
August 22, 2005 Techincal Report

Scale and Affine Invariant Local Detectors

and Descriptors

Users’ Guide v1.2

Gyuri Dorkó
INRIA Rhône-Alpes

1 Main Features

• Scale Invariant Detectors

– Harris-Laplace
– Hessian-Laplace
– Different of Gaussian
– Laplace of Gaussian

• Local Descriptors

– Scale Invariant Feature Transform
– Steerable Filters (Local Jet)
– Intensity-based Spin-images

• Tools to export/import data to

– MatLab,
– ASCII text formats

• Visualization

2 Installation Instruction

2.1 Install binaries

They are two sets of binaries. The statically linked version will run on any pc but
will only read and write png/pgm files. The dynamically linked version version
uses ImageMagick so you have to get the executables compatible with your current
installation. These executables have the advantage of reading almost any type of
images (anythig that convert can read) and one can use DISPLAY as a file name
instead of output image files to show the results directly in an X window.

3 Components

In general each component/program has a help which is available by the -help
option. Please use it! The license information is also available with the -license



option.

Each program has some arguments (obligatory) and some options. Each option start
with a - sign and usually followed by an additional parameter. The options and
arguments can be specified in any order, parameters of an option must immediately
follow the option. Option names are case insensitive and can be abbreviated as far
as they stay unique. If a list file can be specified for a certain argument it must be
indicated with an @ sign.

In order to measure the time set the TIMEFLG environment variable. A small
table will be sent to the standard output. Note: In bash use the export, in tcsh the
setenv commands.

In the following section we shortly describe each program in the package.

3.1 Detect

This program run a scale invariant interest point detector on a given input image
or on a series of images. The program has two obligatory arguments:

• Input: an image

• Output: a file name where all the detected regions will be stored

The default detector type is Harris-Laplace, but it can be changed with the -dtype
option. For each detected point and orientation can be computed (which will be
stored and used by ComputeDescriptor) with -angle option. Optional affine region
estimation can be invoked with -affine. To process a set of images one can specify
a list file instead of a single image. The list file must be an ASCII text file where
each line contains a file name with full or relative path to an image. I suggest to
avoid of special non-ASCII characters as well as spaces in file names. The output
of such detection is still one file, however a file identifier is saved together with each
detection. In case of a list file if you also plan to use -angle or -affine do not specify
it here, but later in ComputeDescriptor instead. To indicate that a list file had
been specified instead of a single image start the first argument with a @ sign (no
spaces between @ and the list file name).

We have made some changes the implementation of Harris-Laplace and Hessian-
Laplace. Our experience that the results are improved in average with the new
implementation of Harris-Laplace, however, the old implementation is still available
with the -old option.

Additional parameters. The scale selection for Harris-Laplace, Hessian-Laplace
and LoG can be turned of with -noscale. this switches the detectors from scale
invariant (or precisely covariant) mode to multi-scale. The detector will still be run
on the whole scale pyramid, but no scale selection will be applied, therefore one
can expect much more detection. The same (x, y) location can be selected many
times with different scale values. The minimum and maximum scale can also be
set. (The new implementation does not suppors minscale=maxscale, yet). E.g. to
get the standard harris detector on the original image run:

Detect -old -dt har -noscale -minsc 1 -maxsc 1 a.pgm a.har

The scale-step, i.e. the multiplier of the pyramids can also be set with the -scalestep,
and it is highly suggested to keep this settings within a reasonable bounds.

The detector type dense helps to simulate a dense representation by creating
a set of descriptors along a grid on the image. The grid is defined on each scale



between minscale and maxscale (quantized with scalestep multiplier. The cell width
and height computed by currentscale∗gridstep, where gridstep is a parameter. The
minimum scale can also be set by -msbysize.

For more options and precise syntax see Detect -help. For example see Section 6.

3.2 ComputeDescriptor

This program computes a descriptor (n dimensional vector) for each detected inter-
est region. The program has three obligatory arguments:

• Input: an image

• Input: detection results (output of Detect)

• Output: a filename where all the descriptors will be stored. the result file
will contain all the information from the second input argument together
with a descriptor for each detection.

The default descriptor is SIFT, it can be changed with -dtype option. Optional
angle (rotation invariance) and affine computation (viewpoint invariance) can be
specified to precede the descriptor computation. (If you have done that in Detect

it is unnecessary to do it again!) If the detection was done on a list-file you must
specify here the same file with similar syntax.

SIFT descriptor. The implementation is inspired by David Lowe’s implemen-
tation1 of SIFT descriptors. Present version of ComputeDescriptor contains a
reimplemented algorithm, however, the our old version which was based on David
Lowe’s code is still available with the -old option. SIFT, as default, is computed on
a 4x4 grid, and for each cell the dimension of the orientation histogram is 8. These
parameters now can be changed with -siftis and -siftos. The default settings leads
us to a 128 dimensional descriptors. The -siftws parameter is the window size which
the detected patch will be downscaled before sift computation. This is necessary
for performance reasons. To further lower this setting can speed up computation,
especially for detections with large scales, but can also significantly decrease the
quality of the descriptors. -siftscone specifies the patch size (neighborhood) which
the sift will be computed if the scale of the detection is 1 (only modify this if you
know what you are doing!). The option -unnormalized switched off the normaliza-
tion of the computation it is only useful if you would like to implement you own
normalization. Otherwise the descriiptors are normalized to unit length.

Local Jets. the computation is based on earlier code of Krys-
tian Mikolajczyk’s implementation2. Steerable Filters computed un-
til the 4th order, therefore the length of such descriptor is 15.

1: the pixel value,
2,3: First derivatives (Dx, Dy)

4,5,6: Second derivatives (Dxx, Dxy, Dyy)
7,8,9,10: Third derivatives (Dxxx, Dxxy, Dxyy, Dyyy)

11,12,13,14,15: Forth order derivatives (Dxxxx, Dxxxy, Dxxyy, Dxyyy, Dyyyy)
All values are computed by convolution of the appropriate Gaussian kernel. The
descriptors are normalized by the appropriate (co)variance matrix.

Spin Images. the implementation is inspired by Svetlana Lazebnik’s code3. Our
reimplementation provides the following parameters: spinis and spinds determines

1http://www.cs.ubc.ca/∼lowe/keypoints
2http://lear.inrialpes.fr/people/Mikolajczyk/Database/index.html
3http://www-cvr.ai.uiuc.edu/∼slazebni/



the number of bins in intensity and dinstance dimensions. The spinws, similarly
to siftws is the window size which the detected patch is to be downscaled before
descriptor computation, to achieve better performance. To further lower this setting
can speed up computation, especially for detections with large scales, but can also
significantly decrease the quality of the descriptors.

3.3 DrawCorners

This tool can be used to visualize the detection result on an image. It has three
obligatory arguments.

• Input: the image

• Input: the detection result (the output of Detect or ComputeDescrip-

tor)

• Output: an image where the results should be draw.

The program has options for different colors and pen widths. If the detection
has been done on a list of images, the list file can be specified here also (in the
same way) but the detection result has to be preselected for only one image (see.
SelectCorners.) The second argument can be either the output of Detect,
ComputeDescriptors or SelectCorners.

Create thumbnails. DrawCorners can be used to create an image with small
image patches extracted from the detected location. These feature are available via
-th ... parameters. E.g.:

Detect @a.lst all.har

DrawCorners -th_on @a.lst all.har a.gif

will run Harris-Laplace on multiple images followed by the creation of one huge
image with all the detected patches. The number of patches per line the distance
between patches the maximum number of patches can all be controlled by different
options.

3.4 SelectCorners

This program chooses some interest points from a file and save it to another. It has
two obligatory arguments:

• Input: interest points (output of Detect or ComputeDescriptor)

• Output: the selected interest points

Possible selection criteria:

• All descriptors that include a given pixel (see options -x and -y)

• A specified corner (see option -number)

• Random selection of n points (see -random)

• The first n points (see -firstn)

• Points larger than a given scale (see -scmin)

• Points smaller than a given scale (see -scmax)

• Interest points of a given file, in case of the detection were done on a list of
files (see -fid)



SelectCorners can output to the same file as its input. It will overwrite the file
the previous content will be lost (so make a backup if you are not sure). For precise
options see SelectCorners -help and also see the examples in Section 6.

3.5 Export to different formats

3.5.1 dumpcontents

Dumps the content of a file (output of Detect or ComputeDescriptor) to the
standard output in ASCII format. This is basically one way to convert the data to
text format. with the -size option the program only gives the number of interest
points.

3.5.2 corners2text

Creates an ascii text file where each line corresponds to a detection. the structure
of the line is the following: x y scale fileid m1,1 m1,2 m2,2 d0 d1 d2 · · · dn

where the first 4 fields (location, scale, file identifier) always appear and the others
can be requested by the options: -add affine for the affine second moment matrix
(m1,1 m1,2 m2,2) and -adddesc for the descriptor values (dx).

3.5.3 Conversion to matlab: corners2matlab

This program needs two arguments:

• Input: interest points (output of Detect or ComputeDescriptor)

• Output: a .mat file.

The converter creates a struct array with fields:
x: the horizontal coordinate of the center of the interest point
y: the vertical coordinate of the center of the interest point

scale: the detected scale level
angle: the computed orientation (dominant gradient)
fileid: the file id (numbered from 0, e.g. 2 means the 3rd image in the

listfile used for Detect.
affine: the normalized 2nd moment matrix of the affine estimation

descriptor: vector with the dimension of 0, 15 or 128 in case of no, localjet or
sift computation.

note: string, the image name, in case of list file only the variable part of
the names

4 Import from different formats

4.1 Import from text

Programs: text2corners

This is similar to corners2text but works in the other way. It requires the same
file format as the output of corners2text. It additionally supports the affine
second moment renormalization of extract the scale (if it is encoded inside affine)
and a different way of ellipse parameterization (see -help for details).

5 Known Bugs

• Sometimes some points are detected twice.



• If descriptors cannot be computed (e.g. point is too close to the border) they
are not removed, their descriptor length is 0. If you’d like them removed,
specify -clean

• DrawCorners create color images as default, even if the image extension is
pgm. Solution: Use -nocolor in these cases. Do not use -nocolor with image
list files.

6 Examples

6.1 First steps - Tutorial

1. Take a a gray level image of yours (e.g. a.pgm)

2. Interest Point Detection (with Harris-Laplace):

Detect -dt har a.pgm a.har

Note: if you use -affine detection also specify -angles

3. Compute local descriptors for each interest point (based on sift)

ComputeDescriptor a.pgm a.har a.har.sift

4. Show result of (2) on the image:

DrawCorners -col y -wi 2 a.pgm a.har a.har.pnm

5. Dump the result of (3) to a text

dumpcontents a.har.sift > a.txt

6. Dump only the computed descriptors (of step (3)) to a text

corners2text a.har.sift -adddesc a.har.desc.txt

7. Convert the results to MatLab format:

corners2matlab a.har.sift a.mat

6.2 Detection with a list of images

1. Create a file called images.lst. Each line should contain a name of an image.

2. Detect interest points based on Laplace-of-Gaussian.

Detect -dtype log @images.lst result.log

3. Apply affine and rotation invariance for each point and compute SIFT de-
scriptors. (the next two lines should be typed in one!)

ComputeDescriptor -dt sift -aff -an @images.lst result.log

result.log.sift

4. Draw the detection results (with affine estimation) on the 3rd image in the
list.

SelectCorners -fid 2 result.log.sift third.sift

DrawCorners -color yellow @images.lst third.sift third.pnm

Note that first we have to select the points of the third image to a differ-
ent file (fid==2, because the files are numbered from 0), then we can use
DrawCorners with the list file, it will load up the correct image.

5. Show the same patches but now extracted in a thumbnail format.

DrawCorners -th_on -co ye @images.lst third.sift third_th.pnm



6.3 Examples for SelectCorners

Select interest points that have the pixel (20, 10) included in their interest region:

SelectCorners -x 20 -y 10 source.har dest.har

Select 10 random interest point:

SelectCorners -random 10 source.har dest.har

Select interest points having scale between 2 and 10:

SelectCorners -scmin 2 source.har tmp.har

SelectCorners -scmax 10 tmp.har dest.har

Select the 10th interest point:

SelectCorners -numb 9 source.har dest.har

Select the 10th and 20th interest points:

SelectCorners -numb ’9 19’ source.har dest.har

7 Related Scientific Work

In this section we describe where can you find some description of the different
features (detectors/descriptors) provided by this package.

7.1 Articles Related to This Package

This section describes where can you find some description of the different features
(detectors/descriptors) provided by this package.

If you find this package useful in your scientific work, you can refer to the following
paper:

Gy. Dorko and C. Schmid. “Object class recognition using discriminative
local features.” ieee Transactions on PAMI, 2004. submitted.

DoG, SIFT:

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004,
accepted for publication.

Harris-Laplace, Hessian-Laplace:

K. Mikolajczyk and C. Schmid, “Indexing based on scale invariant interest
points,” in Proceedings of the 8th International Conference on Computer
Vision, Vancouver, Canada, 2001, pp. 525–531.

C. Harris and M. Stephens. “A combined corner and edge detector.” In
M. M. Matthews, editor, Proceedings of the 4th Alvey Vision Conference,
pages 147151, 1988.

Spin Images:



A. Johnson and M. Hebert. “Using spin images for efficient object recogni-
tion in cluttered 3d scenes.” ieee Transactions on PAMI, 21(5):433–449,
1999.

S. Lazebnik, C. Schmid, and J. Ponce. “A Sparse Texture Representation
Using Local Affine Regions.” in ieee Transactions on PAMI, accepted,
2005.

7.2 Other Scale Invariant Local Detectors / Descriptors

A comparative study of affine interest point detectors can be found in: 4

K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point
detectors”, in International Journal of Computer Vision, to appear.

Performance evaluation of local descriptors:

K. Mikolajczyk and C. Schmid, “A performance evaluation of local descrip-
tors.” in IEEE Conference on Computer Vision and Pattern Recognition,
June 2003.

more to come

8 Authors, Contributors, Acknowledgements

The software package is developed by Gyuri Dorkó with contributors Michael Sdika
and Matthijs Douze. A large amount of our code is inspired by others’ implemen-
tation, therefore we thankful for

• Krystian Mikolajczyk for old versions of detectors of Harris-Laplace (affine),
Hessian-Laplace and Local Jet descriptors.

• David Lowe for detectors of Different-of-Gaussian and SIFT descriptor.

• Svetlana Lazebnik for the help of spin-images .

4http://lear.inrialpes.fr/people/Mikolajczyk/mikolajc ijcv2004.pdf


