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Abstract
In this paper we propose a novel scheme to combine of-

fline and online features of handwritten strokes. The state-
of-the-art methods in handwritten stroke recognition have
used a pre-determined combination of these features, which
is not optimal in all situations. The proposed model ad-
dresses this issue by learning mixtures of offline and on-
line characteristics from a set of exemplars. Each stroke is
represented as a probabilistic sequence of substrokes with
varying compositions of these features. The model adapts
to any stroke and chooses the feature composition that best
characterizes it. The superiority of the method is demon-
strated on handwritten numeral and character strokes.

1. Introduction
Handwriting recognition finds its application in many

situations like reading bank cheques, handwritten notes
on PDAs, document retrieval, etc. [5, 6]. This problem
has been addressed using offline [1, 4, 6] and online fea-
tures [3, 5] independently, and also a combination of both
features [7]. Offline features capture handwriting in the
form of an image, while online features capture it as a time-
sequential series of sensor positions [5]. Methods combin-
ing these features have shown considerable promise for rec-
ognizing handwritten strokes, but have a fundamental re-
striction. They assume that a pre-defined combination of
offline and online features is appropriate for all the strokes
in a dataset. This is not valid in general. For instance, when
distinguishing numerals such as ‘0’ and ‘6’ offline features
are more useful, while for distinguishing ‘5’ and ‘6’ online
features are more useful.

We present an approach to address this issue; wherein
the composition of offline and online features is learnt from
a given set of strokes. Each stroke is represented as a
probabilistic sequence of substrokes. The length of the
substroke determines the composition of the two types of
features, with the two extreme cases being: (i) the entire
stroke representing the substroke, and (ii) each data point
(e.g., 2D coordinate) representing the substroke. The for-
mer case captures the offline nature of the stroke since the
time-sequential characteristics are not captured, while the
latter captures the online nature as a sequence of substrokes.

The proposed method chooses the optimal combination be-
tween these two extreme cases, and represents each stroke
using a set of probabilistic model components. Each com-
ponent learns a mixture model of substrokes and determines
an appropriate combination of the two features.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the mixture of substrokes model and shows
how it combines offline and online features. This mixture
model is used to describe an adaptive scheme, which learns
the feature composition, in Section 3. Section 4 presents the
results on character and numeral data sets with a discussion.
Concluding remarks are made in Section 5.
2. Mixture of Substrokes Model

The mixture of substrokes model represents each stroke
as a probabilistic sequence of fundamental units called as
substrokes. The model exploits the fact that many strokes
in a given data set have common substrokes. As an exam-
ple consider character strokes such as ‘e’, ‘c’, ‘d’, etc. It is
evident that these strokes share a substroke which defines
the curved segment in them. Similar observations can be
made on other strokes. Following this observation, the mix-
ture model represents the given data as a set of substrokes
which are automatically learnt. Any stroke in the data set
is characterized by a sequence of these substrokes proba-
bilistically. Given multiple instances of strokes, the mixture
model automatically extracts the substrokes, which consti-
tute these strokes, and their sequencing information in order
to generate the stroke.

This modeling is achieved using the Mixture of Factor
Analyzers (MFA) model [2]. It is essentially a reduced di-
mension mixture of Gaussians, i.e. it identifies the com-
monalities in the data set (substrokes) as clusters in a low
dimensional manifold. Once the substrokes are probabilis-
tically estimated, a sequence of cluster transitions deter-
mines a stroke. To learn the substrokes and their sequenc-
ing, multiple features are extracted from each point in the
stroke. They include chain codes computed using the po-
sition of a point with respect to its preceding point, the xt

and yt coordinates of the point, and the angle. A feature
vector xt is constructed from all these features. The un-
derlying generative model of the MFA model is given by
P (xt) =

∑m
j=1

∫
P (xt|zt, ωj)P (zt|ωj)P (ωj)dz, where



zt is the low dimensional representation corresponding to
xt, ωj denotes the j th mixture (substroke), and m is the
number of mixtures. The low dimensional representation
zt is related to xt as xt = Λjzt + u, for a given mix-
ture j. The factor loading matrix Λj and the associated
noise u, which is distributed according to N (0,Ψ), deter-
mine zt. Given multiple instances (corresponding to hand-
written data collected from multiple subjects) of the fea-
ture vector x = [x1, x2, . . .]T , the task is to determine the
corresponding low dimensional vector z = [z1, z2, . . .]T ,
and the mixture each feature point belongs to. The gen-
erative process is inverted to estimate all the parameters
{(µj ,Λj)m

j=1, π,Ψ}, where π is the vector of adaptable
mixing proportions, πj = P (ωj).

The parameters of the distribution are estimated using
the Expectation Maximization (EM) algorithm [2]. It is
a general method of finding the maximum likelihood esti-
mate of the parameters of an underlying distribution from a
given data set when the data has missing or unknown val-
ues. The EM algorithm has two stages, namely inference
and learning, which are executed in succession till conver-
gence. In these stages the algorithm alternates between in-
ferring the expected values of the hidden variables, i.e. low
dimensional representation and the substrokes keeping the
parameters fixed, and estimating the parameters using the
inferred values.

In the inference phase, the current estimates of the pa-
rameters are used to compute the expected values of the sub-
space representations and the substrokes. The expectations
E[ωj |xt], E[zt|ωj , xt] and E[ztz

T
t |ωj , xt] are computed for

all data points t and substrokes ωj . These quantities are
given by

E[ωjzt|xt] = htjβj(xt − µj), (1)

E[ωjztz
T
t |xt] = htj(I − βjΛj +

Λj(xt − µj)(xt − µj)T βT
j ),

where
htj = E[ωj |xt] = πjN (xt − µj ,ΛjΛT

j + Ψ) (2)

βj = ΛT
j (ΛjΛT

j )−1.

Each µj , j = 1 . . . m, denotes the representative appearance
of the corresponding substroke, Λj , j = 1 . . . m, denotes
the various subspace bases for the substrokes, π denotes the
mixing proportions of substrokes in the stroke set, and Ψ is
a measure of noise present in the data.

In the learning phase, the expected values of the sub-
space representations and the substrokes are used to get bet-
ter estimates of the parameters. A linear system of equa-
tions is solved to compute the parameters πj ,Λj , µj ,Ψ.
The exact equations can be easily derived from [2]. Each
data point xt is then assigned to the substroke ct according
to ct = arg maxj htj , j = 1 . . . m. Thus, each point is as-
signed to the substroke for which it has the maximum mem-
bership.

After the EM algorithm converges, a transition matrix
Tk, which captures the sequencing of various substrokes, is
constructed for each stroke k as follows

τk
pq =

N−1∑
t=1

[ct = p][ct+1 = q], 1 ≤ p, q ≤ m. (3)

The substroke transitions for successive points of the stroke
k are represented by the entries in the transition matrix Tk.
It encodes the temporal characteristics (online features) of
the stroke. These matrices are normalized to denote the
corresponding probability transition matrix. Given a new
stroke, the learnt parameters are used to compute its proba-
bility transition matrix, and is assigned to the stroke that is
most likely to generate this matrix.

The mixture of substrokes model represents each stroke
as a sequence of substrokes. A substroke captures the of-
fline characteristics of the stroke locally, while transitions
between different substroke mixtures capture the online
characteristics. The number of substrokes in the mixture
model is fixed apriori. Thus, the mixture of substrokes
model captures a fixed composition of offline and online
features. We build on this model and describe an adaptive
scheme that learns the feature composition.

3. Learning the feature composition
Consider the problem of recognizing handwritten En-

glish numerals as an example. In this set offline features
are better suited for distinguishing numerals such as ‘0’ and
‘6’, and online features for numerals such as ‘5’ and ‘6’. It
is hard problem to determine a fixed composition of offline
and online features that is appropriate for all the strokes in
the data set. However, learning the composition in a stroke
specific way addresses this issue. A collection of mixture
models with varying compositions of these features is used
to estimate the relevance of each component for a given
stroke. To begin with, the offline and online features are ex-
tracted from the training set. Individual components, which
use a mixture of these features, are then trained. A deci-
sion criterion is defined as a weighted combination of these
individual components, as shown in Figure 1.

3.1. Estimating the component mixture
models

Identification of substrokes is a critical step in finding the
composition of online features for the recognition frame-
work. The two extreme cases in finding the substrokes are:
modeling with (i) a single substroke, and (ii) each point as a
substroke. The problem is to define a model which chooses
the appropriate combination of offline and online features
for identifying handwriting strokes.

Let K denote the number of distinct strokes in the data
set. To build a feature set based on completely offline fea-
tures a mixture of substrokes model (refer Section 2) with
a single mixture for each stroke, i.e. K mixtures, is used.
Hence, no substrokes are identified in this case. Such purely
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Figure 1. Summary of the proposed model. A mixture of MFA model components is used to let
the model choose between offline, online and a combination of both features automatically. The
contribution of each of these components in the decision making process is identified by its corre-
sponding weight. The numerals ‘0’ and ‘6’ are used to illustrate the fact that they possess similar
online, but different offline characteristics.

offline features are more useful when identifying numerals
such as 0 and 6, which have similar curvature properties in
the online feature space, as seen in Figure 1. Choosing a
mixture model with K + 1 mixtures leads to as many sub-
strokes. The properties of these substrokes, such as curva-
ture, length, transitions between the substroke clusters, etc.,
are captured in the feature set. In a similar fashion other
mixture model components with increasing number of sub-
strokes, which characterize different compositions of offline
and online features, are learnt. Theoretically, one may de-
fine a single mixture for each data point in the stroke. How-
ever, such a scheme is impractical as due to the noisy esti-
mates from a large number of transitions between substroke
mixtures. The number of substrokes is typically decided by
the nature of the data set and is much lower than the number
of data points in a stroke.

At the end of this stage the feature sets correspond-
ing varying compositions of offline and online features are
learnt from the data set.

3.2. Relevance of mixture models
The contribution of the individual components, i.e. MFA

components with varying number of substrokes, is weighed
to obtain an optimal feature composition. The relevance
computation is posed as an optimization problem. Let M
be the number of MFAs trained for a set of N strokes. The
objective function J(.) is defined as

J(Γ) =
N∑

j=1

M∑
i=1

(γijdij)2,

where Γ ∈ R
MN is a matrix [γij ]. The weight γij denotes

the contribution of the i th MFA for the j th stroke in the
data set, and dij is the distance metric signifying the cost
of recognizing the j th sample with the i th MFA. This ob-
jective function is minimized over the space of γs using La-
grange multipliers with the constraint

∑M
i=1 γij = 1.

Observing that the weights for each stroke are indepen-
dent, the minimization can be done independently in each
column. Thus, the Lagrangian is given by

J (λ, γj) =
M∑
i=1

(γijdij)2 − λ(
M∑
i=1

γij − 1). (4)

Minimizing Equation 4 with respect to γpq gives γpq =
λ/2(dpq)2. Using the constraint

∑M
r=1 γrq = 1 with this

equation eliminates λ, i.e.

γpq = 1

/
(dpq)2

M∑
r=1

(drq)2 . (5)

Equation 5 provides a method for estimating the weights,
given the distance metric dij , which is chosen as the inverse
of posterior probability p(j|data, i). The posterior denotes
the probability of identifying a sample data as belonging to
stroke j (∈ {1, 2, . . . , C}) for a given mixture model i.

3.3. Recognition
Once the weights [γij ] are identified for all the classes,

they are used in the recognition framework. Given a



new stroke S, the learnt parameters are used to com-
pute the corresponding subspace representations, substroke
assignments and probability transition matrices for each
of the model components. A decision criteria based
on the weighted sum of posterior probabilities, pj =∑N

i=1 γijp(j|S, i), is computed for each class of stroke j.
The stroke S is labelled as j∗ which maximizes the poste-
rior according to j∗ = arg maxj pj .

4. Results
The dataset used in the experimentation consists of more

than 1000 English numeral and character strokes collected
from 3 different subjects using an IBM crosspad. The sub-
jects’ writing style is unconstrained. The database is di-
vided into disjoint training (to estimate the substrokes and
their corresponding weights) and testing (to evaluate the
recognition performance) sets. The testing set comprised
of over 250 strokes. The variability in the data due to trans-
lation of xt and yt coordinates is negated by computing a
bounding box for each stroke and uniformly rescaling to
the 0 − 1 range. After this preprocessing, features such as
chain codes (values ranging from one to eight), normalized
xt and yt coordinates, angle, are extracted from each point
in the stroke.

Character Single MFA Weighed MFA

u 90.00 96.67
w 96.00 96.00
c 90.91 95.45
e 92.86 96.43

Table 1. The average recognition accuracies
(%) on a sample character set using a single
mixture model and a weighted set of mixture
models.

The model components which characterize the varying
compositions of offline and online features were learnt from
the training data set. The optimal number of substroke mix-
tures was found empirically for the numeral and character
strokes independently, to determine the number of model
components. However, it is to be noted that the recogni-
tion accuracy varied negligibly from the reported results
beyond a certain number of components. The relevance
of each component was estimated for all the stroke types.
Strokes from the testing data set were recognized follow-
ing the weighted decision criterion described in the previ-
ous section. Results of the experiments on some character
and all the numeral strokes are summarized in Tables 1 and
2 respectively. The tables illustrate the average recognition
accuracies using a single mixture model (Single MFA, refer
Section 2), which captures a fixed offline and online fea-
ture composition, and an adaptive model (Weighted MFA),
which learns the feature composition from the training set.
It can be observed that in almost all the cases the Weighted

MFA scheme outperforms the Single MFA scheme. Com-
parison with a standard HMM-based method also shows the
superiority of our approach. The relatively low accuracies
for certain character/numeral strokes is due to the fact that
the datasets were neither fine tuned to achieve higher recog-
nition nor excessively preprocessed to eliminate the noise.
However, the relative improvement in accuracy is clearly
evident in these cases as well.

Numeral HMM Single MFA Weighed MFA

0 95.83 95.83 100.00
1 100.00 100.00 100.00
2 87.50 91.67 91.67
3 87.50 87.50 95.83
4 95.83 95.83 100.00
5 100.00 100.00 100.00
6 91.67 95.83 100.00
7 100.00 100.00 100.00
8 83.30 83.30 87.50
9 95.83 95.83 100.00

Table 2. The avg. recognition accuracies (%)
using a HMM-based method, a single mixture
model and a weighted set of mixture models
for the numeral set.

5. Conclusion
The paper presents an adaptive scheme which learns the

offline and online feature composition for a given set of
strokes. It demonstrates the fact that a pre-determined com-
bination of these features is not optimal in general. Further-
more, the model captures the features in a low dimensional
manifold providing an efficient mechanism to store large
collection of handwritten strokes. We believe this scheme
finds many applications in building higher level handwrit-
ing recognition systems which work on words or sentences.
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