Compressed local descriptors for fast image and video search in large databases

Matthijs Douze²

joint work with Hervé Jégou¹, Cordelia Schmid² and Patrick Pérez³

1: INRIA Rennes, TEXMEX team, France

2: INRIA Grenoble, LEAR team, France

3: Technicolor, France

Problem setup: Image indexing

- Retrieval of images representing the same object/scene:
 - different viewpoints, backgrounds, ...
 - copyright attacks: cropping, editing, ...
 - short response time
 - 100s of millions of images or 1000s of hours of video

queries

relevant answers

Related work on large scale image search

- Global descriptors:
 - color/texture statistics
 - GIST descriptors with Spectral Hashing or similar techniques [Torralba & al 08]
- \rightarrow very limited invariance to scale/rotation/crop
- Local descriptors \rightarrow compact them: Bag of Features [Sivic & Zissermann 03]

- Improvements: hierarchical vocabulary, compressed BoF, partial geometry...
 - $\rightarrow\,$ But still hundreds of bytes are required to obtain a "reasonable quality"

Outline

Image description with VLAD

Indexing with the product quantizer

Porting to mobile devices

Video indexing

Objective and proposed approach [Jégou & al., CVPR 10]

- Aim: optimizing the trade-off between
 - search speed +
 - memory usage +
 - search quality -

- Approach: joint optimization of three stages
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm

Aggregation of local descriptors

• Problem: represent an image by a single fixed-size vector:

set of *n* local descriptors \rightarrow 1 vector

- Indexing:
 - similarity = distance between aggregated description vectors (preferably L2)
 - search = (approximate) nearest-neighbor search in descriptor space
- Most popular idea: BoF representation [Sivic & Zisserman 03]
 - sparse vector
 - highly dimensional
- → dimensionality reduction harms precision a lot
- Alternative: Fisher Kernels [Perronnin et al 07]
 - non sparse vector
 - excellent results with a small vector dimensionality
 - $\rightarrow\,$ VLAD is in the spirit of this representation

VLAD : Vector of Locally Aggregated Descriptors

- D-dimensional descriptor space (SIFT: D=128)
- *k* centroids : c_1, \ldots, c_k

VLAD : Vector of Locally Aggregated Descriptors

- D-dimensional descriptor space (SIFT: D=128)
- *k* centroids : c_1, \ldots, c_k

- Output: $v_1 \dots v_k$ = descriptor of size k*D
- L2-normalized
- Typical k = 16 or 64 : descriptor in 2048 or 8192 D
- Similarity measure = L2 distance.

VLADs for corresponding images

SIFT-like representation per centroid (>0 components: blue, <0 components: red)

good coincidence of energy & orientations

VLAD performance and dimensionality reduction

- We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
- Dimension is reduced to from D to D' dimensions with PCA

Aggregator	k	D	D'=D (no reduction)	D'=128	D'=64
BoF	1,000	1,000	41.4	44.4	43.4
BoF	20,000	20,000	44.6	45.2	44.5
BoF	200,000	200,000	54.9	43.2	41.6
VLAD	16	2,048	49.6	49.5	49.4
VLAD	64	8,192	52.6	51.0	47.7
VLAD	256	32,768	57.5	50.8	47.6

- Observations:
 - performance increases with k
 - VLAD better than BoF for a given descriptor size
 - if small D' needed: choose a smaller k

Image description with VLAD

Indexing with the product quantizer

Porting to mobile devices

Video indexing

Indexing algorithm: searching with quantization [Jégou & al., PAMI to appear]

- Search/Indexing = distance approximation problem
- The distance between a query vector *x* and a database vector *y* is estimated by

 $d\left(x,y\right) \approx d\left(x,q(y)\right)$

where q(.) is a quantizer

→ vector-to-code distance

- The choice of the quantizer is critical
 - ▶ fine quantizer → need many centroids: typically 64-bit codes → $k=2^{64}$
 - regular (and approximate) k-means can not be used

Product quantization for nearest neighbor search

- Vector split into *m* subvectors: $y \rightarrow [y_1 | \dots | y_m]$
- Subvectors are quantized separately

$$q(y) = \left[q_1(y_1)|\ldots|q_m(y_m)\right]$$

where each q_i is learned by *k*-means with a limited number of centroids

• Example: y = 128-dim vector split in 8 subvectors of dimension 16

Product quantization for nearest neighbor search

- Vector split into *m* subvectors: $y \rightarrow [y_1 | \dots | y_m]$
- Subvectors are quantized separately

$$q(y) = \left[q_1(y_1)|\ldots|q_m(y_m)\right]$$

where each q_i is learned by *k*-means with a limited number of centroids

• Example: y = 128-dim vector split in 8 subvectors of dimension 16

Product quantizer: asymmetric distance computation (ADC)

• Compute the distance approximation in the compressed domain

$$d(x,y)^2 \approx \sum_{i=1}^m d(x_i, q_i(y_i))^2$$

- To compute distance between query x and many codes
 - compute $d(x_i, c_{i,j})^2$ for each subvector x_i and all possible centroids
 - \rightarrow stored in look-up tables
 - for each database code: sum up the elementary squared distances
- Each 8x8=64-bits code requires only **m = 8 additions per distance**!

Results on standard datasets

- Datasets
 - University of Kentucky benchmark
 - INRIA Holidays dataset

score: nb relevant images, max: 4 score: mAP (%)

Method	bytes	UKB	Holidays
BoF, k=20,000	10K	2.92	44.6
BoF, k=200,000	12K	3.06	54.9
miniBOF	20	2.07	25.5
miniBOF	160	2.72	40.3
VLAD k=16, ADC	16	2.88	46.0
VLAD k=64, ADC	64	3.10	49.5

miniBOF: "Packing Bag-of-Features", ICCV'09

IVFADC: non-exhaustive ADC

- IVFADC
 - Additional quantization level
 - Combination with an inverted file
 - visits 1/128th of the dataset
- Timings for 10 M images
 - Exhaustive search with ADC: 0.286 s
 - Non-exhaustive search with IVFADC: 0.014 s

Large scale experiments (10 million images)

Image description with VLAD

Indexing with the product quantizer

Porting to mobile devices

Video indexing

On the mobile

• Indexing on the server:

- query from mobile
 - relatively cheap to compute
 - small bandwidth

Indexing on the mobile

- The database is stored on the device
- In addition to the previous:
 - database: 20 bytes per image in RAM
 - quantize query (find closest centroids + build look-up tables)
 - scan database to find nearest neighbors
- Adapt algorithms to optimize speed

db size (images)	exhaustive (ADC) / non-exhaust. (IVFADC)	precompute distance tables
<1000	ADC	no
<1M	ADC	yes
>1M	IVFADC	yes

Outline

Image description with VLAD

Indexing with the product quantizer

Porting to mobile devices

Video indexing

Video indexing [Douze & al. ECCV 2010]

- video = image sequence
 - index VLAD descriptors for all images (CS-LBP instead of SIFT for speed)
 - temporal verification
- database side: images are grouped in segments
 - 1 VLAD descriptor represents each segment
 - frame represented as refinement w.r.t. this descriptor
- query = seach all frames of the query video
- Frame matches \rightarrow alignment of query with database video
 - Hough transform on $\delta t = t_a t_{db}$
 - Output: most likely $\delta t \rightarrow \text{alignments}$
 - map back to frame matches to find aligned video segments

Video indexing results

- Comparison with Trecvid 2008 copy detection task
 - 200 h indexed video
 - 2000 queries
 - ► 10 "attacks" = video editing, clutter, frame dropping, camcording...
 - state of the art: competition results (score = NDCR, lower = better)

transformation	best	ours	rank (/23)
camcording	0.08	0.22	2
picture in picture	0.02	0.32	4
insertion of patterns	0.02	0.08	3
strong re-encoding	0.02	0.06	2
geometric attacks	0.07	0.14	2
5 random transformations	0.20	0.54	2

- Observations:
 - Always among 5 first results
 - 5 times faster and 100 times less memory than competing methods
 - Best localization results (due to dense temporal sampling)

Conclusion

- VLAD: compact & discriminative image descriptor
 - aggregation of SIFT, CS-LBP, SURF (ongoing),...
- Product Quantizer: generic indexing method with nearest-neighbor search function
 - works with local descriptors and GIST, audio features (ongoing)...
- Standard image and datasets
 - Holidays (different viewpoints)
 - Copydays (copyright attacks)
- Compatible with mobile applications:
 - compact descriptor, cheap to compute
- Code for VLAD and Product quantizer at http://www.irisa.fr/texmex/people/jegou/src.php
- Demo!

Searching with quantization: comparison with spectral Hashing

GIST, 64-bit codes

Impact of D' on image retrieval

• The best choice of D' found by minimizing the square error criterion is reasonably consistent with the optimum obtained when measuring the image search quality

Results on 10 million images

Results: comparison with « Packing BOF » (Holidays dataset)

mAP

VLAD: other examples

Combination with an inverted file

Related work on large scale image search

- Global descriptors:
 - GIST descriptors with Spectral Hashing or similar techniques [Torralba & al 08]
- \rightarrow very limited invariance to scale/rotation/crop: use local descriptors
- Bag-of-features [Sivic & Zisserman 03]
 - Large (hierarchical) vocabularies [Nister Stewenius 06]
 - Improved descriptor representation [Jégou et al 08, Philbin et al 08]
 - Geometry used in index [Jégou et al 08, Perdoc'h et al 09]
 - Query expansion [Chum et al 07]
- \rightarrow memory tractable for a few million images only
- Efficiency improved by
 - Min-hash and Geometrical min-hash [Chum et al. 07-09]
 - compressing the BoF representation [Jégou et al. 09]
- \rightarrow But still hundreds of bytes are required to obtain a "reasonable quality"

