowed from the kernel descriptors of Bo et al. [2010].
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Convolutional kernel networks

How do we learn the filters with no supervision?

we learn one layer at a time, starting from the bottom one.

We extract a large number—say 1 000 000 patches from layers
k − 1 computed on an image database and normalize them;

perform a spherical K-means algorithm to learn the filters Zk ;

compute the projection matrix κk(Z>k Zk)−1/2.

Remember that every patch is encoded with the formula

ψk(x) = ‖x‖κk(Z>k Zk)−1/2κk

(
Z>k

x

‖x‖

)
.
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Convolutional kernel networks

How do we learn the filters with supervision?

Given a kernel K and RKHS H, the ERM objective is

min
f ∈H

1

n

n∑
i=1

L(yi , f (xi ))︸ ︷︷ ︸
empirical risk, data fit

+
λ

2
‖f ‖2
H︸ ︷︷ ︸

regularization

.

here, we use the parametrized kernel

KZ(I0, I
′
0) =

∑
z∈Ωk

〈fk(z), f ′k(z)〉Hk
=
∑
z∈Ωk

〈Ik(z), I ′k(z)〉,

and we obtain the simple formulation

min
W∈Rpk×|Ωk |

1

n

n∑
i=1

L(yi , 〈W, I ik〉) +
λ

2
‖W‖2

F. (1)
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Convolutional kernel networks

How do we learn the filters with supervision?

we alternate between the optimization of the filters Z and of W;

for W, the problem is strongly-convex and can be tackled with
recent algorithms that are much faster than SGD;

for Z, we derive backpropagation rules and use classical tricks for
learning CNNs (one pass of SGD+momentum):

we also use a pre-conditioning heuristic on the sphere;

we can also learn the kernel hyper-parameters.

The main originality compared to CNN is the subspace learning
interpretation, due to the projection matrix.

We also use a heuristic for automatically choosing the learning rate of
SGD, which was used in all experiments (was never tuned by hand).
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Convolutional kernel networks

Remark on the NIPS’14 paper (older model)

The first paper used a different principle for the kernel approximation:

e−
1

2σ2 ‖x−x′‖2
2 =

(
2

πσ2

)m
2
∫

w∈Rm

e−
1
σ2 ‖x−w‖2

2e−
1
σ2 ‖x′−w‖2

2dw,

and a non-convex cost function is formulated to learn the mapping

ψ(x) = [
√
ηle
−(1/σ2)‖x−wl‖2

2 ]pl=1 ∈ Rp,

This is an approximation scheme; the mapping ψ does not live in
the RKHS. Approximation errors accumulate from one layer to another.

The new scheme (NIPS’16) is faster to train, provides better results in
the unsupervised context, and is compatible with supervised learning.
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Related work

first proof of concept for combining kernels and deep learning [Cho
and Saul, 2009];

hierarchical kernel descriptors [Bo et al., 2011];

other multilayer models [Bouvrie et al., 2009, Montavon et al.,
2011, Anselmi et al., 2015];

deep Gaussian processes [Damianou and Lawrence, 2013]...

RBF networks [Broomhead and Lowe, 1988].
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Convolutional kernel networks

Short summary of features

We obtain a particular type of CNN with

a novel unsupervised learning principle;

a regularization function (the norm ‖.‖Hk
), effective at least in

the unsupervised context;

also compatible with supervised learning;

learning the filters corresponds to learning linear subspaces.

Some perspectives

use similar principles for graph-structured data;

connect with deep Gaussian processes;

leverage the literature about subspace learning;

use union of subspaces, introduce sparsity...
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Part III: Applications
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Image classification

Experiments were conducted on classical “deep learning” datasets, on
CPUs only (at the moment).

Dataset ] classes im. size ntrain ntest

CIFAR-10 10 32× 32 50 000 10 000

SVHN 10 32× 32 604 388 26 032

We use the following 9-layer network with 512 filters per layer.

Subsampling
√

2 1
√

2 1
√

2 1
√

2 1 3

Size patches 3 1 3 1 3 1 3 1 3

we use the squared hinge loss in a one-vs-all setting;

we use the supervised CKNs;

The regularization parameter λ and the number of epochs are set
by first running the algorithm on a 80/20% validation split.
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Image classification

Figure: Figure from the NIPS’16 paper (preprint arXiv). Error rates in percents
for single models with no data augmentation.

Remarks on CIFAR-10

simpler model (5 layers, with integer subsampling factors) also
performs well ≈ 12%;

the original model of Krizhevsky et al. [2012] does ≈ 18%;

the best unsupervised architecture has two layers, is wide
(1024-16384 filters), and achieves 14.2%;

the unsupervised model reported in the NIPS’14 was 21.7% (same
model here 19.3%).
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Image super-resolution

The task is to predict a high-resolution y image from low-resolution
one x. This may be formulated as a multivariate regression problem.

(a) Low-resolution y (b) High-resolution x
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Image super-resolution

The task is to predict a high-resolution y image from low-resolution
one x. This may be formulated as a multivariate regression problem.

(c) Low-resolution y (d) Bicubic interpolation
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Image super-resolution

Following classical approaches based on CNNs [Dong et al., 2016], we
want to predict high-resolution images from bicubic interpolations.

we use the square loss instead of a classification loss;

models are trained to up-scale by a factor 2, using a database of
200 000 pairs of high/los-res patches of size 32× 32 and 16× 16;

we also use a 9-layer network with 3× 3 patches, 128 filters at
every layer, no pooling, no zero-padding;

to perform x3 upscaling, we simply apply x2 twice, and downsample
by 3/4;
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Image super-resolution

Fact. Dataset Bicubic SC CNN CSCN SCKN

x2
Set5 33.66 35.78 36.66 36.93 37.07

Set14 30.23 31.80 32.45 32.56 32.76
Kodim 30.84 32.19 32.80 32.94 33.21

x3
Set5 30.39 31.90 32.75 33.10 33.08

Set14 27.54 28.67 29.29 29.41 29.50
Kodim 28.43 29.21 29.64 29.76 29.88

Table: Reconstruction accuracy for super-resolution in PSNR (the higher, the
better). All CNN approaches are without data augmentation at test time.

Remarks

CNN is a “vanilla CNN”;

Kim et al. [2016] from CVPR’16 does better by using very deep
CNNs and residual learning;

CSCN combines ideas from sparse coding and CNNs;

[Zeyde et al., 2010, Dong et al., 2016, Wang et al., 2015, Kim et al., 2016].
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Image super-resolution

Bicubic Sparse coding CNN SCKN (Ours)

Figure: Results for x3 upscaling.
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Image super-resolution

Figure: Bicubic
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Image super-resolution

Figure: SCKN
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Image super-resolution

Bicubic Sparse coding CNN SCKN (Ours)

Figure: Results for x3 upscaling.
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Image super-resolution

Figure: Bicubic
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Image super-resolution

Figure: SCKN
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Figure: Results for x3 upscaling.
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Image super-resolution

Figure: SCKN
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Image retrieval

Collaborators

Zaid Cordelia Florent Matthijs Mattis
Harchaoui Schmid Perronnin Douze Paulin

Publications

M. Paulin, J. Mairal, M. Douze, Z. Harchaoui, F. Perronnin and C. Schmid.
Convolutional Patch Representations for Image Retrieval: an Unsupervised
Approach. IJCV 2016.

M. Paulin, M. Douze, Z. Harchaoui, J. Mairal, F. Perronnin and C. Schmid.
Local Convolutional Features with Unsupervised Training for Image Retrieval.
ICCV 2015.

These publications use the older model of the CKN (NIPS’14).
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Image retrieval

Keypoint detection Patch description Aggregation
Hessian-affine Deep Network VLAD

Remarks

possibly followed by PCA to reduce the dimension;

retrieval is performed by simple inner-product evaluations;

here, we evaluate only the patch representation.
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Image retrieval

From patches...
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Image retrieval

To images...

Remarks

We benchmark both tasks at the same time;

retrieval differs significantly from classification; Training a CNN
for retrieval with supervision is hard;

results using supervision have been mitigated until CVPR/ECCV’16.

[Babenko et al., 2014, Babenko and Lempitsky, 2015, Gong et al., 2014, Fischer et al.,

2014, Zagoruyko and Komodakis, 2015, Radenović et al., 2016, Gordo et al., 2016].
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Image retrieval

we use a patch retrieval task to optimize model parameters;

we try different input types: RGB, RGB+whitening, gradients;

Input Layer 1 Layer 2 dim.

CKN-raw 5x5, 5, 512 — 41,472
CKN-white 3x3, 3, 128 2x2, 2, 512 32,768
CKN-grad 1x1, 3, 16 4x4,2,1024 50,176

training is fast, 10mn on a GPU (would be about 1mn on a CPU
with the NIPS’16 paper);

dimensionality is then reduced with PCA + whitening.
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Image retrieval

Evaluation of different patch representations for patch retrieval

Architecture coverage Dim RomePatches Miko.
train test

SIFT 51x51 128 91.6 87.9 57.8

AlexNet-conv1 11x11 96 66.4 65.0 40.9
AlexNet-conv2 51x51 256 73.8 69.9 46.4
AlexNet-conv3 99x99 384 81.6 79.2 53.7
AlexNet-conv4 131x131 384 78.4 75.7 43.4
AlexNet-conv5 163x163 256 53.9 49.6 24.4

PhilippNet 64x64 512 86.1 81.4 59.7
PhilippNet 91x91 2048 88.0 83.7 61.3

CKN-grad 51x51 1024 92.5 88.1 59.5
CKN-raw 51x51 1024 79.3 76.3 50.9
CKN-white 51x51 1024 91.9 87.7 62.5

[Krizhevsky et al., 2012, Fischer et al., 2014].

Julien Mairal Towards deep kernel machines 55/58



Image retrieval

...which become, in the same pipeline, for image retrieval

Holidays UKB Oxford Rome
train test

SIFT 64.0 3.44 43.7 52.9 62.7

AlexNet-conv1 59.0 3.33 18.8 28.9 36.8
AlexNet-conv2 62.7 3.19 12.5 36.1 21.0
AlexNet-conv3 79.3 3.74 33.3 47.1 54.7
AlexNet-conv4 77.1 3.73 34.3 47.9 55.4
AlexNet-conv5 75.3 3.69 33.4 45.7 53.1

PhilippNet 64x64 74.1 3.66 38.3 50.2 60.4
PhilippNet 91x91 74.7 3.67 43.6 51.4 61.3

CKN-grad 66.5 3.42 49.8 57.0 66.2
CKN-raw 69.9 3.54 23.0 33.0 43.8
CKN-white 78.7 3.74 41.8 51.9 62.4

CKN-mix 79.3 3.76 43.4 54.5 65.3
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Image retrieval

Comparison with other pipelines

Method \ Dataset Holidays UKB Oxford
VLAD [Jégou et al., 2012] 63.4 3.47 -
VLAD++ [Arandjelovic and Zisserman, 2013] 64.6 - 55.5
Global-CNN [Babenko et al., 2014] 79.3 3.56 54.5
MOP-CNN [Gong et al., 2014] 80.2 - -
Sum-pooling OxfordNet [Babenko and Lempitsky, 2015] 80.2 3.65 53.1

Ours 79.3 3.76 49.8
Ours+PCA 4096 82.9 3.77 47.2

Remarks

this is a comparison with relatively high-dimensional descriptors;

with dense feature extraction, our model does 55.5 for Oxford;

supervised CNNs for retrieval have been mitigated until
CVPR/ECCV’16 (see O. Chum’s talk + [Gordo et al., 2016]);

these results use the older NIPS’14 model and no supervision.
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Conclusion

First achievements

new type of convolutional networks where learning filters amount
to learning subspaces;

new principles for unsupervised learning of deep network, also
compatible with supervised learning.

competitive results for image super-resolution, classification, and
patch representation in image retrieval;

Future work

build semi-generic models for structured data;

explore novel subspace learning models and algorithms;

study theoretically invariant properties of the kernels;

Software

coming soon (with GPU implementation)...
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learns from bow: Unsupervised fine-tuning with hard examples. arXiv
preprint arXiv:1604.02426, 2016.

A. Rahimi and B. Recht. Random features for large-scale kernel
machines. In Adv. NIPS, 2007.

Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. arXiv
preprint arXiv:1606.02492, 2016.

Bernhard Schölkopf and Alexander J Smola. Learning with kernels:
support vector machines, regularization, optimization, and beyond.
MIT press, 2002.

Julien Mairal Towards deep kernel machines 63/58



References VI
J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis.

2004.

A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit
feature maps. IEEE T. Pattern Anal., 34(3):480–492, 2012.

Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep networks for
image super-resolution with sparse prior. In Proc. ICCV, 2015.

B. Widrow and M. E. Hoff. Adaptive switching circuits. In IRE
WESCON convention record, volume 4, pages 96–104. New York,
1960.

C. Williams and M. Seeger. Using the Nyström method to speed up
kernel machines. In Adv. NIPS, 2001.

Serguey Zagoruyko and Nikos Komodakis. Learning to compare image
patches via convolutional neural networks. In IEEE Conference on
Computer Vision and Pattern Recognition, 2015.

Julien Mairal Towards deep kernel machines 64/58



References VII
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional

networks. In Proc. ECCV, 2014.

R. Zeyde, M. Elad, and M. Protter. On single image scale-up using
sparse-representations. In Curves and Surfaces, pages 711–730. 2010.

K. Zhang, I. W. Tsang, and J. T. Kwok. Improved Nyström low-rank
approximation and error analysis. In Proc. ICML, 2008.

Julien Mairal Towards deep kernel machines 65/58


