
Image 4

Compressed local descriptors
for fast image and video search

in large databases

Matthijs Douze2

joint work with Hervé Jégou1, Cordelia Schmid2 and Patrick Pérez3

1: INRIA Rennes, TEXMEX team, France

2: INRIA Grenoble, LEAR team, France

3: Technicolor, France

Image 4

Problem setup: Image indexing

 Retrieval of images representing the same object/scene:
► different viewpoints, backgrounds, …
► copyright attacks: cropping, editing, …
► short response time
► 100s of millions of images or 1000s of hours of video

queries relevant answers

Image 4

Related work on large scale image search
 Global descriptors:

► color/texture statistics
► GIST descriptors with Spectral Hashing or similar techniques [Torralba & al 08]

→ very limited invariance to scale/rotation/crop

 Local descriptors → compact them: Bag of Features [Sivic & Zissermann 03]

► Improvements: hierarchical vocabulary, compressed BoF, partial geometry...

→ But still hundreds of bytes are required to obtain a “reasonable quality”

 region extraction
+ SIFT description

quantification

distance
computation

sparse frequency vector

search results

query image

database of
frequency

vectors

Image 4

Outline

Image description with VLAD

Indexing with the product quantizer

Porting to mobile devices

Video indexing

Image 4

Objective and proposed approach [Jégou & al., CVPR 10]

• Aim: optimizing the trade-off between
► search speed +
► memory usage +
► search quality -

• Approach: joint optimization of three stages
► local descriptor aggregation
► dimension reduction
► indexing algorithm

extract

SIFT

aggregate

descriptors

dimension

reduction

vector

encoding
/indexing

D

code

D’

n SIFTs (128 dim)

Image 4

Aggregation of local descriptors

 Problem: represent an image by a single fixed-size vector:

 set of n local descriptors → 1 vector

 Indexing:
► similarity = distance between aggregated description vectors (preferably L2)
► search = (approximate) nearest-neighbor search in descriptor space

 Most popular idea: BoF representation [Sivic & Zisserman 03]
► sparse vector
► highly dimensional

→ dimensionality reduction harms precision a lot

 Alternative: Fisher Kernels [Perronnin et al 07]
► non sparse vector
► excellent results with a small vector dimensionality

→ VLAD is in the spirit of this representation

Image 4

VLAD : Vector of Locally Aggregated Descriptors

c3

x

c1

c4

c2

c5

 D-dimensional descriptor space (SIFT: D=128)
 k centroids : c1,…,ck

Image 4

VLAD : Vector of Locally Aggregated Descriptors

v1 v2 v3
v4

v5

 D-dimensional descriptor space (SIFT: D=128)
 k centroids : c1,…,ck

 Output: v
1
... v

k
 = descriptor of size k*D

 L2-normalized
 Typical k = 16 or 64 : descriptor in 2048 or 8192 D
 Similarity measure = L2 distance.

Image 4

VLADs for corresponding images

SIFT-like representation per centroid (>0 components: blue, <0 components: red)

 good coincidence of energy & orientations

 v1 v2 v3 ...

Image 4

VLAD performance and dimensionality reduction

 We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
 Dimension is reduced to from D to D’ dimensions with PCA

 Observations:
► performance increases with k
► VLAD better than BoF for a given descriptor size
► if small D' needed: choose a smaller k

Aggregator k D D’=D
(no reduction)

D’=128 D’=64

BoF 1,000 1,000 41.4 44.4 43.4

BoF 20,000 20,000 44.6 45.2 44.5

BoF 200,000 200,000 54.9 43.2 41.6

VLAD 16 2,048 49.6 49.5 49.4

VLAD 64 8,192 52.6 51.0 47.7

VLAD 256 32,768 57.5 50.8 47.6

Image 4

Outline

Image description with VLAD

Indexing with the product quantizer

Porting to mobile devices

Video indexing

Image 4

Indexing algorithm: searching with quantization
[Jégou & al., PAMI to appear]

 Search/Indexing = distance approximation problem
 The distance between a query vector x and a database vector y is estimated by

where q(.) is a quantizer

→ vector-to-code distance

 The choice of the quantizer is critical
► fine quantizer → need many centroids: typically 64-bit codes → k=264

► regular (and approximate) k-means can not be used

Image 4

 Vector split into m subvectors:

 Subvectors are quantized separately

where each is learned by k-means with a limited number of centroids

 Example: y = 128-dim vector split in 8 subvectors of dimension 16

Product quantization for nearest neighbor search

8 bits

16 components

 ⇒ 64-bit quantization index

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

256
centroids

Image 4

 Vector split into m subvectors:

 Subvectors are quantized separately

where each is learned by k-means with a limited number of centroids

 Example: y = 128-dim vector split in 8 subvectors of dimension 16

Product quantization for nearest neighbor search

8 bits

16 components

 ⇒ 64-bit quantization index

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

256
centroids

Image 4

Product quantizer: asymmetric distance computation (ADC)

 Compute the distance approximation in the compressed domain

 To compute distance between query and many codes
► compute for each subvector and all possible centroids

→ stored in look-up tables
► for each database code: sum up the elementary squared distances

 Each 8x8=64-bits code requires only m = 8 additions per distance!

Image 4

Results on standard datasets

 Datasets
► University of Kentucky benchmark score: nb relevant images, max: 4
► INRIA Holidays dataset score: mAP (%)

Method bytes UKB Holidays

BoF, k=20,000 10K 2.92 44.6

BoF, k=200,000 12K 3.06 54.9

miniBOF 20 2.07 25.5

miniBOF 160 2.72 40.3

VLAD k=16, ADC 16 2.88 46.0

VLAD k=64, ADC 64 3.10 49.5

miniBOF: “Packing Bag-of-Features”, ICCV’09

Image 4

IVFADC: non-exhaustive ADC

 IVFADC
► Additional quantization level
► Combination with an inverted file
► visits 1/128th of the dataset

 Timings for 10 M images
► Exhaustive search with ADC: 0.286 s
► Non-exhaustive search with IVFADC: 0.014 s

Image 4

Large scale experiments (10 million images)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1000 10k 100k 1M 10M

re
ca

ll@
10

0

Database size: Holidays+images from Flickr

BOF D=200k
VLAD k=64

VLAD k=64, D'=96
VLAD k=64, ADC 16 bytes

Image 4

Outline

Image description with VLAD

Indexing with the product quantizer

Porting to mobile devices

Video indexing

Image 4

On the mobile

 Indexing on the server:

 query from mobile
► relatively cheap to compute
► small bandwidth

extract

SIFT

aggregate

descriptors

dimension

reduction
send to
server

D D’n SIFTs (128 dim)

stage image SIFTs VLAD VLAD+PCA

data size 300 kB 512 kB 32 kB 384 bytes

computing time
(relative)

NA 1.5 s
(50 ms for CS-LBP)

5 ms 0.5 ms

Image 4

Indexing on the mobile

 The database is stored on the device

 In addition to the previous:
► database: 20 bytes per image in RAM
► quantize query (find closest centroids + build look-up tables)
► scan database to find nearest neighbors

 Adapt algorithms to optimize speed

db size (images) exhaustive (ADC) /
non-exhaust. (IVFADC)

precompute
distance tables

<1000 ADC no

<1M ADC yes

>1M IVFADC yes

Image 4

Outline

Image description with VLAD

Indexing with the product quantizer

Porting to mobile devices

Video indexing

Image 4

Video indexing [Douze & al. ECCV 2010]

 video = image sequence
► index VLAD descriptors for all images (CS-LBP instead of SIFT for speed)
► temporal verification

 database side: images are grouped in segments
► 1 VLAD descriptor represents each segment
► frame represented as refinement w.r.t. this descriptor

 query = seach all frames of the query video

 Frame matches → alignment of query with database video

► Hough transform on δt = t
q
- t

db

► Output: most likely δt → alignments
► map back to frame matches to find aligned video segments

Image 4

Video indexing results
 Comparison with Trecvid 2008 copy detection task

► 200 h indexed video
► 2000 queries
► 10 “attacks” = video editing, clutter, frame dropping, camcording...
► state of the art: competition results (score = NDCR, lower = better)

 Observations:
► Always among 5 first results
► 5 times faster and 100 times less memory than competing methods
► Best localization results (due to dense temporal sampling)

transformation best ours rank (/23)

camcording 0.08 0.22 2

picture in picture 0.02 0.32 4

insertion of patterns 0.02 0.08 3

strong re-encoding 0.02 0.06 2

geometric attacks 0.07 0.14 2

5 random transformations 0.20 0.54 2

Image 4

Conclusion

 VLAD: compact & discriminative image descriptor
► aggregation of SIFT, CS-LBP, SURF (ongoing),...

 Product Quantizer: generic indexing method with nearest-neighbor search function
► works with local descriptors and GIST, audio features (ongoing)...

 Standard image and datasets
► Holidays (different viewpoints)
► Copydays (copyright attacks)

 Compatible with mobile applications:
► compact descriptor, cheap to compute

 Code for VLAD and Product quantizer at http://www.irisa.fr/texmex/people/jegou/src.php

 Demo!

END

Image 4

Searching with quantization: comparison with spectral Hashing

 *** Put Only ADC ***

Image 4

Impact of D’ on image retrieval

 The best choice of D’ found by minimizing the square error criterion is reasonably
consistent with the optimum obtained when measuring the image search quality

Image 4

Results on 10 million images

Image 4

Results: comparison with « Packing BOF » (Holidays dataset)

Image 4

VLAD: other examples

Image 4

Combination with an inverted file

Image 4

Related work on large scale image search
 Global descriptors:

► GIST descriptors with Spectral Hashing or similar techniques [Torralba & al 08]

→ very limited invariance to scale/rotation/crop: use local descriptors

 Bag-of-features [Sivic & Zisserman 03]
► Large (hierarchical) vocabularies [Nister Stewenius 06]
► Improved descriptor representation [Jégou et al 08, Philbin et al 08]
► Geometry used in index [Jégou et al 08, Perdoc’h et al 09]
► Query expansion [Chum et al 07]

→ memory tractable for a few million images only

 Efficiency improved by
► Min-hash and Geometrical min-hash [Chum et al. 07-09]
► compressing the BoF representation [Jégou et al. 09]

→ But still hundreds of bytes are required to obtain a “reasonable quality”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

