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Abstract

With the rapid growth of camera-based mobile devices, agfitins that answer questions such as,
“What does this sign say?" are becoming increasingly peptilais is related to the problem of optical
character recognition (OCR) where the task is to recogmiziedccurring in images. The OCR problem
has a long history in the computer vision community. Howgthex success of OCR systems is largely
restricted to text from scanned documents. Scene text,aitdxt occurring in images captured with a
mobile device, exhibits a large variability in appearanRecognizing scene text has been challenging,
even for the state-of-the-art OCR methods. Many scene statieling methods recognize objects and
regions like roads, trees, sky in the image successfulliytdnd to ignore the text on the sign board.
Towards lling this gap, we devise robust techniques forreeéext recognition and retrieval in this

thesis.

This thesis presents three approaches to address scenectaytition problems. First, we propose
a robust text segmentation (binarization) technique, ameditLto improve the recognition performance.
We pose the binarization problem as a pixel labeling prokdewch de ne a corresponding novel energy
function which is minimized to obtain a binary segmentatimage. This method makes it possible
to use standard OCR systems for recognizing scene text.n8ea@ present an energy minimization
framework that exploits both bottom-up and top-down cuesdoognizing words extracted from street
images. The bottom-up cues are derived from detectionsdwidual text characters in an image.
We build a conditional random eld model on these detectitmgointly model the strength of the
detections and the interactions between them. These dtitera are top-down cues obtained from a
lexicon-based prior, i.e., language statistics. The agitinord represented by the text image is obtained
by minimizing the energy function corresponding to the mndeld model. The proposed method
signi cantly improves the scene text recognition performo@.  Thirdly, we present a holistic word
recognition framework, which leverages scene text imagksgnthetic images generated from lexicon

words. We then recognize the text in an image by matching ¢beesand synthetic image features

vii
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with our novel weighted dynamic time warping approach. Hproach does not require any language
statistics or language speci ¢ character-level annotetio

Finally, we address the problem of image retrieval usinguixcues, and demonstrate large-scale
text-to-image retrieval. Given the recent developmentgniderstanding text in images, an appealing
approach to address this problem is to localize and recedheztext, and then query the database, as in
a text retrieval problem. We show that this approach, dedmtng based on state-of-the art methods, is
insuf cient, and propose an approach without relaying omsact localization and recognition pipeline.
We take a query-driven search approach, where we nd apprabta locations of characters in the text
query, and then impose spatial constraints to generatekaddist of images in the database.

We evaluate our proposed methods extensively on a numbeteniestext benchmark datasets,
namely, street view text, ICDAR 2003, 2011 and 2013, and a detaset IlIT 5K-word, we intro-
duced, and show better performance than all the comparaéleoas. The retrieval performance is
evaluated on public scene text datasets as well as threedatgsets, namely, IlIT scene text retrieval,

Sports-10K and TV series-1M, we introduced.
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Chapter 1

Introduction

According to a study, one trillion photos were captured ybar ZOJB, and this number is going to
keep increasing! In the context of such large data collaestibat continue to grow, there are many chal-
lenging problems like recognizing and retrieving releveomtent. Text in the scene images or videos
can play a crucial role in understanding images. Given tha rgrowth of camera-based applications
readily available on mobile phones, understanding scettéstenore important than ever, and applica-
tion that are able to answer guestions such as, “What dogesitin say?" are becoming increasingly
popular. This is related to the problem of optical charameognition (OCR), which has a long history
in the computer vision community. However, the success oRQ¢stems is largely restricted to text
from scanned documents. Scene text exhibits a large \iitsidhiappearance, and can prove to be chal-
lenging even for state of the art OCR methods. Many scenersiaaheling methods recognize objects
and regions like roads, trees, sky in the image successhultytend to ignore the text on sign boards.
The goal of this thesis is to Il this gap in understanding $e=ne by devising robust techniques for

scene text recognition. Figure 1.1 explains the larger gbtiis thesis.

1.1 Scene text understanding: problems, challenges and apgations

Substantial research effort has been dedicated to scenenerstanding in the last decadel[22, 30,
36/40044,66,111,113,116,132,164,1167)169|, 171]. Insthision, we discuss the challenges in scene

text understanding and its applications, and nally prevalliterature survey.

Inttp://mylio.com/one-trillion-photos-in-2015/
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(@) (b)

Figure 1.1 Images containing text can be categorized into two broagboaies: (a) scanned docu-
ments, (b) scene image containing text. Contrary to proldémnderstanding scanned documents like
(a), the problem of reading text in scene images is surgfligsiohallenging. At the same time, it has
many potential applications. Consider a typical streetsdmage taken from Google street view shown
in (b). It contains a few very prominent sign boards (withtfen the building. Given this text, one
might infer that the photo is taken in an English-speakingnty, and what this shop sells? This thesis
attempts to address the broad area of scene text undergjandd addresses the problem of recognition

and retrieval in this context

1.1.1 Challenges: scene text recognitiods OCR

Recognition of scene text is closely related to the clabgigblem of optical character recognition
(OCR). For cleanly scanned English-language documentd® @Qo longer considered a problem.
Contrary to, printed scanned documents, recognizing stettémages taken in the wild has many

additional challenges, for example:

1. Identifying texts in natural scenes . In natural scenes, numerous objects, such as buildings,
bikes, cars or parts of them have similar shape and appemandext. For example corner of a
building can easily be recognizedlasr wheels of vehicle a®. This challenges the text detection

techniques to discriminate text from non-text.



Figure 1.2 Typical challenges in char-

' acter detection. (a) A window containing
. parts of twoo's is falsely detected as, (b)
(b)

a window containing a part of the charac-

ter B is recognized as E.

(@)

. Binarization. Traditional OCR engines rst binarize word image and thegnsent characters us-
ing connected component information. Binarization of sctxts are seldom perfect and contain

noise.

. Inter and intra-class confusion. Scene text also pose challenge to a typical sliding window
based object detector due to inter-class and intra-clagsigion. Often, part of a character class
has a similar appearance to some other character. Simifaiy of two character classes look

similar to some other character. A couple of such exampkeskown in Figuré 112.

. Image speci ¢ challenges.Often scene text have fancy/stylish fonts usually to attifae atten-
tion of viewers. Recognizing such unseen characters becbailkenging for a classi er, which
is trained on normal fonts. Since it is unlikely to assume: itmages are captured in frontal view,
there can be high variability in view points of the images.likinscanned documents where text
is largely horizontal, scene text can have any orientatiGusther, scene text images often come
with the challenges like low contrast, low resolutions @sally, in digital-born images), blur.
Few example images from two public datasets: the SVT and3KTare shown in Figure11.3 to

illustrate these challenges in the context of scene texigrtion.

. No well de ned layout. Unlike scanned books or magazines which have a clean laywlt a
contain text predominately, text regions and amount of iresicene images vary from image to
image. It makes text region localization and word/line segtation harder than typical OCR

document images.

. Multilingual texts. Most of the Latin languages have few character classesFuooopean lan-
guages such as Chinese, Japanese and Korean and most dfidinddnguages have hundreds or
thousands of character classes with a lot of inter-clas#asities. In multilingual environments,

OCR on scanned documents remains a research problem [5B, tekt recognition in street
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Figure 1.3 Challenges in scene text recognition. A few sample images the SVT[164] and IIIT

a-,*)

5K-word [107] datasets are shown to highlight the variaiiorview point, orientation, non-uniform
background, non-standard font styles and also issues sumtthision, noise, and inconsistent lighting.

Standard OCRs perform poorly on these datasets.

scene is much more dif cult. The problem of recognition ofliiiungual scene text is beyond the
scope of this thesis. Nevertheless, few of the techniqugsoged in this thesis can be applied for

multiple languages in the future.

7. Lack of language context.Scene texts often appear as a word or group of few words. KHapee

plying larger contexts, such as, at the level of sentenceu@gpaph is many a times not possible.

1.1.2 Applications

There are many applications of scene text understandirggirife. Few of them are listed here.

1. Multimedia indexing and retrieval. Most of the available video and image search in the mod-
ern search engines are meta tag based. The search resklimfmessive only when there are
appropriate meta-tags and the images are tagged corrétilyever, often meta-tags are noisy,
unavailable (consider images/video collected from peabkphotography), incomplete, or do not
describe everything in the image or video. Recognizing &xé within the image or video can

play an important role in indexing and retrieval of multineedata.

2. Cross-lingual accessRecognizing text in sign boards can be very useful for clioggtal access.
Consider following situation: a north Indian tourist whoedonot know Telugu (a south Indian
language) is roaming in the Telangana state, where mosedigim boards are in Telugu. Recog-
nizing these sign boards, and then translating it to thev@ddinguage of tourists can prove very

useful for them.



3. Auto navigation. For successful auto navigation systems, or driver-less cauderstanding text

or sign boards can be very crucial.

4. Apps for visually impaired. Reading scene images in streets can be very useful for hgiapps
which can assist visually impaired people while in marketdaoa other public places. Consider
an app which can assist visually impaired people by readingegy item names while shopping
at a grocery store. Such apps can only be built when we hagesabry progress in reading text

in scene images.

5. Industrial automation. Recognizing text on packages, containers, houses, and magsoad
applications related to industrial automation. For examm@cognition of addresses on envelopes
is used in mail sorting systems. Automatic identi cationcoitainer numbers improves logistics
ef ciency. Recognition of house numbers and text in maps icamensely bene t automatic

geocoding systems.

1.1.3 Prior art

Scene text understanding can be approached by tacklindesrteks such as, (i) scene character
recognition, (i) text localization, and (iii) cropped wordcognition. They have been tackled either
individually [31[36/,40], or jointly([[66,113,164,167]. Weview the prior art on scene text understanding

area in this section.

« Scene character recognition. Isolated character recognition is one of the oldest problém
pattern recognition. In the context of scanned fonts andiwaiten digits (e.g., MNIST[[92])
this problem is considered as solved with error rates as B@. 26 having been reported [99].
On the other hand, recognizing scene characters posesflokalienges due to high variation
in fonts, illumination, perspective distortion and baakgnd noise. To recognize characters of
a single clean font, naive features such as principle coemtoanalysis (PCA) on raw feature
with simple linear classi ers are suf cient, but these feis are not effective in the case of scene

characters.

One of the earliest works on large-scale natural scene diean@cognition was presented [in [36].
This work develops a multiple kernel learning (MKL) apprbassing a set of shape-based fea-

tures. Recent works [108, 164] have improved over this wiglholgram of gradient (HOG) fea-



tures [35]. Variations of HOG features have also been egdidor scene character classi ca-
tion [109,/175]. In[[176] author present a sparse repretentaf HOG feature for character
classi cation. This method is inspired by Ren and Ramaneatent work[[130] on sparsifying
histogram of gradient features. It achieves better perdoica than naive HOG features. She-
shadriet al. [141] applied an exemplar SVM to recognize distorted charaan scene images.
Shiet al. [142] proposed a method using deformable part based modelsliding window clas-

si cation to localize and recognize characters in scenagigsaln[[171], a learned representation,
namely, strokelets was proposed for character recognifidnistogram of these strokelets along
with random forest classi er is used for character recdgnit More recently, deep features [66]

have been shown to outperform other methods on scene oftactatsi cation.

Scene text localization.The major techniques to solve text localization problem lwaigrouped
into four categories: (i) texture based, (i) componentelagiii) mid-level feature based, and
(iv) unsupervised feature learning based. In texturedasethods, the scene image is scanned at
different scales using sliding windows, and text and nom-tegions are classi ed. Some of the
recent works like[[54, 164, 165] fall in this category. Ofta@stogram-of-gradient (HOG) features
along with SVM or random forest classi ers are used in sucttiregs. The major drawback
with such methods are high computational complexity andpogcision character detection. In
component based methods, low-level cues are used to dis@adity of the background pixels,
and then from the rest of the pixels, potential charactedicktes are formed using a set of
heuristic properties. Further, stroke width, color cotesisy, aspect ratio and some other simple
features are used to prune the false positives. The popud#raas in this category are stroke
width transform[[40], class speci ¢ extremal regions [1#d segmentation based methads [60,
103]. In recent years mid-level feature based techniques gained interest. In these methods,
structural characteristics of characters at multipleeseae captured. The prominent methods
in this category are: strokelets [171] and part based mefd2]. The fourth category of text
localization methods are unsupervised feature learnirsgdaechniques [33, 66, 166]. These
techniques learn the text vs non text features and classirean unsupervised manner. These
methods achieve a noticeable success. In this thesis, cus fs more on enhancing recognition

performance while relaying on existing text localizatioethrods.



» Cropped word recognition. The core components of a typical cropped word recognitiamé-
work are: localize the characters, recognize them, andtasstgal language models to compose
the characters into words. In the following, we review thepart. The reader is encouraged to

refer to [173] for a more comprehensive survey of scene dgnition methods.

A popular technique for localizing characters in an OCRaysts to binarize the image and
determine the potential character locations based on ctastheomponents [55]. Such techniques
have also been adapted for scene text recognition [11hpudh with limited success. This is
mainly because obtaining a clean binary output for scengeirexges is often challenging. An
alternative approach is proposed (in [143] using gradiefurimation to nd potential character
locations. More recently, Yaet al.[171] proposed a mid-level feature based technique toileeal

characters in scene text.

A study on human reading psychology shows that our readimydwes signi cantly with prior
knowledge of the language [129]. Motivated by such studiESR systems have used, often in
post-processing stefs |55, 158], statistical languageetadite n-grams to improve their perfor-
mance. Bigrams or trigrams have also been used in the cooftestene text recognition as a
post-processing step, e.d., [18]. A few other works [38153] integrate character recognition
and linguistic knowledge to deal with recognition error@ar Example,[[155] computas-gram
probabilities from more than 100 million characters andsus¥iterbi algorithm to nd the correct
word. The method in [38], developed in the same year as ourRC2L2 work [108], builds a
graph on potential character locations and usgsam scores to constrain the inference algorithm

to predict the word.

The word recognition problem has been looked at in two castexwith [50/108, 132, 164, 166]
and without [107, 168, 169] the use of an image-speci ¢ leric In the case of image-speci c
lexicon-driven word recognition, also known as the closedabulary setting, a list of words is
available for every scene text image. The task of recogpiftie word now reduces to that of
nding the best match from this list. This is relevant in maagyplications, e.g., recognizing text
in a grocery store, where a list of grocery items can servel@dg@n. Wanget al. [166] adapted

a multi-layer neural network for this scenario. [In [164]cleavord in the lexicon is matched to the
detected set of character windows, and the one with the siigloere is reported as the predicted

word. In one of our work([50] (Chapté&l 5), we compared featuwremputed on the entire scene



text image and those generated from synthetic font rengeraf lexicon words with a novel
weighted dynamic time warping (wWDTW) approach to recogmvizeds. In [132], Rodriguez-
Serrano and Perronnin proposed to embed word labels andnvages into a common Euclidean
space, wherein the text recognition task is posed as avatpeoblem to nd the closest word
label for a given word image. While all these approachesrdegasting, their success is largely
restricted to the closed vocabulary settings and they ddreeasily extended to the more general
cases, for instance, when image-speci c lexicon is unatsgl. Weinmaret al. [L69] proposed a
method to address this issue, although with a strong assamgtknown character boundaries,
which are not trivial to obtain with high precision on the asgts we use. The work in [168] gen-
eralizes their previous approach by relaxing the chardmiandary requirement. It is, however,
evaluated only on “roughly fronto-parallel” images of ssgmvhich are less challenging than the
scene text images used in our work. More recently, deep taimoal network based methods
gained attention for scene text understanding problenss [&&/59] 64, 66, 166] for example).
These approaches are very effective in general. We comipase telated contemporary methods

with our approach in this thesis.

1.2 Goals of this thesis

This thesis addresses the problem of scene text undenstgradid advances this area. In this space,
we propose solutions for various associated sub-problamd,show ways of addressing scene text
recognition problem. The major goals of this thesis are told,f(i) designing robust text recognition
framework. The state of the art OCR systems lack robustmesstaow poor performance on scene text
recognition. Our thesis aims to improve scene text recagmperformance, (i) once text is recognized,
the next immediate need is to retrieve the relevant image&leo frames containing query text from a
large database. There are large and fast-growing collectié videos and images in personal life and
world wide web. Often these images and videos are textualhy e.g., sports, news and educational
videos, images captured in street scenes. Retrieving snaggideo content based on textual cues
can prove very useful in obtaining relevant information.spiee advancements in text localization and
recognition, text-to-image retrieval is not trivial dueweak performance of end to end systems for

text localization and recognition. Additionally, the iietral system should also able to deal with large



number of distractors, e.g., images or frames which do notaio any text. One of the goals of this
thesis is to demonstrate scalable and robust text-to-imetgeval.

To achieve these two primary goals we propose: robust amdipled solution to text binarization
(ChapteiB), improve scene character classi cation (Gévag), seamless integration of multiple cues
in higher order CRF framework for scene text recognitiongki’4), holistic representation of word
images and matching scheme for synthetic and scene worcesr@hapter]5), query driven search
technigue for text-to-image retrieval (Chagtér 6).

Moreover, many of the available datasets for the scene taktrstanding problem are either very
small or not very challenging for real scenario. Hence, aara @f this thesis, we also introduce and

benchmark many scene text recognition and retrieval dstase

1.3 Contributions of this thesis

1. Robust text segmentation.We propose a principled framework for text binarizatiomgstolor
and stroke width cues. Use of color and stroke width cues iopdimization framework for text
binarization is a major novelty here. We evaluate the peréorce using various measures, such
as pixel-level accuracy, atom-level accuracy as well asgmition results, and compare it with the
state of the art methods [57,/73][76,105,/115]|118,137, TitDpur knowledge, text binarization
methods have not been evaluated in such a rigorous settiihg ipast. Our method generalizes
well to multi-script scene texts, video texts as well asdrisal handwritten documents. In fact,
our binarization improves the recognition results of anropeurce OCR [1] by more than 10%
on various public scene text benchmarks. On a benchmarketadé handwritten images, our
method achieves comparable performance to the H-DIBCO 20b#petition winner and the

state of the art method [57], which is speci cally tuned famigdwritten images.

2. Integrating top-down and bottom-up cues for better recogniion. We propose a joint CRF
framework with seamless integration of multiple cues—irdlial character detections and their
spatial arrangements, pairwise lexicon priors, and higihger priors which can be optimized ef-
fectively. The proposed method performs signi cantly bethan other related energy minimiza-
tion based methods for scene text recognition, and advdneasene text recognition area. Addi-
tionally, we analyzed the effectiveness of individual caments of the framework, the in uence

of parameter settings, and the use of convolutional newtalark (CNN) based featurels [66].



3. Holistic approach to recognition. We show that holistic word recognition for scene text images
is possible with high accuracy, and achieve a signi cantnowpment over prior art. We also
present a novel word descriptor which is used ef cientlygpresent a wide variety of scene text
images. The proposed method does not use any languagecspémimation, and can be easily
adapted to any language. This can especially be useful daarifanguage scene text recognition

and retrieval where there hasn't been signi cant progress.

4. Scalable text-to-image retrieval on image/video datasetlVe propose a query-driven approach
for text-to-image retrieval from a large database witheiyting on an exact localization-recognition
pipeline. We demonstrate our results on web-scale videoiraade datasets. The proposed

method achieves signi cant performance gain in mAP oveenécnethods [113, 164].

5. Datasets. Most of the publicly available datasets in this area sucH@GBAR 2003/2011/2013
contain only few hundred images. We have introduced IlIT¥s#rd dataset containing 5000
images. The dataset is not only ve time bigger than otheatesl dataset but also more chal-
lenging [107]. Moreover, we also introduce datasets foblenms like text-to-image retrieval
and character localization and recognition. All our datasee publicly available on our project

page [2], and have been widely used by the community aroundltibe [66, 132, 171, 173].

In short, this thesis presents principled solutions to gmoirtant computer vision problem.

1.4 Publications

Part of the work described in this thesis has previously Ipgesented as the following publications.
The total number of citations for these publications is 388ufce: Google scholar, December 10,
2016]

Journal:

1. Anand Mishra, Karteek Alahari, C. V. JawahaEnhancing Energy Minimization Framework
for Scene Text Recognition with Top-Down Guésmputer Vision and Image Understanding,
volume 145, pages 30-42, 2016 (Received: 4 April 2015, Rdvig2 August 2015, Accepted: 4
January 2016, Available online: 21 January 2016)

2https://goo.giIMO2gTq
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Manuscript under review:

2. Anand Mishra, Karteek Alahari, C. V. Jawahaknsupervised Re nement of Color and Stroke
Features for Robust Text Binarizatioimternational Journal on Document Analysis and Recogni-

tion (Submitted: 4 December 2015, Revised: 11 Septembes)201

Conference:

3. Anand Mishra, Karteek Alahari, C. V. Jawahdmage Retrieval using Textual Cy¢€CV 2013,
[Citations: 21].

4. Vibhor Goel,Anand Mishra, Karteek Alahari and C. V. Jawahai/hole is Greater than Sum of
Parts: Recognizing Scene Text WoreDAR 2013, [Citations: 41].

5. Anand Mishra, Karteek Alahari, C. V. Jawaha§cene Text Recognition using Higher Order

Language PriorsBMVC 2012 (Oral), [Citations: 71].

6. Anand Mishra, Karteek Alahari, C. V. Jawahafpp-down and Bottom-up cues for Scene Text

Recognition CVPR 2012, [Citations: 160].

7. Anand Mishra, Karteek Alahari, C. V. Jawahakn MRF Model for Binarization of Natural Scene
Texts ICDAR 2011 (Oral), [Citations: 76].

Other conference/workshop publications during PhD whiehret part of this thesis are as follows:

8. Ashutosh Mishra, Shyam N. Ra\nand Mishra and C. V. Jawahar|lIT-CFW: A Benchmark
database of Cartoon Faces in the WjIBECCV Workshop 2016.

9. Swetha SirnanAnand Mishra, G. M. Hegde and C. V. JawahdEf cient Object Annotation for
Surveillance and Automotive ApplicationACV Workshop 2016.

10. Ajeet K. Singh,Anand Mishra, Pranav Dabaral and C. V. Jawahar,Simple and Effective
Method for Script Identi cation in the WildDAS 2016.

11. Udit Roy,Anand Mishra, Karteek Alahari and C. V. Jawah&gcene Text Recognition and Re-
trieval for Large LexiconsACCV 2014.
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12. Vijay Kumar, Amit Bansal, Gautom Hari Tulsiyafinand Mishra, Anoop Namboodari and C.V.
JawaharSparse Document Image Coding for Restorati@DAR 2013.

13. Deepan Gupta*, Vaidehi Chhajerdinand Mishra and C.V. Jawaha# Non-local MRF model
for Heritage Architectural Image CompletipfCVGIP 2012 (*: equal contribution).

14. Anand Mishra, Naveen T.S., Viresh Ranjan and C.V. JawaAatomatic Localization and Cor-
rection of Line Segmentation ErrqrBAR 2012 (Oral).

15. Dheeraj Mundhradnand Mishra, C. V. JawaharAutomatic Localization of Page Segmentation

Errors, -MOCR-AND 2011 (Oral).

1.5 Thesis outline

In Chaptef 2, we provide the necessary background for trsestlaed brie y summarize the aspects
of energy minimization directly relevant to the work thalidavs.

In Chaptei B, we address the problem of word recognition Byhbinarizing the text and then using
an open source OCR. For this, we propose a robust binarzigthnique for scene text using color and
strokes cues. We show results on word images from the clalighCDAR 2003, ICDAR 2011, street
view text, and compare our performance with previously jshield methods.

Chaptef # focuses on the energy minimization framework ¢ens text recognition. Here, we pro-
pose a CRF model that exploits both bottom-up and top-doves ¢or recognizing cropped words
extracted from street images. We evaluate our proposedochetinstreet view text, ICDAR 2003, 2011
and 2013 datasets, and IlIT 5K-word, and show better pedoo®a than comparable methods. In this
chapter, we also perform a rigorous analysis of all the stepsr approach and analyze the results.

In Chaptet b, we describe a holistic approach to word redimgni In this chapter, we also validate
our recognition methods for speci ¢ cases of scene textgeition such as text on curved surfaces.
Finally, we compare the effectiveness of three recognitimthods proposed by us towards the end of
this chapter.

Chaptef b presents a query-driven approach for text-tggmatrieval. The retrieval performance is
evaluated on public scene text datasets as well as threedatgsets, namely, IlIT scene text retrieval,

Sports-10K and TV series-AM, we introduce.
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Finally, Chaptef]7 provides the summary of our work, congmrs with the related contemporary

methods and the impact of this thesis. Here, we also disbessiture directions of our thesis.
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Chapter 2

Background

In this chapter, we rst discuss the evaluation of scene texterstanding techniques, and then pro-
vide background material relevant to this thesis. Many efrttethods proposed in this thesis, especially
Chaptef B and Chapter 4, are inspired by the success of eméngyization techniques in solving com-
puter vision tasks. We discuss the motivation behind energymization techniques, introduce the
labeling problem, de ne MRF, and devise MAP-MRF equivalentowards the end of this chapter, we
provide a background on concepts related to word image nmagt¢Chaptet 5) such as dynamic time

warping (DTW), and image retrieval (Chapiér 6) such as imieand re-ranking.

2.1 Evolution of scene text understanding

Research on scene text understanding has evolved sigtliycisom the early days. We group the

evolution of scene text understanding here.

 Classical methods (till 2002). Early scene text understanding methods were natural eatens
of techniques used for reading scanned documénts [162]. IoWhéevel image features such
as edges, connected components, pixel color, basic pegsing techniques such as Gaussian
Itering and image processing tools were used to addresptthielem [17]. There was a lack of
standard benchmark datasets, and experiments were pedama small set of images. Some
efforts on recognizing and retrieving overlay text in vides well[67], 70] were also made during

this time, however with limited success.

« Advanced image processing based methods (2002 — 201With the introduction of ICDAR

2003 robust reading competitianl [3], research on scenddeatization and recognition has sig-
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ni cantly increased. The major document image analysid&@mce (ICDAR) has started orga-
nizing dedicated workshop, namely, CBDAR and robust readompetition in its every edition.
Advance image processing techniques such as stroke waattsftrm [40] and symmetrical block
patterns[[3/1] were used for addressing text localizatimmé&hbasic machine learning techniques
such as AdaBoost and energy minimization techniques sushmagated annealing also used in

text understanding during this era [30}/31,1170].

* Modern computer vision based methods (2009 — 2013f.omputer vision has made a signi cant
progress in the last decade in solving many challenginglenod such as segmentation, localiza-
tion, and image classi cation. Inspired by these solutjiaesearch on scene text started treating
words and characters as objects. The seminal works by \&aab [164,165] signi cantly in-
creased the interest in the scene text understanding pmeblglany works in this era have been
formulated in energy minimization frameworks [107, 1084/869]. The release of challeng-
ing public datasets such as SVT [4], IIT-5K word [107] gattek a lot of attention among the

computer vision community.

« Deep learning based methods (2014 to presentDeep learning has remarkably advanced the
computer vision area by improving the state of the art in nagplications by a large margin. The
rst noticeable work in this area is Coates al. [33] where the authors propose an unsupervised
learning approach for character recognition and text inagbn. Later, Wangt al.[166] adapted
a multi-layer neural networks for end-to-end scene texalimation and recognition. More re-
cently, Jaderbergt al. [66] proposed a deep convolutional neural network (CNN)simene text
recognition. Their architecture is trained on syntheti@mdallection containing 8 million images.
This method signi cantly improved the state of the art ofrsedext recognition. Contemporary
to this method, Su and Lu [152] proposed a recurrent neutalank (RNN) framework for rec-
ognizing scene text. Here, authors represent word imagesisequential histogram of gradient

features, and a RNN is used to classify these sequentiairésainto one of the English words.

Most of our works falls in the category of modern computeioridbbased methods. Nevertheless, as we
show experimentally in this thesis, our methods can takamtdge of deep learning based methods to

further improve scene text understanding.
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2.2 Energy minimization in computer vision

2.2.1 Motivation

Images can be imagined as a physical system molecules and ait@ physical system corresponds
to edges, pixel colors and edge orientation in images [49ly physical system in nature is hot com-
pletely random, rather follows some order. Similarly a natimage can not be a complete random, it
has some structure, pattern, and smoothness. Similar entrgy of a physical system, one can de ne
the energy for an image such that its minimum follows somerpri

Over the past two decades, energy minimization has emerged assential tool in computer vi-
sion [133/153]. Energy minimization refers to the problemmaling the values at which a function
reaches its minimum. Many important and challenging vigesks like foreground/background seg-
mentation [[138], pose estimation_[78] and word recognifib®8,/169] can be formulated in energy
minimization framework. Although the problem of minimigia general function is NP-hard, there exist
certain class of functions (popularly known as submodulactions in discrete optimization literature)
which can be minimized ef ciently. In this section we proeidequired background and preliminaries

for the energy minimization framework.

2.2.2 The labeling problem

Many computer vision problems can be formulated as a ladp@iinblem. Few examples are shown
in Figure[2.1. Labeling problem is speci ed in terms of sitesl labels. A site often represents a point
or a region in an Euclidean space. It could be image pixelagampatches, line segments or corners.
We represent sites by a nite s8t= f1;2;:::; mgwhere each element represents an index of the site.

A label is an event that may happen to the site. Labels depetideoproblem. Let us the denote set of

Each mapping from site to label is known as a con gurationt Eée the set of all possible con g-
urations. If the cardinality of site and label sets areandn respectively, then the cardinality 6f can
be computed as follows:

n n n n(mtimes)= nM: (2.1)
For example, consider the foreground-background segti@mias labeling problem. For an image of
size256 256, the cardinality of the con guration will b&%%® 256, which is a huge number. Therefore,

any brute force algorithm to search optimal con gurationl take exponential time, and is not feasible.
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Figure 2.1 Many vision problems can be posed as a labeling problem. (ablém of word

recognition can be formulated as a labeling problem wheoh e@dndow can take one of the label

labelL = fO(text); 1(backgroundg. Similarly, (¢c) binary segmentation, and (d) semantic sexfiat-
tion can also be formulated as a labeling problem. Imagetesyr (c) Rotheet al. [133] (d) Blog by
Roman ShapovaloV [5].

In general, labeling problem is an NP-hard problem. Fotlgaonly a small number of the solutions

are good and are of our interest, which leads to conceptsikeality criteria and the optimal solution.

Why optimization in vision? Every vision process is inherently uncertain. These uat#its arise
from various sources like noise, degradation, appeargose, and visual interpretation. The optimiza-
tion techniques give powerful tools to deal with such uraiaty. Mostly, in an optimization framework
our aim is to minimize an objective function. The objectiwmdtion is a function from the solution

space to the goodness of the solution. Often these objdctiations are non-convex in nature. Thus

17



they can not be trivially minimized. However, there are aslaf functions which can be minimized

ef ciently. We will discuss those functions as we move fordia

2.2.3 MAP estimation

Given an observation, posterior probability of a con guratior can be de ned as:

. P (x)p(zjx)
P(xjz) = ——F———=: 2.2
(xjz) 0(2) (2.2)
Letx be the optimal solution, then the risk of estimating thisisoh can be de ned as follows:
X
R(x )= C(x;x )P (xjz): (2.3)
x2F
HereC( ; ) is a cost function. A typical cost function can be of one offtiilowing forms:
Ci;x )= jix  xjj (2.4)
8
<0 jx X
C(x;x )= (2.5)
1 otherwise.
We can write equation 2.3 as:
X X
R(x )= C(x;x YP(xjz)dx + C(x;x )P (xjz)dx; (2.6)
X xj x o oxj>

where is arbitrarily small positive number. For simplicity, les mssume we use a cost function] 2.5.

Then the above equation can be written as.

X
R(x)=1 P (xjz)dx: 2.7)
jx  xj<

If we take ! 0, then risk can be rewritten as:
R(x)=1 kP(xj2); (2.8)

wherek is the volume of space containing all points for whjgh  xj < . We have to minimize this
risk, i.e., we have to maximize (xjz), which leads to the conclusion that the optimum solutioris
the one which maximizes posteriBr(xjz); or from (2.2), we can write the optimal con guration as:

X =argmax p(zjx)P(x): (2.9)

Images are not completely random; in other words, pixelsvartually dependent. The question then
arise then is — how can such a dependency be modeled? We aathreémage as a Markov random

eld (MRF) and model contextual constraints.
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2.2.4 Markov random eld and conditional random eld

con guration de ned over site$ and Labeld.. We de ne termP (x) as probability of a random vector
F taking a particular con guratiox.
ThenF is said to be aMarkov random eld [94] on S with respect to the neighborhodd if and only

if the following two conditions are satis ed:
1. P(x)> 0;8x 2 F,
2. P(xijfs¢ ig)= P(xijfn;).

A conditional random eld (CRF)[[88, 90] is an MRF globally weditioned on the dat®. In other
words, the conditional distributioR (xjD) over the labellings of the CRF is a Gibbs distribution and
can be written as:

_ 1 X
P(xjD) = = exp( Ve(X)); (2.10)
c2C

whereZ is a partition function, an¥.(x) is the clique potential de ned on clique size

2.2.5 MAP-MRF equivalence

Let us revisit the MAP estimation equation of section 2.2T®e optimal labeling is the same as

maximume-a-posterior probability, and is given by:

X =argmax p(zjx)P (x): (2.11)

Due to MRF-Gibbs equivalence, we can write:

1
P(x)= Z 1exp(TU(x)); (2.12)
WhereU(x)>i<s kr;(own as prior energy (or clique potential or MRF priorhe3example of clique potential
is: U(x) = (Xi  Xj )?: Note that this is not the only type of clique potential. Ckgoptentials
i jJ2N;

are modeled according to the problem. Sometimes, they sarballearned from the training data.
Let us assume there is identical independent Gaussiaibdign N ( ; 2) in our observation and

actual con guration, i.e.,
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. 1 i
p(zix) = g=——=e V@) (2.13)
iz1 2 2
where
U (zjx) = (Xiz %) (2.14)
i=1 i
Thus we can write:
o : Lo
X =argr;1axf qﬁe Ve 7z e T g (2.15)
i=1 :

Taking negative logarithm on both the side we can rewritevalemuation as:

x =argminfU(zjx) + U(X)g: (2.16)
X
Or,
Xy )2
X =argminf ()('2722') + U(X)g: (2.17)
X i

i=1
The right hand side of the above equation is popularly knowpasterior energy. Therefore, the
problem of nding the optimal con guration becomes equirat to minimizing energy.

In this section, we have seen how MAP estimation in a MAP-MR#mework leads to energy

xXn
minimization. The two terms of the posterior energy are: (i)(xi z)?, and (i) U(x). These

i=1
terms are popularly known as data and smoothness term tesbec

2.3 Classes of energy functions

In this section, we will introduce classes of energy funwioSpeci cally, we will de ne a function
known as submodular set functidn [24, 138]. In some respleese functions in discrete optimization

are similar to convex function in continuous optimization.

De nition 1 LetN = f1;2;:::;ng be a set. Then a set functién: 2" ! R is said to be submodular if

and only if for all subset&;B N it satis es:

f(A[ B)+ f(A\ B) f(A)+ f(B): (2.18)
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Figure 2.2 Class of energy functions: cate-

gorized based on complexity of minimization.

—

/ Pairwise

Quctured

In general, minimizing Energy function is an
Submodular NP-hard problem. However, there exists cer-

/ tain class of functions which can be ef ciently

NP-Hard minimized.

Every subset of a set can be written in terms of a binary rangexator. The entry of this random vector
is 1 if corresponding element is present in the subset otherivis®. For example, two seta = flg
andB = f2g can be equivalently written a1 = f1;0g and X, = f0; 1g respectively. In other
words, we can re-write submodularity condition as followgX 1 [ X2)+ f(X1\ X2) f(Xq)+

f (X2) or equivalentlyf (0;0)+ f (1;1) f (0;1)+ f (1;0). Many discrete optimization problems are
equivalently posed as minimization of discrete functioknimizing a function, in general, is an NP-
hard problem. However, there exist a class of energy funstfor which can be minimized ef ciently.
One such class is submodular function.

Unfortunately, not all vision problems can be posed as okl of minimizing binary submodular
functions. To get a useful approximate solution in such adea a number of approximate minimization
algorithms have been proposed in literature. For exampdeermaking algorithms such asexpansion
and -swap are two such which guarantees global solution withrestemt approximation [27].
These two methods are widely used for solving multi-labdlnojzation problems. Figurge 2.2 shows
the class of energy functions categorized based on the eaitypbf their minimization. In general
minimizing an energy function is an NP-hard problem. Howegifethe interaction between random
variables can be modeled as a tree, the corresponding efwgrgyon can be minimized exactly and
in polynomial time. Similarly, a class of energy functiotileel submodular energy functions with the

additional constraints that only pairwise interactiors afowed, can also be minimized very ef ciently.

2.4 Popular energy minimization techniques

Many problems in computer vision can be elegantly expresseiarkov random elds, yet the
resulting energy minimization problems have been widebwéd as intractable till the 90s. In last

decade, algorithms such as graph cuts and loopy belief gatipa [174] have proven to be ef cient
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for many computer vision tasks. For example, the top perfognsegmentation and stereo methods
are MRF based. There exists many energy minimization tgdesi in literature such as graph cuts,
iterated conditional mode ICM algorithin [19], loopy bel@bpagation L-BP[174], and tree-reweighed
message passing (TRW) [79]. In this section we brie y discgsaph cuts, L-BP, and TRW.

e Graph cut. In graph theory, a cut is a partition of the vertices of a ovagh into two disjoint
subsets. There are many cuts possible in a ow graph. Theafasin-cut is same as the max-
ow of the ow graph. There are many ef cient algorithms fomding min-cut of a graph. The
reader is encouraged to refer [34] for more details. A subriawdenergy function can be repre-
sented as a ow graph, and every cut of this graph corresptmds assignment to the energy
function [81]. For the pseudo binary submodular functigisbal minima can be obtained using
graph cut algorithm. On the other hand, energy functionsiwiocan take multiple labels, can
not be exactly solved using graph cut. However, an appraemanima is obtained using move
making algorithms in such casés [27].

Minimizing submodular functions using graph cuts. Any pseudo Boolean submodular func-
tion can be represented using ow graphs. The min-cut of gmaph divides the random variables
into two sets and assigifsor 1 to each variable depending on whether the corresponding nod
belongs toS or T after the cut. Such assignment to the submodular functieldyithe global

minimum of the function[[8[1].

« L-BP [174]. Loopy belief propagation (L-BP) is a message passing baderence algorithm. It
has two variants: (i) sum-product, and (ii) max-producte hhm-product algorithm computes the
marginal probability distribution of each node in the graphereas the max-product is designed
to nd the solution corresponding to the lowest energy. Theédé-propagation (BP) algorithm
was originally designed for graphs without cycles. In suakes BP nds the global minima of
the energy function. However, many vision problems leadsference in a cyclic graph and in
general, loopy BP does not guarantee convergence. Howekiag been experimentally proven

that L-BP produces a strong local minima.

« TRW [79]. Tree-reweighed message passing is a variant of belief gadjpa. The only major

difference is in the order of message passing. The TRW hksviolg two variants:
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1. TRW-T: It has three steps: (i) split the graph into tre@srin BP on all the trees, and (iii)

average all the nodes. It is not guaranteed to converge.

2. TRW-S: It has four steps: (i) split the graph into tree3,piick a nodep randomly. (iii) run
BP on all the trees containing (iv) average node and go to step — (ii) until convergence.

TRW-S signi cantly outperforms TRW-T both computation aperformance wise.

2.4.1 Recent advances

Most energy minimization problem in computer vision litenr@ assume that the energy can be rep-
resented as unary and pairwise terms. This assumptionebgvestricts the expressiveness of these
models making them poor for capturing the rich statisticsatural scenes. In the last decade, re-
searchers have shown huge interest in modeling vision @mublusing higher order clique poten-
tials [62,/77[126, 135]. Higher order potentials have betigressiveness than pairwise potentials;
however the higher order introduction to energy functiasat a trivial extension of pair-wise because,
introducing higher order terms signi cantly reduces theiehcy of existing inference algorithms. Due
to the lack of ef cient algorithms for minimizing the energynctions with higher order terms, their use
has been quite limited. In recent works [62,1.26,/135], higiider clique potentials are reduced to unary
and pair-wise term, and then ef ciently solved. Howeveerthexist many useful higher order potential
functions for which the minimization problem does not hamesfcient solution. This makes the area
of the higher order potentials exciting to work on. In thiegls, we model our problem of scene text
recognition in higher order framework, and decompose thédri order cost into unary and pairwise

terms to ef ciently solve the corresponding inference peab using TRW-S (Chaptét 4).

2.5 Dynamic time warping (DTW)

In Chaptei b, we present a word matching scheme that compganéisetic and scene text images
using dynamic time warping (DTW). DTW has been widely usadriatching one-dimensional signals
in many area such as, speech analysis, bio-informaticshamdwriting word spotting [127].

The DTW is used to compute the distance between two séeri€3.[A3naive approach to compute
the similarity between two time time series could be to umifiy sample equal number of points from
them, and then compute the Euclidean distance betweengbgges. This method does not produce the

expected results, as it compares points that might not sporel well.
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can be recursively computed using dynamic programming as:

8
2 DTW( Lj)+ D(i;j)
DTW (i;j ) = min 5 DTW(i;j 1)+ D(i;j) (2.19)

DTW( 1;j 1)+ D(j);
whereD (i;] ) is the distance between featurgsandy;, and their choice varies from application to
application. The DTW distance computation has a time coxiglef O(MN ) to match two series of
lengthM andN respectively.
Warping path. In context of DTW distance computation between two signdeafthM andN
respectively, a wrapping path is a sequefipg p1;  pxgwithp, = (Xi;y;)) 2[1:M] [1:N]8i 2

1,2 ; K satisfying the following three conditions.
1. Boundary conditionpg = (1;1) andpx = (M;N)
2. Monotonicity conditionx; X2 XKk Y1 Y2 YK

3. Step size conditiomj+1  pi 21 (0;1);(1;1);(1;0)gfori 2f 1;2; K 1g

2.6 Indexing and re-ranking

In the information retrieval community, indexing and rexkang are two fundamental terms [101].
We provide a brief background of these two terms which arectly related to our Chaptel 6 where we
demonstrate text-to-image retrieval.

Indexing. The objective of storing an index is to optimize speed anfbp@ance in retrieving relevant
images or video frames for a query text. An index is espgciadleful for demonstrating web-scale
image retrieval. However, it comes with the cost of adddilospace and time required for an update,
and often these are the traded off for the time saved durimggval. In image search inverted index
containing query text and relevant image is created. In aarkywe create inverted index for fast text-
to-image retrieval. This index contains a list of vocabybaords (potential queries) and their presence
score in all images.

Re-ranking. For image retrieval, simple operations are performed otufea of all the images of

the dataset, and an initial retrieval results are obtair@dce initial results are obtained, more costly
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operations are performed on tépimages. In our work, we propose two types of re-ranking sasem

based on spatial positioning and ordering of characterseofjtiery word.
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Chapter 3

Cropped Word Recognition: Robust Segmentation for Better Rcognition

We propose a robust text segmentation (binarization) igalenfor addressing word recognition
problem. Color and strokes are the salient features of égions in an image. In this chapter, we use
both these features as cues, and introduce a novel energtiofurto formulate the text binarization
problem. The minimum of this energy function correspondh&optimal binarization. We minimize
the energy function using an iterative graph cut based iéhgor Our model is robust to variations in
foreground and background as we learn Gaussian mixture Ienfatecolor as well as strokes in each
iteration of the graph cut. We show results on word images fitee challenging ICDAR 2003, ICDAR
2011, and street view text datasets, and compare our pexfamerwith previously published methods.
Our approach shows signi cant improvements in performasitie respect to various performance mea-
sures commonly used to assess text binarization schemaddition, our algorithm is computationally

ef cient, and can adapt to a variety of document images ssolideo texts and handwritten images.

3.1 Introduction

Binarization is one of the key preprocessing steps in macyment image analysis systerns [151].
The performance of the subsequent steps like characteresggtion and recognition is highly depen-
dent on the success of binarization. Document image bmt#oiz has been an active area of research
for many years[[56, 57,91, 105, 106, 151, 16] binarization a solved problem@ertainly not, espe-
cially, in light of challenges posed by text in video sequesdorn-digital (web and email) images, old
historic manuscripts and natural scenes where the state @t recognition performance is still poor.
In this context of wide variety of imaging systems, desigrénpowerful text binarization algorithm can

be considered a major step towards robust text undersgndihe recent interest of the community
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Figure 3.1 Few sample images we consider in work work. Due to large trana in foreground and

background colors, most of the popular binarization temhes in the literature tend to fail on such

images.

by organizing binarization contests like DIBCO [46], H-OI® [125] at major international document
image analysis conferences further highlights its impuga

In this chapter, we focus on binarization of natural scereiteages. These images contain numer-
ous degradations which are not usually present in machinéed ones such as, uneven lighting, blur,
complex background, and perspective distortion. A few daripages from the popular datasets we
use are shown in Fi§._3.1. Our proposed method also geresdlizhistorical handwritten document
images. In fact, our method achieves signi cantly high tbitarization performance on H-DIBCO
2012 historical handwritten image dataset [6].

Our method is inspired by the success of interactive grapf28liand GrabCut [133] algorithms for
foreground-background segmentation of natural scenesfoilvaulate the binarization problem in an
energy minimization framework, where text is foreground anything else is background, and de ne
a novel energy (cost) function such that the quality of theabization is determined by the energy
value. We minimize this energy function to nd the optimahhrization using an iterative graph cut
scheme. The graph cut method needs to be initialized wittlgfound and background seeds. To make
the binarization fully automatic, we initialize the seedsdbtaining character-like strokes. At each
iteration of graph cut, the seeds and the binarization anede This makes it more powerful than a
one-shot graph cut algorithm. Moreover, we use two cuesstinduish text regions from background:
(i) color, and (i) stroke width.We model foreground and kground colors as well as stroke widths in
a Gaussian mixture Markov random eld framework [23], to radke binarization robust to variations
in foreground and background.

The contributions of this chapter are threefold: rstly, weposed a principled framework for the

text binarization problem, which is automatically initidd with character-like strokes. Use of color
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and stroke width cues in an optimization framework for the bénarization problem is a major novelty
here.

Secondly, we present a comprehensive evaluation of thepealbinarization technique on multiple
text datasets. We evaluate the performance using varioasures, such as pixel-level accuracy, atom-
level accuracy as well as recognition results, and compavéh the state of the art methods [57, 73,
76,105,115,118,137,170]. To our knowledge, text bindéinmamethods have not been evaluated in
such a rigorous setting in the past, and are restricted tofeml hundred images or only one category
of document images (e.g., handwritten documents or scet)e te

In contrast, we evaluate on more than 2000 images includiegestext, video text, born-digital
and handwritten images. Additionally, we also perform gate analysis on 6000 images contain-
ing video text of several non-European scripts. Intergbtinthe performance of existing binarization
methods varies widely across the datasets whereas outsraselconsistently compelling. In fact, our
binarization improves the recognition results of an opamre® OCR [1] by more than 10% on various
public benchmarks. Thirdly, we show the utility of our prgpd method in binarizing degraded his-
torical documents. On a benchmark dataset of handwrittegé®s, our method achieves comparable
performance to the H-DIBCO 2012 competition winner and gestd the art method [57], which is
speci cally tuned for handwritten images.

The remainder of this chapter is organized as follows. Weudis the related literature in Section 3.2.
In Section 3.3, the binarization problem is formulated aaleeling problem, where we de ne an en-
ergy function such that its minimum corresponds to the tabgeary image. This section also brie y
introduces the graph cut method. Section 3.4 explains thgosed iterative graph cut based binariza-
tion scheme. In Section 3.5, we discuss our automatic GMlalization strategy. Section 3.6 gives
details of the datasets, evaluation protocols, and pedoom measures used in this work. Experimen-
tal settings, results, discussions, and comparisons \aiilbws classical as well as modern binarization

techniques are provided in Section 3.7, followed by the samgrof this chapter.

3.2 Related work

Binarization is a highly researched area in the documengénvanalysis community. Early meth-
ods for text binarization were mostly designed for cleameed documents. In the context of images

taken from street scenes, video sequences and historiodividten documents, binarization poses
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many additional challenges. A few recent approaches aimeddress them for scene text binariza-
tion [75, 100, 105], handwritten text binarization [56, %#]d degraded printed text binarization [96].
In this section we review such literature as well as otherkaoelated to binarization (speci cally text

binarization), and argue for the need for better techniques

We group text binarization approaches into three majomeaies: (1) classical binarization, (2) en-

ergy minimization based methods, and (3) others.

Classical binarization methods.They can be further categorized into: global approches, @tgu [118],
Kittler [76]) and local (e.g., Sauvola [137], Niblack [1}5]Global methods compute a binarization
threshold based on global statistics of the image such esdfdss variance of text and background
region, whereas local methods compute binarization tltdshased on local statistics of the image
such as mean and variance of pixel intensity in patches. @ader is encouraged to refer [151] for
more details of these methods. Although most of these pusvinethods perform satisfactorily for
many cases, they suffer from problems like: (i) manual tgrof parameters, (ii) high sensitivity to
the choice of parameters, and (iii) failure in handling imgagvith uneven lighting, noisy background,

similar foreground-background colors.

Energy minimization based methods.Recently, energy minimization based methods have been pro-
posed for text binarization problems [56, 57, 83, 105, 1@6,170]. In this framework, binarization
problem is posed as an optimization problem, typically nedl@sing Markov random elds (MRFs).
In [170], Wolf and Doermann posed binarization in an energgimmization framework, and applied
simulated annealing (SA) to minimize the cost function.88][ authors rst classi ed a document into
text region (TR), near text region (NTR) and backgroundaegi(BR), and then performed graph cut
to produce the nal binary image. An MRF based binarization damera-captured document images
was proposed in [120], where a thresholding based techisqueed to produce an initial binary image
which is re ned with a graph cut scheme. The energy functisadiin [120] also uses stroke width as
cues, and achieves good performance on printed documegégnelowever, the method relies strongly
on its rst step, i.e., thresholding based binarization.rtkRermore, it needs an accurate estimation of
stroke width, which is not always trivial in the datasets vge (see Fig. 3.2). Unlike [120], our frame-
work does not require an exact estimation of stroke width pnodeeds with stroke as well as color

initializations which are are re ned over iterations.
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Howe [56] used the Laplacian of the image intensity in thergynéerm for document binarization
and improved it by devising methods for automatic tuningafgneters in [57]. These approaches were
especially designed for handwritten images, and showed gedormance. However, they fail to cope
up with variations in scene text images, e.g., large chaimgstsoke width and foreground-background
colors within a single image. Adopting a similar framewdvklyaev et al.[105] have proposed a scene
text binarization technique, where they obtain an initistireate of binarization with [115], and then
use Lapalcian of image intensity to compute unary term ofahergy function. Authors have shown

applicability of this technique in end-to-end scene textenstanding.

Other methods. Binarization has also been formulated as a text extractioblem [21,40,42,47,73].
Gatoset al. [47] presented a method with four steps: denoising with p@ass Wiener lter, rough es-
timation of text and background, using text and backgrowsttnate to compute local thresholds and
post-processing to eliminate noise and preserve strokesht&inet al. [40] presented a novel operator
called the stroke width transform (SWT). The SWT operatanpotes the stroke width at every pixel
of the input image. Then a set of heuristics are applied fdragtraction. Kasaet al. [73] proposed

a method which extracts text based on the candidate bouthdixes in a Canny edge image. Ezeaki
al. [42] applied [118] on different image channels, and therduserphological operators as post pro-
cessing. A few methods have also focused on color text la@on [75, 100]. However, they often
use multiple heuristics, and can not be easily generalifemld and Learned-Miller [43] proposed a
bilateral regression based binarization method. This atetises color clustering as a starting point
to t a regression model, and generate multiple hypothe$asxb region. Histogram of gradient fea-
tures [35] computed for English characters are then useduepthese hypotheses. More recently,
Tian et al. [156] proposed a binarization technique which computes RI8E different color channels
to obtain many connected components and then these codremtgonents are pruned based on text

Vs non-text classi er to produce the binarization output.

In contrast to the binarization techniques in literature, pwopose a method which models color as
well as stroke width distributions of foreground (text) dratkground (non-text) using robust Gaussian
mixture models, and perform an inference using an iterara@h cut algorithm to obtain clean binary
images. We evaluate publicly available implementationsnahy of the existing methods on multiple

benchmarks, and compare with them in Section 3.7.
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Figure 3.2 (a) A scene text image from ICDAR

2003 dataset [7] (b) Part of a historical handwrit-
ten document image taken from HDIBCO 2012
dataset [6]. We observe that stroke width within text
is not always constant, but varies smoothly. This

(a) (b) motivates us to model stroke widths as GMMs.

3.3 The proposed formulation

We formulate the binarization problem in a labeling framewas follows. Binarization of an image
can be expressed as a vector of binary random variablesf X 1; X»;:::; X g, where each random
variableX; takes a labek; 2 f 0; 1g based on whether it is text (foreground) or non-text (baokgd).
Most of the heuristic based algorithms take the decisiorssigaing labeD or 1 to x; based on the pixel
value at that location or local statistics computed in ameighood. Such algorithms are not effective

in our case because of the variations in foreground and lbagkg color distributions.

In this work, we formulate the problem in a more principlednfrework where we represent image
pixels as nodes in a conditional random eld (CRF) and asgec unary and pairwise cost of labeling
pixels. We then solve the problem by minimizing a linear corabon of two energy functiong. and

Es given by:

Ear(X; ;2) = WiEc(X; ¢;Zc) + WoEs(X; s;Zs); (3.1)

such that its minimum corresponds to the target binary imaderex = fXx1;Xo;:::;Xng is a set of
labels at each pixel. The model parameteyaind ¢ are learned from the foreground/background color
and stroke width distributions respectively. The veagicontains the color values, whereas the vector
Zs contains pixel intensity and stroke width at every pixel.eTeightsw; andw, are automatically
computed for the given image. To this end, we compute two egperties, namely edge density
and stroke width consistency4). Edge density is de ned as the fraction of edge pixels indhven
image. We de ne stroke width consistency of the given imagietandard deviation of stroke widths in
that image. We observe that stroke cues are more reliatdtly, when we have suf cient edge pixels,
and secondly when standard deviation of stroke widths is B&sed on this intuition we compute the

relative weightsw, wo) between color and stroke terms as follows: = j1 11 Siwe = J1 waj.
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The idea here is to give more weight to the stroke width based tvhen the extracted strokes are more
reliable, and vice-versa.

For simplicity, we will denote ; and s as andz; andzg asz from now. It should be noted that
the formulation of stroke width based telfig and color based terfa; are analogous. Hence, we will
only show formulation of color based energy term in the sgbeat texts. The color based energy term
is expressed as follows:

X X
E(x; ;2= Ei(xi; ;z)+ Eij (Xi;1Xj,2i,7); 3.2)
i (i )2N
where,N denotes the neighborhood system de ned in the CRF BrahdE;j; correspond to data and
smoothness terms respectively. The data tEfn) measures the degree of agreement of the inferred
labelx; to the observed image data The smoothness term measures the cost of assigning kgbels
X;j to adjacent pixels, essentially imposing spatial smoathné typical unary term can be expressed

as:

Ei(xi; ;z)= logp(xijz); (3.3)

wherep(xijz;) is the likelihood of pixeli taking labelx;. The smoothness term is the standard Potts

model [25]:

[Xi 6 X;j]

By (X322 = Gy P @ @) (3.4

where the scalar parametercontrols the degree of smoothnessst (i;j ) is the Euclidean distance
between neighboring pixelsandj . Further, the smoothness term imposes the cost only foe thog-
cent pixels which have different labels, i.i¢; 6 x;]. The constant allows discontinuity-preserving
smoothing, and is given by: = 1=2E[(z; gz )2], whereE[a] is expected value af.

The problem of binarization is now to nd the global minimatbk energy function, i.e.,
X =arg m)i(n Eal(X; ;2): (3.5)

The global minima of this energy function can be ef cientlgneputed by graph cut [26] if it satis es
the criteria of submodularity [81]. To this end, a weightedph G = (V;E) is formed where each
vertex corresponds to an image pixel, and edges link adjgpdesls. Two additional vertices sourcs) (

and sink ) are added to the graph. All the other vertices are conndotétem with weighted edges.

The weights of all the edges are de ned in such a way that emetrpf the graph is equivalent to some
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Algorithm 1 Overall procedure of the proposed binarization scheme.
procedure

Input: Color or gray image
Output: Binary image
Initialize:
1. Number of GMM component2¢; and2c,) for color and stroke GMMs.
2. maxIT : maximum number of iterations.
3. Seeds and GMMs (Section 3.5).
4. iteration 1.
CRF optimization:
while iteration  maxIT do
5. Learn color and stroke GMMs from seeds
6. Compute colork.) and stroke ) based terms (Section 3.3)
7. Construck-t graph representing the weighted energy
8. Performs-t mincut
9. Re ne seeds (Section 3.5

10. iteration iteration +1.

label assignment to the nodes. Note that the cut of the ggaigla partition of set of verticeg into two
disjoint setsS andT and the cost of the cut is de ned as the sum of the weights oéedging from
vertices belonging to s& to T [24, 81]. The minimum cut of such a graph corresponds to thbayl

minima of the energy function, which can be computed ef dig[26].

In [25], the set of model parametersdescribe image foreground and background histograms. The
histograms are constructed directly from the foregrourdizackground seeds which are obtained with
user interaction. However, the foreground/backgrounttitigion in our case (see images in Fig. 3.1)
cannot be captured ef ciently by a naive histogram distiifou Rather, we assume each pixel color
(similarly stroke width) is generated from a Gaussian mixtmodel (GMM). In this regard, we are
inspired by the success of the GrabCut [133] for object segmtien. The foreground and background
GMMs in GrabCut [133] are initialized by user interaction.e\&im to avoid any user interaction to

obtained using a method described in Section 3.5.
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3.4 lterative graph cut based binarization

Each pixel color is generated from one of g Gaussian mixture models (GMMs);(GMMs each
for foreground and background) with a mearmnd a covariance .1 In other words, each foreground

color pixel is generated from the following distribution:
p(zijxi; k)= N(z, ; (Xi;ki); ( Xi;ki)); (3.6)

whereN denotes a Gaussian distribution, 2 f 0; 1g andk; 2 f 1;:::;¢c19. To model the foreground
color using this distribution, an additional vecto= fkq; ko; :::; kngis introduced where ead takes
one of thec; GMM components. Similarly, background color is modeledrfrone of thecy GMM
components. Further, the likelihood probabilities of alkadon can be assumed to be independent of

the pixel position, thus can be expressed as:

Y
p(zix; ;k)= p(zijxi; ;ki); (3.7)
[
Y T 1
o A R A (3.8)
i J il 2
where ; = (Xi;ki), i = ( Xi;k) andz = (z (Xi;ki)). Further, ; is Gaussian mixture

weighting coef cient. Due to the introduction of GMMs thetdaerm in (3.2) becomes dependent on

its assignment to GMM component, and it is given by:
Ei(xi;ki; ;zi) = logp(zijxi; ;ki): (3.9)

In order to make the energy function robust to low contrakirdamages we introduce introduce a novel

term into the smoothness function which measures the “edgirof pixels as:

X X
Eij (Xi;Xj;z;z)= 1 Zj + > Gi; (3.10)
(i )2N (i )2N
where,Zj =[x 6 xjlexp( iz zji?) andGj =[x 6 x;1exp( 4jig ji?): Hereg denotes
the magnitude of gradient (edginess) at pixélwo neighboring pixels with similar edginess values are

more likely to belong to the same class according this caimétrThe constants; and » determine the

Similarly, for stroke-based term it assumed that stroketwéahd intensity of each pixel are generated from one ofthe
GMMs.
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Figure 3.3 Overview of the proposed method. Given an input image coimgitext, we rst obtain
some character-like strokes using the method describeddtidd 3.5. GMMs for foreground (text) and
background (non-text) are learnt from these initial se¥dslearn two types of GMMs: one using RGB
color values and another using stroke width and intensityeg Unary costs and pairwise costs are
computed for every pixel, and are appropriately weighteg Section 3.3). As-t graph is constructed
with these. The min cut of this graph produces an initial binanage, which is used to re ne the seeds,
and the GMMs. The GMM re nement and graph cut steps are regeatfew times to obtain a nal

clean binary image.Best viewed in color)

relative strength of the color and edginess differencens teith unary term respectively and are xed to

25 empirically, and the parametersand ¢ are automatically computed from the image as follows.

c= - @ z)% (3.11)

9= - G 9)% (3.12)
(i )2N

where term =2(4wh 3w 3h+2) denotes total number of edges in Bwaeighborhood systeid
with w andh denoting the width and the height of the image respectively.

To sum up the energy formulation, both color as well as stwikith of foreground and background
regions are modeled as GMMs. The GMMs for color and strokehmtbed to be initialized. To
initialize these GMMs we obtain character-like strokestfa given image as described in Section 3.5.
Once GMMs are initialized, we compute unary and pairwismgeirom (3.3) and (3.10) for both color
and stroke based terms. Then, at each iteration, the inéigins are re ned, new GMMs are learned
from them, and the relative weights between color and stiekas are recomputed. It makes the
algorithm robust as it adapts to variations in foreground laecckground. The overview of our proposed

method is illustrated in Fig. 3.3 and Algorithm 1.
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Figure 3.4 (a) Input image (b) character-like
strokes obtained using the method presented in
Section 3.5. The intensity values show stroke

width in this image. (@) (b)

3.5 GMM initialization

To perform automatic binarization we need to obtain foragtband background seeds for initializa-
tion of GMMs. This can play a crucial role as it may be hard twoker from the random initialization
of foreground and background seeds. In this work we propmsétain initial seeds from character-like
strokes. The idea of obtaining character-like strokesslar in spirit to the work of Epshteigt al. [40].
However, unlike [40], our method is robust to incorrect kit®as we iteratively re ne the initializations
by learning new color and stroke GMMs in each iteration. Wlive techniques can also be used for

initialization, for example other any automatic binariaattechnique.

Obtaining character-like strokes. We begin by extracting an edge image using Canny edge opera-

tor, and then nd the character-like strokes with two-stppr@ach:

Step 1: We rst automatically detect the polarity of the image fronsimple method. If the aver-
age gray pixel value of the middle strip of an image is gretdign average gray pixel value of boundary,
then we assign polarity df (i.e., light text on dark background), otherwise we assiglaty of O (i.e.,
dark text on light background). If the polarity of the imagd.ii.e., it has light text on dark background,
then we subtract from the original gradient orientation. It should be notedttthe handwritten images

are always assumed as dark text on light background.

Step 2: Let u be a non-traversed edge pixel with gradient orientatiorFor every such edge pixel
u, we traverse the edge image in direction aintil we hit an edge pixe¥ whose gradient orientation
is ( ) =5 I-€., approximately the opposite gradient direction. Wakthis line segmertiv as a
character-like stroke. We repeat this process for all thretraversed edge pixels, and mark all the line

segments as character-like strokes.
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Dataset No. of images Type Available annotations
ICDAR 2003 word [7] 1110 | Scene text Pixel, text
ICDAR 2011 word [8] 1189 | Scene text Pixel, text
Street view text [165] 647 | Scene text Pixel, text
CVSI 2015 [9] 6000 | Video text -

H-DIBCO 2012 [6] 14 | Handwritten Pixel

Table 3.1 Datasets. We use three scene text, a video text and a haeswiritage dataset in our

experiments.

We use these character-like strokes as initial foregrowedis and pixel with no strokes are used
as background seeds. Fig. 3.4 shows an example image andrtheponding character-like strokes
obtained as described above. We initialize two types of GMdee with color values, and other with
stroke width and pixel intensity values, for both foregrduand background, from these initial seeds.
Note that unlike our previous work [106], (i) we do not use deyristics to discard few strokes, and
keep all of them, and re ne over iterations, (ii) backgrowsseds do not need to be explicitly computed,

rather, all the pixels with no strokes are initialized asiqatadle background.

3.6 Datasets and performance measures

To conduct a comprehensive evaluation of the proposedibatam method, we use three scene text,
a video text and a handwritten image datasets. These areatgechin Table 3.1. In this section, we

brie y describe the datasets and provided annotations.

ICDAR cropped word datasets [7, 8]. ICDAR 2003 and 2011 robust reading dataset was originally
introduced for tasks like text localization, cropped woedagnition, scene character recognition. We
use the cropped words these datasets for evaluating kdtiarizperformance. These datasets contain
1,110 and 1189 word images respectively. Pixel-level atimts for both these datasets are provided
by Kumaret al.[84]. It should be noted that for ICDAR 2011 pixel-level atations are available only
for 716 images. We show pixel-level and atom-level resutsohly those images for this dataset, and
refer this subset dataset as ICDAR 2011 (S). However, we sboagnition results on all 1189 images

of ICDAR 2011.
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Street view text [165]. The street view text (SVT) dataset contains images hamdsten Google
Street View. As noted in [165], most of the images come fromiess signage and exhibit a high de-
gree of variability in appearance and resolution. We showaiization results on the cropped words of

SVT-word, which contains 647 word images. Pixel-level aations for SVT is publicly available [84].

Video script identi cation dataset [9]. The CVSI dataset is composed of images from news videos of
various Indian languages. It contains 6000 text images fOmifferent scripts, namely English, Hindi,
Bengali, Oriya, Gujarati, Punjabi, Kannada, Tamil, Telag Arabic, commonly used in India. This
dataset was originally introduced for script identi cati¢9], and does not include pixel level annota-

tions. We use it solely for qualitative evaluation of bization methods.

H-DIBCO 2012 [125]. Although our binarization scheme is designed for sceneiteages, it can
also be applied for handwritten images. To demonstratembialso test our method on H-DIBCO 2012
dataset. It contains 14 degraded handwritten images aircctireesponding ground truth images with

pixel-level annotations.

3.6.1 Performance measures

Although binarization is a highly researched problem, genfance evaluation of binarization meth-
ods remains an ill-de ned area [32]. Due to the lack of weadlstbd performance measures or lack of
ground truth, many works in the past perform only a qualitaévaluation of binarization [71,95]. Some
other works measure binarization accuracy in term of OCRopaance [86]. Although improving the
recognition (or OCR) performance is an end goal of binaimatunfortunately OCR systems often
rely on many factors (i.e., character classi cation, stital language models), and not just the quality
of text binarization. Hence, OCR-level evaluation can dmdyconsidered as an indirect performance
measure for evaluating binarization methods [32].

A well-established practice in document image binarizaiompetitions at ICDAR is to evaluate bi-
narization at pixel-level [46]. This evaluation does hoeteliave few drawbacks: (i) pixel-level ground
truth for large scale datasets is dif cult to acquire, (ijedto anti-aliasing and blur, de ning pixel ac-
curate ground truth becomes subjective, (iii) a small errground truth can alter the ranking of bina-
rization performance signi cantly as studied in [149]. Gatering these drawbacks, Clavedtial.[32]

proposed a measure for text binarization by performing dewal evaluation. An atom is de ned as
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Figure 3.5 lllustration of criteria-(i) (mini-
mal coverage in atom-level evaluation): (a) a

ground truth image, (b) binary image where

minimal coverage criteria is satis ed, and (c)
binary image where minimal coverage crite-

ria is not satis ed. Here, a thin line across

the character “c' is the skeleton of the ground

(@ (b) (c) truth.

the minimum unit of text segmentation which can be recoghiae its own. This performance mea-
sure does not require pixel accurate ground truths, anduresagarious characteristics of binarization

algorithms such as producing broken texts, merging cheract

In order to provide a complete analysis we evaluate bindgoizemethods on all three measures,

namely pixel-level, atom-level and recognition (OCR) aecy.

Pixel-level evaluation. For this evaluation given a ground truth image annotatedixa-fevel and
the output image of a binarization method, each pixel in thgwat image is classi ed as one of the
following: (i) true positive if it is a text pixel in both theutput and the ground truth image, (ii) false
positive if it is a background pixel in the output image buteattpixel in the ground truth, (3) false
negative if it is a text pixel in the output image but backgrdiixel in the ground truth, or (4) true
negative if it is background pixel in both the output and theugd truth image. With these in hand we
computeprecision recall andf-scorefor every image, and we then report mean values of these mesasu

over all the images in the dataset to compare binarizaticthads.

Atom-level evaluation. In this evaluation each connected component in the binatgubumage is
classi ed as one of the six categories [32]. To determins fhilowing two criteria are used: (i) the
connected component intersects with the skeleton of grautia with at least min , (i) if a connected
component comprises pixels that do not overlap with teegan the ground truth, then the distance of
such component pixels are from the area edge should not@xgge. The thresholdsmin and max

are chosen as suggested by Clawetlal. [32]. These two criteria are pictorially depicted in Figd&
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Figure 3.6 lllustration of criteria-(ii) (max-

imal coverage in atom-level evaluation): (a) a

ground truth image, (b) binary image where

maximal coverage criteria is satis ed (c) bit

nary image where maximal coverage criterja

is not satis ed. (a) (b) (©

and Figure 3.6 respectively. Based on these two criteria eacnected component in the output image

is classi ed as one of the following categories.

« whole (w). If the connected component overlaps with skeleton of tlwigd truth, and both

criteria are satis ed.

« background(b). If the connected component does not overlap with any ofsitedeton of the

ground truth.

« fraction (f ). If the connected component overlaps with one skeletohetound truth, and only

criteria-(ii) is satis ed.

« multiple (m). If the connected component overlaps with many skeletbtiseoground truth, and

only criteria-(i) is satis ed.

« fraction and multiple(fm ). If the connected component overlaps with many skeletdrtheo

ground truth, and only criteria-(ii) is satis ed.

« mixed(mi). If the connected component overlaps with many skeletdiiseoground truth, and

neither criteria-(i) nor criteria-(ii) is satis ed.

The number of connected components in the above categenesmalized by the number of ground
truth connected components for every image to obtain s¢de®ted byw, b, f , m, fm, mi). Then
the mean values of these scores over the entire dataset asmethdo compare binarization methods.
Higher values (maximum = 1) fow whereas lower values (minimum = 0) for all the other categgori
are desired. We have shown examples of each of these caedgofrigure 3.7. Further, to represent
atom-level performance with a single measure, we compute:

1

L+b+f+fm+mi’

atom-score= (3.13)
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Figure 3.7 Two ground truth and binary image examples with six diff¢éresttegories of connected
components with respect to atom-level evaluation. Categare shown in following different color
codes— greenwhole red: background blue: multiple yellow: fraction, pink: fraction and multiple

and cyanmixed

Theatom-scoras computed for every image, and the mean over all the imagieidataset is reported.

The desired meaatom-scordor a binarization method i%, denoting an ideal binarization output.

OCR-level evaluation. We use two well-known off-the-shelf OCRs: Tesseract [1] ABBYY ne
Reader 8.0 [10] to evaluate binarization methods with OCiRopmance. Tesseract is an open source
OCR whereas ABBYY ne Reader 8.0 is a commercial OCR produtke report word recognition
accuracy which is de ned as the number of correctly recogghiwords divided by the total number of
words in the dataset. Following the ICDAR competition poatig [140], we do not perform any edit

distance based correction with lexicons, and report cassits/e word recognition accuracy.

3.7 Experimental analysis

Given a color or gray image containing text, our goal is tabire it such that the pixels correspond-
ing to the text and non-text get lab@bknd1 respectively. In this section, we perform a comprehensive

evaluation of the proposed binarization scheme on the elatagroduced in Section 3.6. We compare
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Method ICDAR 2003 ICDAR 2011 (S) Street View Text
Prec. | Rec.| f-score | Prec. | Rec.| f-score| Prec. | Rec.| f-score
Otsu [118] 0.86 | 0.90| 0.87 | 0.87 | 0.91| 0.88 | 0.64 | 0.83| 0.70
Kittler [76] 0.75|0.89| 0.78 | 0.79 | 0.89| 0.80 | 0.55|0.81| 0.62
Niblack [115] 068 |0.87| 0.74 | 0.75|0.86| 0.79 | 0.52 | 0.78| 0.60
Sauvola [137] 065|083 067 | 0.73|0.81| 0.71 | 052 | 0.76| 0.57
Wolf [170] 0.81(091| 084 | 0.83|0.90| 0.85 | 0.58 | 0.81| 0.66
Kasar [73] 0.72 | 0.64| 065 | 0.65|0.47| 052 | 0.70 | 0.71| 0.69
Milyaev [105] 0.71 | 0.69| 063 | 0.72 | 0.73| 0.65 | 0.52 | 0.66| 0.51
Howe [57] 0.76 | 0.84| 0.76 | 0.76 | 0.87| 0.78 | 0.62 | 0.77| 0.64
Bilateral [43] 0.84 | 0.85| 0.83 | 0.89 |0.87| 0.87 | 0.64 | 0.79| 0.68
Ours (color) 0.82 | 090| 085 | 0.86 | 0.90| 0.87 | 0.62 | 0.84| 0.70
Ours (color+stroke) 0.82 | 0.91| 0.86 | 0.86 | 0.91| 0.88 | 0.64 | 0.82| 0.71
Ours (M) 092 | 095| 093 | 096 | 0.98| 0.97 | 0.87 | 0.95| 0.90

Table 3.2 Pixel-level binarization performance. We compare biraiin techniques with respect to
meanprecision recall andf-score Here “Ours (color)" and “Ours (color+stroke)" refer to fh®posed
iterative graph cut, where only the color and the color#4&rterm is used respectively. “Ours (MI)"

refers to proposed method with manual initialization, aadates an upper bound

311

Figure 3.8 Qualitative illustration of binarization with differentumber of iterations. Here, we have
shown original image and results with four different iteoat: 1, 3, 5 and 8 (from left to right). We

observe that iteration indeed helps in re ning binarizatautput.

our method with classical as well as modern top performing erarization techniques based on the

performance measures presented in Section 3.6.1.

3.7.1 Implementation details

The proposed method is implemented in C++ and it takes al8ston a cropped word image of

size60 180to produce the nal result on a system with 2 GB RAM and Ifitebre’™-2 Duo CPU
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Method ICDAR 2003 ICDAR 2011 (S) Street View Text

whole
background
mixed
fraction
multiple
atom-score
whole
mixed
fraction
multiple
atom-score
whole
backgroun
mixed
fraction
multiple
atom-score

Otsu [118] |0.692.97|0.060.240.020.590.73 1.94/|0.040.210.030.630.42 0.75|0.080.100.060.34
Niblack [115]/0.5014.700.170.740.020.230.5714.770.120.850.020.310.35 6.19(0.150.200.030.16
Sauvola [137]0.37 4.72|0.160.440.010.250.44 5.07/|0.110.630.020.310.26 2.93|0.110.330.020.17
Kittler [76] 0.59 1.34/0.070.190.040.450.65 1.05|0.040.160.040.520.3Q 0.59(0.090.120.050.23
Wolf [170] |0.67 3.77|0.080.320.020.560.68 1.97|0.060.220.030.580.37 1.05(0.120.120.060.28
Kasar [73] ]0.511.65|0.060.340.010.430.38 1.59|0.070.330.000.310.49 3.19(0.080.260.030.41
Milyaev [105]0.36 2.44|0.110.370.020.300.37 1.04|0.110.300.030.300.27 4.87(0.090.180.030.24
Howe [57] ]0.520.34/0.110.180.020.460.55 0.26|0.100.110.030.500.3813.3§0.090.120.040.32
Bilateral [43]]0.62 2.21|0.080.380.020.520.69 2.40|0.040.340.020.600.4Q 5.35(0.090.210.040.31
Ours (color) 0.670.58/0.060.170.030.600.71 0.38|0.030.170.030.650.41 0.75|0.080.080.070.34
Ours (col+str)0.6§ 0.49|0.060.150.030.620.74 0.50|0.040.130.030.670.4Q 0.33|0.080.070.070.34
Ours (MI)  |0.770.20/0.020.130.030.720.86 0.26|0.010.090.020.800.64 0.17|0.030.090.070.60

Table 3.3 Atom-level evaluation. A connected component in the outpiatge is classi ed into one
of six categories. We show the fractions of connected compisnclassi ed asvhole background
mixed fraction, andmultiple Moreover, we also show thetom-score Here “Ours (color)" and “Ours
(col+str)" refer to the proposed iterative graph cut, whenly color based term and color+stroke based
term is used in the energy function. “Ours (MI)" refers togmeed method with manual initialization

of GMMs and indicates an upper bound.

Iteration 1 2 3 4 5 6 7 8 9 10

f-score | 0.85| 0.86| 0.88| 0.89| 0.89| 0.89| 0.90| 0.90| 0.90 | 0.90

Table 3.4 f-scoreon ICDAR 2003-validation set with different iterations

with 2:93 GHz processor system. We will make our implementation piybkvailable on the project
website [2].

For our method we empirically chose number of GMMs5afor both color and stroke based
GMMs), number of graph cut iterations@&and = 2 in (3.4) for all our experiments. We used the stan-
dard public implementations of well-known binarizatiorthieiques, namely Otsu [118], Kittler [76],

Niblack [115] and Sauvola [137] for comparison. Global bipation techniques Otsu [118] and Kit-
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tler [76] are parameter-independent. For local threshgldnethods Niblack [115] and Sauvola [137],
we choose the parameters by cross-validating on a validagbof ICDAR 2003 dataset. For contempo-
rary methods like Kasaat al.[73], Bi-lateral regression [43], Howet al.[57], Milyaev et al.[105] we

use the implementations provided by the authors. Amongethrethods, Kasaat al. [73] is parameter-
independent whereas for the others we use the parametegsettiggested by the corresponding au-
thors. Further, [73] is originally designed for full scemeage, and uses some heuristics on candidate
character bounding box. Considering this we modify theseistics (e.g., the maximum allowed height
for a character candidate bounding box is changed from 80Wnade height to 99% of image size).

This modi cation makes the implementation suitable forpged word images.

Polarity check. Most of the binarization methods in the literature produdetevtext on black back-
ground for images with light text on dark background. Sinaeugd truth typically contains black text
on white ground, hence we perform following simple automailarity check before evaluating the
method. If the average gray pixel value of the middle strip gfven word image is greater than average
gray pixel value of boundary, then we assign reverse pglam., light text on dark background, to it,
and invert the corresponding output image before compatingth the ground truth. Note that our
method produces black text on white background irrespeaifvthe polarity of the word image, and

hence does not require this inversion.

We now provide empirical evidence for choice of various psters, such as, number of iterations,
the GMM initialization method, number of GMMs and weightgs and » in our method. For these
studies we use the validation set of ICDAR 2003 dataset fochwviine pixel level annotations are pro-
vided by [104].

Number of iterations. We re ne the initial strokes and color obtained by our unsuEed automatic
initialization scheme (char-like strokes). This re neménperformed using iterative graph cuts. The
number of iterations is a key parameter here. To illustda¢eré nement of color and stroke with iter-
ation, we conducted a study on the ICDAR 2003-validation ¥é varied the iteration count from 1

to 10, and noted the pixel-levélscoreon this dataset. This result is shown in Table 3.4. We observe
that the pixel-levelf-scoreimproves with iterations and saturates at seven iteratioffe also show
qualitative examples of binarization with different numlbé iteration in Fig. 3.8. We observe that the

iterative re nement using graph cut improves the pixelelevscore and supports our claim that color
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and strokes get re ned with iteration. Based on this study xveumber of iterations to 8 in all our

experiments.

GMM initialization. We initialize GMMs by character-like strokes (see Sectids).3However, in our
method GMMs can be initialized using any binarization mdthdo study the impact of initialization,
we conduct following experiment. We initialize foregrouadd background GMMs from following
best performing binarization methods in literature: Ots1g], Wolf [170] and Howe [57], and study
the word recognition performance on ICDAR 2003-validatset. We also studied the effect of user-
assisted initialization of foreground and background GMM€ge call this initialization technique as
manual initialization (MI). In Fig. 3.9 we show the word reggtion performance of an open source
OCR (Tesseract) on ICDAR 2003-validation set on followimg tsettings: (i) when the above bina-
rization techniques are as such used, and binarized imagdsdto the OCR (blue bars), (ii) when
the above mentioned binarization techniques are used favi@iialization followed by the proposed
iterative graph cut based scheme is used for binarizatiod,tlae output images are fed to the OCR
(red bars). We observe that although initialization isicaitto our method, our proposed binarization
method improves the word recognition performance irrefhgeof the initialization method used. This
is primarily due to the fact that our method iteratively resithe initial seeds over iterations by using
color and stroke cues, and improves the binarization, abdesuently the recognition performance.
Further, our proposed scheme in interactive framework (1ng manual initialization) achieves a very
high recognition performance on this dataset. This shoasttie proposed technique can also prove

handy for user-assisted binarization as in [97, 98].

Other parameters. We x parameters, such as, number of color and stroke GMd)lsgnhd relative
weights between color and edginess terms dnd ), using grid search strategy on ICDAR 2003-
validation set. We vary number of color and stroke GMMs fromo 20 in step of 5, and compute the
validation accuracy (pixel-levdiscore. We observe only small change 0.02) inf-scorefor different
numbers of color and stroke GMM. Based on this study we x nemix color and stroke GMMs as
5 for all our experiments. Further, we use similar stratagychoosing 1 and », and vary these two
parameters from 5 to 50 in step of 5. We compute the pixeltlegeoreon validation set for all these

pairs, and x a value of ; and » as 25 for all our experiments based on this empirical study.
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Figure 3.9 Effect of GMM initialization tech-
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3.7.2 Quantitative evaluation

Pixel-level evaluation. We show these results in Table 3.2 as pixel-level mgaeision recall and
f-scorefor all the images on three datasets. Values of these pesfoztenmeasures vary fro@to 1, and
a high value is desired for a good binarization method. Weasthat the proposed scheme with only
color and color+stroke based terms achieves reasonaliyfisicoreon all the datasets. The classical
method [118] performs better at pixel-level than many of idsgent works, and is comparable to ours

on ICDAR 2003 dataset and poorer on the other two datasets.

Atom-level evaluation. Recall that in this evaluation each connected componeriiénoutput im-
age is classi ed as one of the following categorieghole background fraction, multiple, mixedor
fraction-multiple(see Section 3.6.1). The fractions of these categories tigugabinarization methods
are shown in Table 3.3. We do not shinaction-multiplescores as they are insigni cant for all the bina-
rization techniques. Further, we also evaluate binadmathethods based on téom-score An ideal
binarization algorithm should achieve 1 for theom-scoreand whole category whereas 0 for all the

categories. Note that these measures are considered rabderéhan pixel-level measures [32, 105].

We observe that our method with color only and color+strakeedl terms achieves reasonaditam-
score On ICDAR 2003 and ICDAR 2011 our method achieves rank-1 daseatom-scoreand im-
proves by 3% and 4% respectively with respect to the next ieshod [118]. On SVT our method
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achieves rank-2. Other recent methods [43, 57, 105] althgegform well on a few selected images,

but fall short in comparison, when tested on multiple datase

OCR-level evaluation. OCR results on ICDAR 2003 and ICDAR 2011 datasets are suraethin
Table 3.5. We observe that our method improves the perfazenahopen source OCR by more than
10% on both these dataset. For example, on ICDAR 2003 ddlkesepen source OCR [1] (without any
binarization) achieves word recognition accuracy of 4%98hereas when our binarization is applied
on these image prior to recognition we achieve 56.14%. Qharlzation method with off-the-shelf OCR
improves the performance over Otsu by nearly 5%. Note thHiede results are based on case-sensitive
evaluation, and we do not perform any edit distance basedat@ns. It should also be noted the aim of
this work is obtain clean binary images, and evaluate iatigin methods on this performance measure.
Hence, we dropped recent word recognition methods whiclass/pinarization [66, 108,116, 142], in

this comparison.

3.7.3 Qualitative evaluation

We compare our proposed approach with other binarizatidhads in Fig. 3.10. Sample of images
with uneven lighting, hardly distinguishable foregrousatzkground colors, noisy foreground colors,
are shown in this gure. We observe that our approach proslatearly readable binary images with
lesser noise compared to [43, 105]. The global thresholdiethod [118] performs reasonably well
for some examples but unpredictably fails in cases of higlatrans in text intensities (e.g., rows 2-3,

7-10). Our method is successful even in such cases and @m®diean binary images.

3.7.4 Video text and handwritten images

For video text images we qualitatively evaluate binar@atnethods on all the images in the CVSI
dataset [9]. A few selected examples of our results on thesda are shown in Fig. 3.11. Despite very
low-resolution images, performance of our method is eraging on this dataset. Since our method
uses general text cues like color and strokes, which argerdent of languages, it easily generalizes
to multiple languages. It should be noted that this is an eragpng step for processing Indian language
scene or video text. We have also performed OCR evaluatiam dmdian language Telugu. Speci cally,
we run Tesseract OCR trained on Telugu language on word srai@ to binarization as well as after

our binarization. These results are shown in Figure 3.12. Telugu language OCR is more sensitive to
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Figure 3.10 Comparison of binarization results. From left to right: uhpmage, Otsu [118], Wolf

and Doerman [170], Kasaat al. [73], Milyaev et al. [105], bilateral regression [43], Howe [57] and
our method which uses color and stroke cues. Other clagsichhiques [76, 115, 137] are not very

successful on these images.
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Method ICDAR 2003 ICDAR 2011
TesseradgtABBY Y TesseractABBYY

No Binarization¥ 47.93 | 46.51| 47.94 | 46.00
Otsu [118] 51.71 | 49.10| 55.92 | 53.99
Kittler [76] 4455 | 43.25| 48.84 | 48.61
Sauvola [137] 19.73 | 17.60| 26.24 | 26.32
Niblack [115] 15.59 | 14.45| 22.20 | 21.27

Kasar [73] 33.78 | 32.75| 12.95 | 12.11
Wolf [170] 46.52 | 44.90| 50.04 | 48.78
Milyaev [105] 22.70 | 21.87| 22.07 | 22.54
Howe [57] 42.88 | 41.50| 43.99 | 41.04
Bilateral [43] 50.99 | 47.35| 45.16 | 43.06
Ours (color) 52.25 | 49.81| 59.97 | 55.00

Ours (col+str) 56.14 | 52.97| 62.57 | 58.11

Table 3.5 Word recognition accuracy (in %): open vocabulary settiRgsults shown here are case
sensitive, and without minimum edit distance based camect* No binarization implies that color

images are used directly to respective OCR systems.

small errors in binarization due to many similar characterdmatras We observe that our binarization
generally has positive impact on the OCR result. Howeves, itha preliminary experiment towards
Indian language OCR. A mare comprehensive study on mullil&n languages is an exciting future

direction of our work.

We also evaluated on handwritten images of HDIBCO 2012 [&d, @mpare it with other methods
for this task. Quantitative results on HDIBCO 2012 datasetsmmmarized in Table 3.6. We observe
that our proposed method outperforms modern and classieiization methods, and is comparable to
the H-DIBCO 2012 competition winner [57]. Moreover, we asl@ noticeable improvement by using
stroke based term on this dataset, which shows the impeartahstroke based terms on handwritten
images. We show qualitative results for couple of exampidsig. 3.13. We observe that despite ink
bleed and high variations in pixel intensities and strokesmethod produces clean binary result. The

signi cance of stroke based terms is also clear on these phkan
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Figure 3.11 A few results on the CVSI dataset. m
We show results on images (left to right) with De- m

vanagari, Telugu, Oriya and Guijarati scripts. Since

our method does not use any language speci ¢ |n- ae«
formation, it is applicable to this dataset containing

10 different scripts used in India.

Figure 3.12 We run Tesseract OCR trained on
Telugu language on word images prior to binariza-
tion as well as after our binarization. The OCR out-
put is shown on the top-right corner of each image.
The red color text indicates incorrect output. In-
dian languages are more senstive to small error in
binarization due to similar looking characters and

matras

3.8 Summary

In this work we proposed a novel binarization technique, eochpared it with the state of the
art. Many existing methods have restricted their focus talsiatasets containing only few im-
ages [43,57,105, 106]. They show impressive performandhase selective datasets, but this does not
necessarily generalize to the larger and wide variety aistdas we consider in this work. Our method
consistently performs well on all the datasets on varioufopmance measures as we do not make any
assumptions speci ¢ to images. We also compare recogniéisults on two public benchmarks ICDAR
2003 and ICDAR 2011, where the utility of our work is more @ntl The proposed method integrated
with an open source OCR [1] clearly outperforms other braion techniques (see Table 3.5). On a

dataset of video text images of multiple scripts, our resaie promising, and on a benchmark dataset
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Method f-score
Otsu [118] 0.75
Kittler [76] 0.71
Sauvola [137] 0.14
Niblack [115] 0.19
Kasar [73] 0.74
Wolf [170] 0.78
Milyaev [105] 0.84
Howe [57] 0.89
Ours (Color) 0.84
Ours (Color+Stroke) 0.90

Table 3.6 Results on handwritten images from H-DIBCO 2012.

(a) Input image (b) Our result: only color (c) Our result: col+str

(d) Input image (e) Our result: only color (f) Our result: col+str

Figure 3.13 Sample images from HDIBCO 2012 dataset. (a) Input imagereswlts of our binariza-
tion technique: (b) with only color based term, (c) with godmd stroke based terms. We observe that

the color+stroke based term shows signi cant improvemert golor only term.

of handwritten images we achieve pixel-leyeécisiorrecall/f-score of 0.85/0.95/0.90 which is com-

parable to the state of the art [57].

Comparison with other energy minimization based methods A few binarization techniques in the

literature are based on an energy minimization framewa8k43, 105, 120, 170]. Our method also falls
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Figure 3.14 A few example where ' day. MD

the binarization result is over- -n

smoothed. (@) Input images (b) Output images

in this category, but differs signi cantly in the energy foulation and minimization technique used. We
compare our method experimentally with [57,105, 170] inldat8.2, 3.3 and 3.5. Two other energy
minimization based methods [83, 120] were dropped for expartal comparison due to unavailability
of their implementation. Our method consistently outperfe these approaches on all the datasets. The
robustness of our method can be attributed to the propossatiite graph cut based algorithm which

minimizes an energy function composed of color and strolsethéerms.

Further improvements. Oversmoothing, one of the limitations of our method is promeed in the
case of low resolution images where inter-character gagshates within characters like “e', "a' are
only a few pixels (say 3-4 pixels). In such cases our methoologhs these regions. A few such exam-
ple images, where our method suffers from oversmoothirggshown in Figure 3.14. Such limitations
are not new to the optimization community, and advance igales like cooperative graph cuts [68]
can be explored in this context in the future. Moreover, ay@utomatic initialization is sometime
hard to recover from. A better initialization or image ent@ment technique can further improve our
performance.

To sum up, we have proposed a general and principled frankefiaothe text binarization problem.
Our method can be applied to a wide variety of text imagedydicg handwritten documents), and is
computationally ef cient. However, the success of this noet is restricted to high contrast, roughly
frontal, nearly uniform background scene text images. Bupcoming chapters, we propose more
effective recognition methods which are applicable to leimging scene text images captured in the

wild.
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Chapter 4

Cropped Word Recognition: Integrating Top-Down and Bottom-Up Cues

Recognizing scene text is a challenging problem, even morénan the recognition of scanned
documents. This problem has gained signi cant attentiammfrthe computer vision community in
recent years, and several methods based on energy mirioniZeameworks and deep learning ap-
proaches have been proposed. In this chapter, we presesteéhgy minimization framework for scene
text recognition and propose a model that exploits bothobotip and top-down cues for recognizing
cropped words extracted from street images. The bottomdap are derived from individual character
detections from an image. We build a conditional random elddel on these detections to jointly
model the strength of the detections and the interactiotvgdas them. These interactions are top-down
cues obtained from a lexicon-based prior, i.e., languagissts. The optimal word represented by the
text image is obtained by minimizing the energy functiorresponding to the random eld model. We
evaluate our proposed algorithm extensively on a numberagped scene text benchmark datasets,
namely street view text, ICDAR 2003, 2011 and 2013 datasetd, IlIT 5K-word, and show better
performance than comparable methods. We perform a rige@noalysis of all the steps in our approach
and analyze the results. We also show that state of the arblkemional neural network features can be

integrated in our framework to further improve the recagnitperformance.

4.1 Introduction

The problem of understanding scenes semantically has lmeeof the challenging goals in computer
vision for many decades. It has gained considerable attewtier the past few years, in particular, in
the context of street scenes [28, 48, 89]. This problem hasfested itself in various forms, namely

object detection [37,45], object recognition and segntemtd93,145]. There have also been signi cant

53



Figure 4.1 A typical street scene image taken from Google Street Viewomtains very prominent

sign boards with text on the building and its windows. It at&mtains objects such as car, person,
tree, and regions such as road, sky. Many scene undergganiithods recognize these objects and
regions in the image successfully, but overlook the texthensign board, which contains rich, useful

information. The goal of this work is to address this gap idenstanding scenes.

attempts at addressing all these tasks jointly [52, 89,.1&Rhough these approaches interpret most of
the scene successfully, regions containing text are aseel As an example, consider an image of a
typical street scene taken from Google Street View in Fify. @ne of the rst things we notice in this
scene is the sign board and the text it contains. Howeveglpopacognition methods ignore the text,
and identify other objects such as car, person, tree, amsh®guch as road, sky. The importance of text
in images is also highlighted in the experimental study catetl by Judcet al. [69]. They found that
viewers xate on text when shown images containing text atietioobjects. This is further evidence

that text recognition forms a useful component in undeditanscenes.
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In addition to being an important component of scene undeditg, scene text recognition has many
potential applications, such as image retrieval, autogadiin, scene text to speech systems, developing
apps for visually impaired people [109, 112]. Our methoddolving this task is inspired by the many
advancements made in the object detection and recognitmbsigms [35, 37, 45, 145]. We present a
framework for recognizing text that exploits bottom-up dog-down cues. The bottom-up cues are
derived from individual character detections from an imayaturally, these windows contain true as
well as false positive detections of characters. We buildraditional random eld (CRF) model [90]
on these detections to determine not only the true positeations, but also the word they represent
jointly. We impose top-down cues obtained from a lexicosdahprior, i.e., language statistics, on the

model. In addition to disambiguating between charactais,grior also helps us in recognizing words.

The rst contribution of this work is a joint framework wittesamless integration of multiple cues—
individual character detections and their spatial arrereggs, pairwise lexicon priors, and higher-order
priors—into a CRF framework which can be optimized effeaijly The proposed method performs sig-
ni cantly better than other related energy minimizatiorsbd methods for scene text recognition. Our
second contribution is devising a recognition frameworkolths applicable not only to closed vocab-
ulary text recognition (where a small lexicon containing tiround truth word is provided with each
image), but also to a more general setting of the problem,dpmen vocabulary scene text recognition
(where the ground truth word may or may not belong to a gerarge lexicon or the English dic-
tionary). The third contribution is comprehensive expenmal evaluation, in contrast to many recent
works, which either consider a subset of benchmark datasedse limited to the closed vocabulary
setting. We evaluate on a number of datasets (ICDAR 2003] 20d 2013 [3], SVT [4], and IlIT
5K-word [107]) and show results in closed and open vocabdattings. Additionally, we analyzed the
effectiveness of individual components of the framewohle ih uence of parameter settings, and the

use of convolutional neural network (CNN) based featuré$. [6

The remainder of this chapter is organized as follows. 8Seecti2 describes our scene text recog-
nition model and its components. We then present the evafuptotocols and the datasets used in
experimental analysis in Section 4.3. Comparison withteelapproaches is shown in Section 5.3,

along with implementation details. We then make concludergarks in Section 4.6.
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4.2 The recognition model

We propose a conditional random eld (CRF) model for recagrg words. The CRF is de ned
over a set oN random variables = fx;ji 2 Vg, whereV = f1;2;:::;Ng. Each random variabbe;
denotes a potential character in the word, and can take Eftabethe label set. = flq;l5;:: 0 lkg[
which is the set of English characters, digits and a nullllathe discard false character detections. The
most likely word represented by the set of characteis found by minimizing the energy function,
E : L" ! R, corresponding to the random eld. The energy functi®rcan be written as sum of

potential functions:

X
E(x) = c(Xe); 4.1)
c2C

whereC P (V), with P(V) denoting the powerset &f. Eachx. de nes a set of random variables
included in subset, referred to as a clique. The function de nes a constraint (potential) on the
corresponding cliqgue. We use unary, pairwise and higher order potentials in tbikyand de ne them

in Section 4.2.2. The set of potential characters is obthinyethe character detection step discussed in
Section 4.2.1. The neighbourhood relations among chasacteodelled as pairwise and higher order

potentials, are based on the spatial arrangement of ckesantthe word image.

4.2.1 Character detection

The rst step in our approach is to detect potential locatiof characters in a word image. In this
work we use a sliding window based approach for detectingachers, but other methods, e.g., [171],
can also be used instead.

Sliding window detection. This technique has been very successful for tasks suchaas[1&3] and
pedestrian [35] detection, and also for recognizing haittearwords using HMM based methods [20].
Although character detection in scene images is similauth problems, it has its unique challenges.
Firstly, there is the issue of dealing with many categor&i all) jointly. Secondly, there is a large
amount of inter-character and intra-character confusamillustrated in Fig. 1.2. When a window
contains parts of two characters next to each other, it mag havery similar appearance to another
character. In Fig. 1.2(a), the window containing parts ef tharacterso' can be confused withx".
Furthermore, a part of one character can have the same appeas that of another. In Fig. 1.2(b), a
part of the character "B' can be confused with "E'. We buildbust character classi er and adopt an

additional pruning stage to overcome these issues.
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Figure 4.2 Distribution of aspect ratios of few digits and charactéa3:0 (b) 2 (c) B (d) Y. The aspect

ratios are computed on character from the IlIT-5K word frairset.

The problem of classifying natural scene characters tiipisaffers from the lack of training data,
e.g., [36] uses only 15 samples per class. It is not triviaintedel the large variations in characters
using only a few examples. To address this, we add more exantpthe training set by applying small
af ne transformations [110, 146] to the original charadteages. We further enrich the training set by
adding many non-character negative examples, i.e., frerbdlckground. With this strategy, we achieve

a signi cant boost in character classi cation accuracye(3able 4.2).

We consider windows at multiple scales and spatial locatiorhe location of theth window, d;,

for the set of English characters, digits and a backgrouassc{null label) in our work. Let; denote
the features extracted from a window locatign Given the windowd;, we compute the likelihood,
p(cj i), of it taking a label; for all the classes iiK. In our implementation, we used explicit feature
representation [161] of histogram of gradient (HOG) fee¢uf35] for ;, and the likelihoodg are
(normalized) scores from a one vs rest multi-class suppectov machine (SVM). Implementation

details of the training procedure are provided in Sectidnl4.

This basic sliding window detection approach produces npartgntial character windows, but not
all of them are useful for recognizing words. We discard soffitee weak detection windows using the

following pruning method.

Pruning windows. For every potential character window, we compute a scorecas: (i) SVM
classi er con dence, and (ii) a measure of the aspect ratithe character detected and the aspect ratio
learnt for that character from training data. The intuitimehind this score is that, a strong character
window candidate should have a high classi er con dencerescand must fall within some range of

the sizes observed in the training data. In order to de nea$gect ratio measure, we observed the
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Figure 4.3 The proposed model illustrated as a graph. Given a word in&tgmvn on the left), we
evaluate character detectors and obtain potential cleraghdows, which are then represented in a
graph. These nodes are connected with edges based on it ppsitioning. Each node can take a
label from the label set containing English charactersitsignd a null label (to suppress false detec-
tions). To integrate language models, iregrams, into the graph, we add auxiliary nodes (shown in
red), which constrain several character windows togetbets (0f4 characters in this example). Auxil-
iary nodes take labels from a label set containing all valiglEh n-grams and an additional label to

enforce high cost for an invalid-gram.

distribution of aspect ratios of characters from the IIK4word training set. A few examples of these
distributions are shown in Fig. 4.2. Since they follow a Gzaus distribution, we chose this score
accordingly. For a windowd; with an aspect ratia;, letc; denote the character with the best classi er
con dence value given by . The mean aspect ratio for the charagiecomputed from training data

is denoted by 5 . We de ne a goodness score (GS) for the windivas:
!
( g ai)2 .
22 '

g

Gadi) = Sij exp (4-2)

where 4 is the variance of the aspect ratio for characfein the training data. A low goodness score
indicates a weak detection, which is then removed from thefseandidate character windows.

We then apply character-speci ¢ non-maximum suppresdNM$), similar to other sliding window
detection methods [45], to address the issue of multiplelapping detections for each instance of a
character. In other words, for every character class, wersdetections which have a high con dence
score, and do not overlap signi cantly with any of the othe#psger detections of the same character
class. We perform NMS after aspect ratio pruning to avoidewidndows with many characters sup-

pressing weaker single character windows they overlap viittle pruning and NMS steps are performed
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conservatively, to discard only the obvious false detestid he remaining false positives are modelled

in an energy minimization framework with language priord ather cues, as discussed below.

4.2.2 Graph construction and energy formulation

We solve the problem of minimizing the energy function (daf)a corresponding graph, where each
random variable is represented as a node in the graph. We bggirdering the character windows
based on their horizontal location in the image, and add adke ®ach for every window sequentially
from left to right. The nodes are then connected by edgesceSinis not natural for a window on
the extreme left to be strongly related to another windowlanextreme right, we only connect win-
dows which are close to each other. The intuition behindesfm®ximity windows is that they could
represent detections of two separate characters. As weedllater, the edges are used to encode the
language model as top-down cues. Such pairwise languages @lone may not be suf cient in some
cases, for example, when an image-speci c lexicon is uthavi@. Thus, we also integrate higher order
language priors in the form af-grams computed from the English dictionary by adding ariliznyg

node connecting a set afcharacter detection nodes.

Recall that each, is an English character or digit, and the null labé& used to discard false windows
that represent background or parts of characters. The sestiated with this label assignment is known
as the unary cost. The cost for two neighbouring nodes tdkimglsl,, andl, is known as the pairwise
cost. This cost is computed from bigram scores of charaeties ;n the English dictionary or an image-
speci ¢ lexicon. The auxiliary nodes in the graph take labgbm the extended label skt. Each
element ofL ¢ represents one of the-grams present in the dictionary and an additional labeksign

a constant (high) cost to all-grams that are not in the dictionary. The proposed moddlistiated in
Fig. 4.3, where we show a CRF of order four as an example. Gwcgraph is constructed, we compute

its corresponding cost functions as follows.

4.2.2.1 Unary cost

The unary cost of a node taking a character label is detethiigghe SVM con dence scores. The

unary term 1, which denotes the cost of a norletaking labell,, is de ned as:

1xi = 1) =1 p(lujxi); (4.3)
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wherep(lyjxi) is the SVM score of character cldgsfor nodex;, normalized with Platt's method [123].

The cost oix; taking the null label is given by:

2
Wi = )= max plupx)ep L B (@.)

Ay
wherea; is the aspect ratio of the window corresponding to nede 5, and 5, are the mean and
variance of the aspect ratio respectively of the chardgtecomputed from the training data. The
intuition behind this cost function is that, for taking a cheter label, the detected window should have
a high classi er con dence and its aspect ratio should agvéb that of the corresponding character in

the training data.

4.2.2.2 Pairwise cost

The pairwise cost of two neighbouring nodgsandx; taking a pair of labels, andl, respectively

is determined by the cost of their joint occurrence in theidiary. This cost , is given by:

2Xi = lusxp = )= rexp( p (lu;lv)); (4.5)

wherep(ly;ly) is the score determining the likelihood of the phkirandl, occurring together in the
dictionary. The parameterg and are set empirically as; = 2 and = 50 in all our experiments.
The scorep(ly;ly) is commonly computed from joint occurrences of charactetfié lexicon [38, 39,
150, 155]. This prior is effective when the lexicon size isafipbut it is less so as the lexicon increases
in size. Furthermore, it fails to capture the location-sgeinformation of pairs of characters. As a
toy example, consider a lexicon with only two words CVPR a@8IR. Here, the character pair (P,R) is
more likely to occur at the end of the word, but a standardanigprior model does not incorporate this
location-speci ¢ information.

To overcome the lack of location-speci ¢ information, wevid® a node-speci ¢ pairwise cost by
adapting [131] to the scene text recognition problem. Waldieach lexicon word intd parts, where
T is computed as word image width divided by average charadgtetow width. We then use only the
rst 1=Tth of the word for computing the pairwise cost between thaaihnodes, similarly the next
1=Tth for computing the cost between the next few nodes, and sdnoother words, we do a region
of interest (ROI) based search in the lexicon. The ROI isrd@teed based on the spatial position of a
detected window in the word, e.g., if two windows are on tlierfeost side then only the rst couple of

characters of lexicons are considered for calculating #ieyse term between windows. This pairwise
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cost using the node-speci ¢ prior is given by:
8

< : .
0 if (Iy;ly) 2 ROI,
2(Xi = luixj = ) = o (4.6)
: | otherwise

We evaluated our approach with both the pairwise terms éh8)4.6), and found that the node-speci ¢
prior (4.6) achieves better performance. The cost of nagemdx; taking labell, and respectively

is de ned as:

2xi = lux;p = )= oexp( (1 Oxi;xj)?); @.7)

whereO(Xi; X; ) is the overlap fraction between windows corresponding ¢éortbdesx; andx;. The
pairwise cost »(x; = ;X = l) is de ned similarly. The parameters are set empirically as 2 and
= 50 in our experiments. This cost ensures that when two charadtelows overlap signi cantly,

only of one them is assigned a character/digit label, inmt@avoid parts of characters being labelled.

4.2.2.3 Higher order cost

Let us consider a CRF of order = 3 as an example to understand this cost. An auxiliary node
corresponding to every clique of sidés added to represent this third order cost in the graph. dglesh

order cost is then decomposed into unary and pairwise telithg@gpect to this node, similar to [135].

Lwm+1, Where labeld 1 ::: Ly represent all the trigrams in the dictionary. The additidabel Ly +1
denotes all those trigrams which are absent in the dictjoridre unary cost £ for an auxiliary variable
y;i taking labelL , is:

iyi=Lm)= aexp( P (Lm)); (4.8)

where ,is a constant. We set, = 5 empirically, in all our experiments, unless stated othsewiThe
parameter controls penalty between dictionary and non-dictionargrams, and is empirically set to
50. The scoreP (L) denotes the likelihood of trigram, in the English, and is further described in
Section 4.2.2.4. The pairwise cost between the auxiliadernyp taking a labelL,, = I lylw and the

left-most non-auxiliary node in the clique;, taking a label, is given by:

8
§ 0 ifr=u
S(Ovi=Lm;xi=1l)=_ 0 ifl = (4.9)
b otherwise
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where p, penalizes a disagreement between the auxiliary and natisayxodes, and is empirically set
to 1. The other two pairwise terms for the second and third noded@ned similarly. Note that when
one or morex;'s take null label, the corresponding pairwise term(s) teetmx;(s) and the auxiliary

node are set t0.

Example. For a word to be recognized as “OPEN” the following energycfion should be the mini-

mum.

(O;P;E;N) = 1(O)+ 1(P)+ 1(E)+ 1(N)+ 2(0;P)+ 2(P;E)+ 2(E;N)+
3(O;P;E)+ 3(P;E;N):

(4.10)

The third order terms 3(O; P; E) and 3(P;E; N ) are decomposed as follows.
3(O;P;E)= §{(OPE)+ 3(OPE;O)+ 35(OPE;P)+ 3(OPE;E): (4.11)
3(P;E;N)= Z(PEN)+ S(PEN;P)+ 3(PEN;E)+ 35(PEN;N): (4.12)

4.2.2.4 Computing language priors

We computen-gram based priors from the lexicon (or dictionary) and théapt standard techniques
for smoothing these scores [51, 74, 155] to the open andd&hseabulary cases.

Our method uses the score denoting the likelihood of joimuaence of pair of labelg, andl,
represented aB(ly;ly), triplets of labeld,, I, andl,, denoted byP(l,;ly;lw) and even higher order
(e.g., fourth order). Le€(l,) denote the number of occurrenced gfC(ly; 1) be the number of joint
occurrences df, andl, next to each other, and similar/(l,; ly; lw) is the number of joint occurrences
of all three labeld; ly; lw next to each other. The smoothed scores Fd],;1,) andP (Iy;ly; 1) are

now: 8
5 0:4 if 1y;1y are digits
P(lu;lv) = : Clolv) jf C(lyily) > O; (4.13)

Cc(v)
1, P(ly) otherwise

0:4 if 1y;1ly;lw are digits
C(lu;lv;lw) : . .
=usvaw) if C(ly;lv;lw) > 0O;
P(lu;lyslw) = C0v) (uilvilw) (4.14)

1, P(v;lw) elseifC(ly;lv) > 0;

W AR 0

1., P(lw)  otherwise
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Training Set Test Set

# words # charactersABBYY9.0(%)|# words # charactersABBYY9.0(%)
Easy] 658 - 44.98 734 - 44.96
Hard| 1342 - 16.57 2266 - 5.00
Total| 2000 9658 20.25 3000 15269 14.60

Table 4.1 Our IlIT 5K-word dataset contains a few less challengings§ga@and many very challenging
(Hard) images. To present analysis of the dataset, we nlgrdigided the words in the training and
test sets inteasyandhard categories based on their visual appearance. The reanyaiticuracy of a

state of the art commercial OCR — ABBYY9.0 — for this datasetliown in the last column. Here we

also show the total number of characters, whose annotadi@nalso provided, in the dataset.

Image-speci ¢ lexicons (small or medium) are used in thesetbvocabulary setting, while in the open
vocabulary case we use a lexicon containing half a milliondsg¢henceforth referred to as large lexicon)

provided by [169] to compute these scores. The parameternd |, ., are learnt on the large lexicon

v

using SRILM toolboxt They determine the low score values fegrams not present in the lexicon. We

assign a constant valué:4) when the labels are digits, which do not occur in the larget.

4.2.2.5 Inference

Having computed the unary, pairwise and higher order tewagjse the sequential tree-reweighted
message passing (TRW-S) algorithm [79] to minimize the gghdunction. The TRW-S algorithm
maximizes a concave lower bound of the energy. It begins hgidering a set of trees from the random
eld, and computes probability distributions over eacletr&hese distributions are then used to reweight
the messages being passed during loopy belief propagdtl®j n each tree. The algorithm terminates
when the lower bound cannot be increased further, or the rmaxi number of iterations has been

reached.

In summary, given an image containing a word, we: (i) lochte fiotential characters in it with a
character detection scheme, (ii) de ne a random eld ovétladse potential characters, (iii) compute
the language priors and integrate them into the random ebdl@h and then (iv) infer the most likely

word by minimizing the energy function corresponding to tiiedom eld.

Available at:http://www.speech.sri.com/projects/srilm/
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4.3 Datasets and evaluation protocols

Several public benchmark datasets for scene text unddistahave been released in recent years.
ICDAR [3] and street view text (SVT) [4] datasets are two df thitial datasets for this problem. They
both contain data for text localization, cropped word rettgn and isolated character recognition
tasks. In this chapter we use the cropped word recognitiohffman these datasets. Although these
datasets have served well in building interest in the saexaihderstanding problem, they are limited by
their size of a few hundred images. To address this issuejtweluced the 11T 5K-word dataset [107],
containing a diverse set of 5000 words. Here, we provideldetball these datasets and the evaluation

protocol.

SVT. The street view text (SVT) dataset contains images takem fBmogle Street View. As noted
in [165], most of the images come from business signage ahibiexa high degree of variability in
appearance and resolution. The dataset is divided into §Tand SVT-word, meant for the tasks of
locating and recognizing words respectively. We use the-8did dataset, which contains 647 word

images.

Our basic unit of recognition is a character, which needstimbalized before classi cation. Failing
to detect characters will result in poorer word recognitioraking it a critical component of our frame-
work. To quantitatively measure the accuracy of the charafgtection module, we created ground truth
data for characters in the SVT-word dataset. This grourtti ttataset contains around 4000 characters

of 52 classes, and is referred to as as SVT-char, which isaeaifor download [2].

ICDAR 2003 dataset.The ICDAR 2003 dataset was originally created for text deiaccropped char-
acter classi cation, cropped and full image word recogmitiand other tasks in document analysis [3].
We used the part corresponding to the cropped word recogritilled robust word recognition. Fol-
lowing the protocol of [164], we ignore words with less tharotcharacters or with non-alphanumeric
characters, which results in 859 words overall. For submetydiscussion we refer to this dataset as
ICDAR(50) for the image-speci ¢ lexicon-driven case (@dsvocabulary), and ICDAR 2003 when this

lexicon is unavailable (open vocabulary case).

ICDAR 2011/2013 datasets. These datasets were introduced as part of the ICDAR robasiinmg
competitions [72, 140]. They contain 1189 and 1095 word iesagspectively. We show case-sensitive

open vocabulary results on both these datasets. Alsowioidpthe ICDAR competition evaluation
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protocol, we do not exclude words containing special cliaragsuch as &, :), and report results on the

entire dataset.

IIT 5K-word dataset. The IlIT 5K-word dataset [2, 107] contains both scene text barn-digital
images. Born-digital images—category of images which resegl interest in ICDAR 2011 compe-
titions [140]—are inherently low-resolution, made for io®l transmission, and have a variety of font
sizes and styles. This dataset is not only much larger thah&W the ICDAR datasets, but also more
challenging. All the images were harvested through Goaghkege search. Query words like billboard,
signboard, house number, house name plate, movie posterused to collect images. The text in the
images was manually annotated with bounding boxes anddbgiesponding ground truth words. The
IIIT 5K-word dataset contains in all 1120 scene images ariD5@ord images. We split it into a train-
ing set of 380 scene images and 2000 word images, and a tedt&H scene images and 3000 word
images. To analyze the dif culty of the IlIT 5K-word datasete manually divided the words in the
training and test sets inwasyandhard categories based on their visual appearance. Table 4.1sshow
these splits in detail. We observe that a commercial OCRopad poorly on both the train and test
splits. Furthermore, to evaluate components like charatdtection and recognition, we also provide
annotated character bounding boxes. It should be notedtband 22% of the words in this dataset are
not in the English dictionary, e.g., proper nouns, housebwrs) alphanumeric words. This makes this
dataset suitable for open vocabulary cropped word redognitWe show an analysis of dictionary and

non-dictionary words in Table 4.6.

Evaluation protocol. We evaluate the word recognition accuracy in two settindesed and open
vocabulary. Following previous work [107,142, 164], welegde case-insensitive word recognition on
SVT, ICDAR 2003, llIT 5K-word, and case-sensitive word rgaition on ICDAR 2011 and ICDAR
2013. For the closed vocabulary recognition case, we parfominimum edit distance correction,
since the ground truth word belongs to the image-speci éclax. On the other hand, in the case of
open vocabulary recognition, where the ground truth worg ortanay not belong to the large lexicon,
we do not perform edit distance based correction. We perfoany of our analyses on the IlIT 5K-
word dataset, unless otherwise stated, since it is thedadgaset for this task, and also comes with

character bounding box annotations.
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Method SVT|ICDAR |c74K|IIIT 5K | Time
Exempler SVM [141] - 71 - - -
Elagouniet al. [38] - 70 - - -
Coateset al. [33] - 82 - - -
FERNS [164] - | 52 | 47| - -
RBF [108] 62 62 64 61 3ms
MKL+RBF [36] - - 57 - |11ms
H-36+AT+Linear 69 73 68 66 | 2ms
H-31+AT+Linear 64 73 67 63 |1.8mg
H-13+AT+Linear 65| 72 66 64 10.8ms
H-36+AT+Linear (Cl) 75 77 79 75 |0.8mg
CNN feat+classi er [66] (CI) 83 86 85 | 1ms

Table 4.2 Character classi cation accuracy (in %). A smart choiceeaatfires, training examples and
classi er is key to improving character classi cation. Werich the training set by including many af ne
transformed (AT) versions of the original training datanfr@tCDAR and Chars74K (c74k). The three
variants of our approach (H-13, H-31 and H-36) show notiteahprovement over several methods.
The character classi cation results shown here are casitsen(all rows except the last two). Itis to be
noted that [36] only uses 15 training samples per class. d$tedwo rows show a case insensitive (CI)
evaluation. We do not evaluate the convolutional neural network clasgdin [66] (CNN feat+classi er)

on the c74K dataset, since the entire dataset was usedrtahteanetwork.

4.4 Experiments

Given an image region containing text, cropped from a sgegee, our task is to recognize the word
it contains. In the process, we develop several componsnth (as a character recognizer) and also
evaluate them to justify our choices. The proposed metheddkiated in two settings, namely, closed
vocabulary (with an image-speci ¢ lexicon) and open vodabu(using an English dictionary for the

language model). We compare our results with the best4penfig recent methods for these two cases.
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4.4.1 Character classier

We use the training sets of ICDAR 2003 character [3] and G4 36] datasets to train the char-
acter classi ers. This training set is augmented wigh 48 patches harvested from scene images, with
buildings, sky, road and cars, which do not contain text,dat@nal negative training examples. We
then apply af ne transformations to all the character inggesize them td8 48, and compute HOG
features. Three variations (13, 31 and 36-dimensional)@@Hvere analyzed (see Table 4.2). We then
use an explicit feature map [161] and thé kernel to learn the SVM classi er. The SVM parameters
are estimated by cross-validating on a validation set. Kpéait feature map not only allows a signi -
cant reduction in classi cation time, compared to non-#in&ernels like RBF, but also achieves a good

performance.

The two main differences from our previous work [108] in thesigin of the character classi er
are: (i) enriching the training set, and (ii) using an explieature map and a linear kernel (instead of
RBF). Table 4.2 compares our character classi cation parémce with [33, 36, 38, 108, 141, 164] on
several test sets. Note that we achieve at least 4% improweswer our previous work (RBF [108]) on
all the datasets, and also perform better than [36, 164]. M/@lao comparable to a few other recent
methods [38,141], which show a limited evaluation on the AR2003 dataset. Following an evaluation
insensitive to case (as done in a few benchmarks, e.g.,4@$, we obtain 77% on ICDAR 2003, 75%
on SVT-char, 79% on Chars74K, and 75% on IlIT 5K-word. It dddoe noted that feature learning
methods based on convolutional neural networks, e.g.6(3show an excellent performance. This
inspired us to integrate them into our framework. We usedigylavailable features [66]. This will be
further discussed in Section 4.4.3. We could not compark other related recent methods [22, 167]

since they did not report isolated character classi caicauracy.

In terms of computation time, linear SVMs trained with HOGfkatures outperform others, but
since our main focus is on word recognition performance, s&ethe most accurate combination, i.e.,
linear SVMs with HOG-36. We observed that this smart sebectif training data and features not only
improves character recognition accuracy but also imprelressecond and third best predictions for

characters.
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4.4.2 Character detection

Sliding window based character detection is an importampmnent of our framework, since our
random eld model is de ned on these detections. At everygige location of the sliding window,
we evaluate a character classi er. This provides the lil@d of the window containing the respective
character. We pruned some of the windows based on their tasgter; and then used the goodness
measure (4.2) to discard the windows with a score lessQHafrefer Section 4.2.1). Character-speci ¢
NMS is done on the remaining windows with an overlap threstodld0%, i.e., if two detections have
more than 40% overlap and represent the same characterwhkassippress the weaker detection. We
evaluated the character detection results with the intogeover union measure and a threshold of
50%, following ICDAR 2003 [3] and PASCAL-VOC [41] evaluatigorotocol. Our sliding window ap-
proach achieves recall of 80% on the IlIT 5K-word datasghisiantly better than using a binarization

scheme for detecting characters (see Table 4.7 and Sedtiah).4

4.4.3 Word Recognition

Closed vocabulary recognitionThe results of the proposed CRF model in closed vocabuldtinge
are presented in Table 4.3. We compare our method with mamntrevorks for this task. To com-
pute the language priors we use lexicons provided by authfdiE64] for SVT and ICDAR(50). The
image-speci ¢ lexicon for every word in the IlIT 5K-word detet was developed following the method
described in [164]. These lexicons contain the ground twdld and a set of distractors obtained from
randomly chosen words (from all the ground truth words indhtaset). We used a CRF with higher
order term (=4), and similar to other approaches, applied edit disthased correction after inference.
The constant 5 in (4.8) to 1, given the small size of the lexicon.

The gain in accuracy over our previous work [108], seen inddt8, can be attributed to the higher
order CRF and an improved character classi er. The charadsssi er uses: (i) enriched training
data, and (ii) an explicit feature map, to achieve about 5% ¢mee Section 4.4.1 for details). Other
methods, in particular, our previous work on holistic woatagnition [50], label embedding [132]
achieve a reasonably good performance, but are restriotdtetclosed vocabulary setting, and their
extension to more general settings, such as the open vecgledse, is unclear. Methods published
since our original work [108], such as [142, 167], also perfavell. Very recently, methods based on

convolutional neural networks [22, 66] have shown very iesgive results for this problem. It should
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Method ICDAR 2003 (50) SVT IT-5K (small)

Baselines
ABBYY 56.04 35.00 24.50
(CSER+tesseract) [60] 57.27 37.71 33.07
Novikovaet al. [116] 82.80 72.90 -
Our Holistic recognition [50] 89.69 77.28 75.00
Rodriguez & Perronnin [132] - - 76.10

Deep learning approaches

Wanget al. [166] 90.00 70.00 -

Deep features [66] 96.20 86.10 -

PhotoOCR [22] - 90.39 -
Other energy min. approaches

PLEX [164] 72.00 57.00 -

Shiet al.[142] 87.04 73.51 -

Weinmanet al.[167] - 78.05 -
Our variants:

Pairwise CRF [108] 81.74 73.26 66.13

Higher order [This work, HOG] 84.07 75.27 71.80

Higher order [This work, CNN] 88.02 78.21 78.07

Table 4.3 Word recognition accuracy (in %): closed vocabulary sgttiVe present results of our

proposed higher order model (“This work”) with HOG as well@&dN features. See text for detalils.

be noted that such methods are typically trained on mucledatgtasets, for example, 10M compared
to 0.1M typically used in state of the art methods, which asepublicly available [22]. Inspired by
these successes, we use a CNN classi er [66] to recognizecieas, instead of our SVM classi er
based on HOG features (see Sec. 4.2.1). We show resultshstiCNN classi er on SVT, ICDAR
2003 and IlIT-5K word datasets in Table 4.3 and observe signi improvement in accuracy, showing

its complementary nature to our energy based method.

Open vocabulary recognition. In this setting we use a lexicon of 0.5 million words from []1&8%tead

of image-speci ¢ lexicons to compute the language priorsanylicharacter pairs are equally likely in
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such a large lexicon, thereby rendering pairwise prioress kffective than in the case of a small lexi-
con. We use priors of order four to address this (see alsysinan the CRF order in Section 4.4.4).
Results on various datasets in this setting are shown ire Bl We compare our method with recent
work by Feild and Miller [44] on the ICDAR 2003 dataset, where method with HOG features shows
a comparable performance. Note that [44] additionally wesls-based corrections, unlike our method,
where the results are obtained directly by performing erfiee on the higher order CRF model. On the
ICDAR 2011 and 2013 datasets we compare our method with fheadormers from the respective
competitions. Our method outperforms the ICDAR 2011 rolbeiatling competition winner (TH-OCR
method) method by 17%. This performance is also better thranemtly published work from 2014 by
Weinmanet al.[167]. On the ICDAR 2013 dataset, the proposed higher ordmtahis signi cantly
better than the baseline and is in the top-5 performers art@ngompetition entries. The winner of this
competition (PhotoOCR) uses a large proprietary trainetgskt, which is unavailable publicly, making
it infeasible to do a fair comparison. Other methods (NESH, [BIAPS [85], PLT [87]) use many pre-
processing techniques, followed by off-the-self OCR. Sp&processing techniques are highly dataset
dependent and may not generalize easily to all the chaligrdatasets we use. Despite the lack of these
preprocessing steps, our method shows a comparable parfoemOn the 1IT 5K-word dataset, which
is large (three times the size of ICDAR 2013 dataset) andearigihg, the only published result to our
knowledge is Strokelets [171] from CVPR 2014. Our methodquers 7% better than Strokelets. Using
CNN features instead of HOG further improves our word red@gnaccuracy, as shown in Table 4.4.
To sum up, our proposed method performs well consistentlgeweral popular scene text datasets.
Fig. 4.5 shows the qualitative performance of the proposethad on a few sample images. The higher
order CRF outperforms the unary and pairwise CRFs. Thiddtive due to the better expressiveness
of the higher order potentials. One of the failure cases dsvshin the last row in Fig. 4.5, where the
higher order potential is computed from a lexicon which doeshave suf cient examples to handle

alphanumeric words.

4.4.4 Further analysis

Lexicon size. The size of the lexicon plays an important role in the wordgsition performance.
With a small-size lexicon, we obtain strong language prieinich help overcome inaccurate character
detection and recognition in the closed vocabulary settihgsmall lexicon provides much stronger

priors than the large lexicon in this case, as the performaegrades with increase in the lexicon size.
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Method ICDAR 2003 ICDAR 2011 IT-5K (large)
Baselines
ABBYY 46.51 46.00 14.60
(CSER+tesseract) [60] 50.99 51.98 25.00
Feild and Miller [44] 62.76 48.86 -
Weinmanet al.[167] - 57.70 -
ICDAR'11 competitiorj140]
TH-OCR System - 41.20 -
KAIST AIPR System - 35.60 -
Neumann's Method - 33.11 -
Stroklets [171] - - 38.30
Our variants
Pairwise [108] 50.99 48.11 32.00
Higher order [This work, HOG] 63.02 58.03 44.50
Higher order [This work, CNN] 67.67 - 46.73

Table 4.4 Word recognition accuracy (in %): open vocabulary settifigne results of our proposed higher
order model (“This work”) with HOG as well as CNN features gresented here. Since the network used here
to compute CNN features, i.e. [66], is learnt on data fronesghsources (e.g., ICDAR 2011), we evaluated with
CNN features only on ICDAR 2003 and IlIT-5K word datasetsiea®mmended by the authors. Note that we also
compare with top performers (as given in [72, 140]) in the KBD2011 and 2013 robust reading competitions.
We follow standard protocols for evaluation — case seresitir ICDAR 2011 and 2013 and case insensitive on
ICDAR 2003 and IlIIT 5K-Word.

We show this behaviour on the IlIT 5K-word dataset in Tabkwith small (50), medium (1000) and
large (0.5 million) lexicons. We also compare our resultai state of the art methods [132,171]. We
observe that [132,171] shows better recognition perfomaavith the small lexicon, when we use HOG

features, but as the size of the lexicon increases, our methiperforms [132].

Binarization based methods.We investigated alternatives to sliding window charactetedtion. To
this end, we replaced our detection module with a binanmatiased character extraction scheme, in
particular, a traditional binarization technique [118Hae more recent random eld based approach

presented in Chapter 3. A connected component analysis &&smped on the binarized images to
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Method S M L

Rodriguez & Perronnin [132] |76.1057.50 -

Strokelets [171] 80.2069.3038.30
Higher order [This work, HOGJ71.8062.1744.50Q
Higher order [This work, CNN]78.07,70.1346.73

Table 4.5 Studying the in uence of the lexicon size — small (S), medi(W), large (L) — on the T

5K-word dataset in the closed vocabulary setting.

obtain a set of potential character locations. We then dithe CRF on these characters and performed
inference to get the text contained in the image. Thesetseatd summarized in Table 4.7. We observe
that binarization based methods perform poorly compareditonodel using a sliding window detector,
both in terms of character-level recall and word recognitidhey fail in extracting characters in the
presence of noise, blur or large foreground-backgroundhtians. These results further justify our

choice of sliding window based character detection.

CRF order. We varied the order of the CRF from two to six and obtained eaxyuof 32%, 43%, 45%,
43%, 42% respectively on the IlIT 5K-word dataset in the operabulary setting. Increasing the CRF
order beyond four forces a recognized word to be one fromidi®dary, which leads to poor recogni-
tion performance for non-dictionary words, and thus detates the overall accuracy. Empirically, the

fourth order prior shows the best performance.

Effect of pruning. We propose a pruning step to discard candidates based orénadion of character-

speci c aspect ratio and classi cation scores (4.2), ingtef simply using extreme aspect ratio to
discard character candidates. This pruning helps in remgowiany false positive windows, and thus
improves recognition performance. We conducted an exgatino study the effect of pruning on the
IIIT-5K dataset in the open vocabulary setting, and obskevgain of 4.23% (46.73% vs 42.50%) due

to pruning.

Limits of statistical language models. Statistical language models have been very useful in improv
ing traditional OCR performance, but they are indeed lichi{@2, 150]. For instance, using a large
weight for language prior potentials may bias the recognitowards the closest dictionary word. This

is especially true when the character recognition part efgipeline is weak. We study such impact
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Figure 4.4 A few challenging character examples we missed in the glidiindow stage. These
examples are very dif cult even for a human. We observed #étlahese potential character windows

were missed due to poor SVM scores.

of language models in this experiment. Our analysis on te3K-word dataset suggests that many
of the non-dictionary words are composed of valid Enghisgrams (see Table 4.6). However, there
are few exceptions, e.g., words like 35KM, 21P, which are posed of digits and characters; see last
row of Fig. 4.5. Using language models has an adverse effetit@recognition performance in such
cases. This results in inferior recognition performanceon-dictionary words as compared to dictio-
nary words, e.g. on IlIT-5K dataset our method achieves 5aé622% word recognition accuracy on

dictionary and non-dictionary words respectively.

Limits of sliding window technique. The sliding window based character detection is successful
dealing with many challenging cases. However, it has geltaitations, e.g., localizing characters in
extremely low contrast images or characters with arbit@igntations, where sliding window based
detection gives very small detection scores. Few such ebesmyhere our method fails to localize the

characters are shown in Figure 4.4.

4.5 Scalability, advantages and limitations of CRF

In our higher order CRF framework, we compute the pairwisa ligher order joint probabilities
with external data (i.e., the English dictionary containth5 million words) and perform Katz smooth-
ing [74] on these joint probabilities to obtain pair wise drigher order potentials. This smoothing
helps us to estimate the probability distributionnefirams in the English dictionary. For inference, we
use TRW-S [80] which is an ef cient variant of BP, and more wnantly it has convergence guarantees.

The computation complexity of this inference techniqueestels on number of nodes in the CRF graph
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T 5K train [T 5K test
Non-dict. words  23.65 22.03
Digits 11.05 7.97
Dict. 3-grams 90.27 88.05
Dict. 4-grams 81.40 79.27
Dict. 5-grams 68.92 62.48

Table 4.6 Analysis of the IIT 5K-word dataset. We show the percentafjeon-dictionary words
(Non-dict.), including digits, and the percentage of wardataining only digits (Digits) in the rst two
rows. We also show the percentage of words that are composedvilid English trigrams (Dict. 3-
grams), four-grams (Dict. 4-grams) and ve-grams (Dicgrams) in the last three rows. These statistics

are computed using the large lexicon.

Char. method C. recallUnary|Pairwisg H. order
Otsu [118] 56 |17.07| 20.20 | 24.87
MRF model (Chapter 3) 62 |20.10| 22.97 | 28.03
Sliding window 80 |25.83] 32.00 | 44.50

Table 4.7 Character recall (C. recall) and recognition accuracyhwitary only (Unary), unary and
pairwise (Pairwise) and the full higher order (H. order) mlgd (all in %), on the IlIT 5K-word dataset

with various character extraction schemes (Char. mett@eh).text for details.

(potential characters in our case) and number of labelgl(&alglishn-grams in our case), and it does
not change with the vocabulary size. Reader is encouragexdeno[80] for theoretical details regarding
computational complexity and convergence proof of TRW-$hoa. The average time required for our

word recognition method is 6 second on a system with 8 GB RAM@are-2 duo processor.

Advantages and deep connectionConditional random elds (CRFs) [90] offer statistical @htages

over generative models and have already proven superioMbl$lin sequence labeling tasks [124].
Moreover, it also has several advantages for structureigii@da tasks [154], such as learning from
external data and learning the structure of the problem. GRE&s also mingle well with the deep
learning frameworks. Deep learning based methods haveoiragrstate of the art in many computer

vision tasks in last few years. The CRFs are a way of combitivegadvantages of discriminative
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Test Image Unary Pairwise Higher order(=4)

TWILIOHT TWILIOHT TWILIGHT
SRISNTI SRISNTI SRISHTI
LINPUT LINPUT LILLIPUT
EUMMER EUMMER SUMMER
IDTERNAL IDTERNAL INTERNAL

364203903105 3642039031055 3642039031055
REGHT REGHT RIGHT

83KM BOKM BOOM

Figure 4.5 Results of our higher order model on a few sample images. ateas in red represent
incorrect recognition. The unary term alone, based on th®l $Mssi er, yields poor accuracy, and
adding pairwise terms to it improves this. Due to their lediexpressiveness, they do not correct all the
errors. Higher order potentials capture larger contextftbe English language, and help address this
issue. Note that our method also deals with non-dictionasgde (e.g., second row) and non-horizontal
text (sixth row). A typical failure case containing alphameric words is shown in the last ronBést

viewed in colour).

classi cation and graphical models. In our CRF frameworlg, lvave used CNN for obtaining character
classi cation, and obtain a signi cant gain in word recogoin accuracy. There are few recent works,
such as [177], where authors proposed an approach whichicesie strengths of both CNN and CRF
based graphical model in a uni ed framework. We believe suched framework can be explored for

further enhancement of our proposed method in the future.

Limitations. Despite many advantages, CRFs also have some limitatiogns,(& high computation
complexity of inference techniques, (ii) priors used in CiRifnework often show strong in uence in
the nal outcome. In our case, these in uence causes a bigartts English dictionary words which

results in lower success rates in recognizing non-dictipomards using our higher order CRF method.
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4.6 Summary

This chapter proposes an effective method to recognizeesesth Our model combines bottom-up
cues from character detections and top-down cues fromdexi®Ve jointly infer the location of true
characters and the word they represent as a whole. We ex@dloat method extensively on several chal-
lenging street scene text datasets, namely SVT, ICDAR 2003/2013, and lIT 5K-word and showed
that our approach signi cantly advances the energy miratnin based approach for scene text recogni-
tion. In addition to presenting the word recognition resulte analyzed the different components of our
pipeline, presenting their pros and cons. Finally, we shibthat the energy minimization framework
is complementary to the resurgence of convolutional newebliork based techniques, which can help

build better scene understanding systems.

76



Chapter 5

Cropped Word Recognition: Holistic View

This chapter presents a holistic view of recognizing scemé tPrevious methods addressed this
problem by rst detecting individual characters, and themfing them into words. Such approaches
often suffer from weak character detections, due to larffa-ciass variations, even more so than char-
acters from scanned documents. We take a different vieweoptbblem and present a holistic word
recognition framework in this chapter. In this, we rst repent the scene text image and synthetic
images generated from lexicon words using gradient-basatifes. We then recognize the text in the
image by matching the scene and synthetic image featuraowitnovel weighted dynamic time warp-
ing (WDTW) approach. The proposed holistic word recognitapproach can be applied for recognition
of non-European scene texts where the literature has ngtggeed much so far. However, we restrict

to English languages for our experimental analysis in thagpter.

5.1 Introduction

The document image analysis community has shown a hugegtier the problem of scene text
understanding in recent years [33, 121, 166]. This problevolves various sub-tasks, such as text
detection, isolated character recognition, word recogmit Due to recent works [31, 40, 113], text
detection accuracies have signi cantly improved. Howevke success of methods for recognizing
words still leaves a lot to be desired. We aim to address ¢higei in this chapter.

The problem of recognizing words has been looked at in twadsccontexts — with and without
the use of a lexicon [107,108, 164, 169]. In the case of lexiddaven word recognition, a list of words
is available for every scene text image. The problem of rezigg the word now reduces to that of

nding the best match from the list. This is relevant in mampkcations, such as: (1) recognizing
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certain text in a grocery store, where a list of grocery it&as serve as a lexicon, (2) robotic vision in

an indoor/outdoor environment.

Lexicon-driven scene text recognition may appear to be ap &k, but the best methods up until
now have only achieved accuracies in the low 70s on this peblSome of these recent methods can
be summarized as follows. In [164], each word in the lexicomatched to the detected set of character
windows, and the one with the highest score is reported agréddicted word. This strongly top-down
approach is prone to errors when characters are missedeamteltwith low con dence. In our work
(Chapter 4), we improved upon on this model by introducingaenework, which uses top-down as well
as bottom-up cues. Rather than pre-selecting a set of ¢hakdetections, we de ned a global model
that incorporates language priors (top-down) and all g@techaracters (bottom-up). In [166], Wary
al. combined unsupervised feature learning and multi-layaraienetworks for scene text detection and
recognition. While both these recent methods improved tbeipus art signi cantly, they suffer from
the following drawbacks: (i) The need for language-speciharacter training data. (ii) Do not use the
entire visual appearance of the word. (iii) Prone to erraies t false or weak character detections.

In this chapter, we present an alternative path and propdsdistic word recognition method for
scene text images. We address the problemrigcagnition by retrievaframework. This is achieved
by transforming the lexicon into a collection of synthetiord images, and then posing the recognition
task as the problem of retrieving the best match from theteximage set. The retrieval framework
introduced in our approach is similar in spirit to the in u&h work of [127] in the area of handwritten
and printed word spotting. We, however, differ from theipagach as follows. (1) Our matching score
is based on a novel feature set, which shows better perfaenduan the pro le features in [127]. (2)
We formulate the problem of nding the best word match in a maxn likelihood framework and
maximize the probability of two features sequences origigafrom same word class. (3) We propose
a robust way to nd the match for a word, whekein k-NN is not hand picked, rather dynamically
decided based on the randomness of the top retrievals.

Motivation and overview. The problem of recognizing text (including printed and haritten text)
has been addressed in many ways. Detecting characters rathaty them to form a word is a popular
approach as mentioned above [108, 164]. Often these mesiudfés from weak character detections as
shown in Fig. 5.1(a). An alternative scheme is to learn a ifod&vords [15]. There are also approaches
that recognize a word by rst binarizing the image, and theing each connected component [85].

These methods inherently rely on nding a model to represeach character or word. In the context of
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Figure 5.1 Overview of the proposed system. We recognize the word itetstamage by matching it
with synthetic images corresponding to the lexicon wordsiofel gradient based feature set is used to
represent words. Matching is done with a weighted DTW scooesputed with these features. We use

the topk matches to determine the most likely word in the the scendrteage.

scene text recognition, this creates the need for a largeiainod training data to cover the variations in
scene text. Examples of such variations are shown in Figop.Dur method is designed to overcome

these issues.

We begin by generating synthetic images for the words franetkicon with various fonts and styles.
Then, we compute gradient-based features for all thesedsagwell as the scene text (test) image. We
then recognize the text in the image by matching the scensarttetic image features with our novel
weighted dynamic time warping (DTW). The weights in the DTVHtohing scores are learned from
the synthetic images, and determine the discriminativeenéshe features. We use the thpetrieved
synthetic images to determine the word most likely to regmethe scene text image (see Section 5.2).

An overview of our method is shown in Fig. 5.1.

We present results on two challenging public datasets, lyastreet view text (SVT) and ICDAR
2003 (see Section 5.3). We experimentally show that pojeddures like pro le features are not robust
enough to deal with challenging scene text images. Our @rpeats also suggest that the proposed
gradient at edgebased features outperform pro le features for the word matg task. In addition to
being simple, the proposed method improves the accuracydrg than 5% over recent works [108,

164, 166].
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Figure 5.2 (a) Character detection is a chal-

lenging problem in the context of scene text im- (@)
ages. (b) Large intra-class variations in scene text

images makes it challenging to learn models to

represent words. (b)

The main contributions of this chapter are two fold: (i) We\stthat holistic word recognition for
scene text images is possible with high accuracy, and aeleigni cant improvement over prior art.
(i) The proposed method does not use any language-spedbecmation, and thus can be easily adapted
to any language. Additionally, the robust synthetic wordiegal for scene text queries also shows that
our framework can be easily extended for text-to-imageewt. However, this is beyond the scope of

the chapter.

5.2 Word representation and matching

We propose a novel method to recognize the word contained image as a whole. We extract
features from the image, and match them with those compuatedaich word in the lexicon. To this
end, we present a gradient based feature set, and then aedeaymamic time warping scheme in the
remainder of this section.

Gradient based features. Some of the previous approaches binarize a word image irgmacter vs
non-character regions before computing features [85].1&\¢hich pre-processing steps can be effective
to reduce the dimensionality of the feature space, it com#sitg disadvantages. The results of bina-
rization are seldom perfect, contain noise, and this caesrto be an unsolved problem in the context
of scene text images. Thus, we look for other effective femtuwhich do not rely on binarized images.
Inspired by the success of Histogram of Oriented Gradie@@ifeatures [35] in many vision tasks,
we adapted them to the word recognition problem.

To compute the adapted HOG features, we begin by applyinGémay edge operator on the image.
Note that we do not expect a clean edge map from this result.théfe compute the orientation of
gradient at each edge pixel. The gradient orientations ezenaulated into histograms over vertical

(overlapping) strips extracted from the image. The hisiowgy are weighted by the magnitude of the
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Figure 5.3 An llustration of feature
computation. We divide the word image
into vertical strips. In each strip we com-
pute histogram of gradient orientation at
edges. These features are computed for

overlapping vertical strips.

gradient. Anillustration of the feature computation psg@ shown in Fig. 5.3. At the end of this step,
we have a representation of the image in terms of a set ofgntes. In the experimental section we
will show that these easy to compute features are robushéwbrd matching problem.

Matching words. Once words are represented using a set of features, we needramism to match
them. The problem is how to match the scene text and syntlesiimn based imagésWe formulate

the problem of matching scene text and synthetic words inxamman likelihood framework.

number of lexicon words. Since we assume features at eatibalestrips are independent, the joint
probability that the feature sequencésandY originate from the same word, i.e. P(X;Y j! ) can
be written as the multiplication of joint probabilities afdtures originating from the same strip, i.e.,

Y
POGY )= PXiyijte): (5.1)

i
In a maximum likelihood framework, the problem of nding aptonal feature sequencé for a given
feature sequenceé is equivalent to maximizgi P (xi;Vij! k) over all possiblér' s. This can be written
as minimization of an objective functidn i.e.,miny P i F(Xi;yij! k). Wheref is the weighted squared
I2-distance between feature sequenseandY i.e.f (Xi;yi) = (X; yi)wi(Xi ;). Herew; is the
weight to featurex;j. These weights are learned from the synthetic images, angraportional to
the discriminitiveness of features. In other words, giveieature sequenc¥ and a set of candidate
sequencey s, the problem of nding the optimal matching sequence becoaseminimizing over all
candidate sequenc&s This leads to the problem of alignment of sequences. Wegsmp weighted

dynamic programming based solution to solve this problemgndmic time warping [136] is used to

!Details for generating the synthetic lexicon-based imagesiven in Section 5.3.
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compute a distance between two time series. The weighted DiE¥&nceDTW (m; n) between the

sequenceX andY can be recursively computed using dynamic programming as:

8
2 DTW(i Lj)+ D(ij)
DTW (i;j ) = min 5 DTW (i;j 1)+ D(i;j) (5.2)

DTW(@{ 1;j 1+ D(;j);
whereD (i;] ) is the distance between featusgsandy;, and the local distance matriX is written as:
D=(X Y)TW(X Y). Thediagonal matrixV is learnt from synthetic images. For this we cluster

all the feature vectors computed over vertical strips otlsgtic images and entropy of each cluster as

follows.

X
H (clustep) = Pr(y; 2 '«;yj 2 clustep) logg (Pr(y; 2 !«k;y; 2 clustep)); (5.3)
k=1

wherePr is the joint probability of featurg; originating from class ¢ and falling in clustey. High
entropy of a cluster indicates that the features correspgrid that cluster are almost equally distributed
in all the word classes. In other words, such features aseitdgrmative, and thus are assigned a low
weight during matching. The weight; associated with a feature vectgr is computed asw; =
1 H(clusterp);if y; 2 clusterp:
Warping path deviation based penalty. To give high penalty to those warping paths (ref. Chapter 2)
which deviate from the near diagonal paths we multiply theth & penalty functiodog,o(wp wpy),
wherewp andwp, are warping path of DTW matching and diagonal warping paspeetively. This
penalizes warping paths where a small portion in one wordaghed with a large portion in another
word.
Dynamic k-NN. Given a scene text and a ranked list of matched syntheticsyeath corresponding to
one of the lexicon words), our goal is to nd the text label. dmso, we applk-nearest neighbor. One
of the issues with a nearest neighbor approach is nding agod his parameter is often set manually.
To avoid this, we use dynamicNN. We start with an initial value df and measure the randomness of
the topk retrievals. Randomness is maximum when all thekaptrievals are different words, and is
minimum (i.e. zero) when all the tdpretrieval are same. We incremdanby 1 until this randomness
decreases. At this point we assign the label of the most émtyuoccurring synthetic word to a given
scene text.

In summary, given a scene text word and a set of lexicon wavgstransform each lexicon into

a collection of synthetic images, and then represent eaelgenas a sequence of features. We then
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Method SVT-WORD|ICDAR(50)
Pro le features + DTW [127] 38.02 55.39
Gradient based features + wDTW 75.43 87.25
NL + Gradient based features + wDTW 77.28 89.69

Table 5.1 Feature comparison: We observe that gradient based featutgerform pro le features for
the holistic word recognition task. This is primarily duethe robustness of gradient features in dealing
with blur, noise, large intra-class variations. Non-lo@él) means Itering of scene text images further

improves recognition performance.

pose the problem of nding candidate optimal matches foremedext image in a maximum likelihood
framework and solve it using weighted DTW. The weighted DTaNesne provides a set of candidate

optimal matches. We then use dynarki®lN to nd the optimal word in a given scene text image.

5.3 Experiments and results

In this section we present implementation details of ourag@gh, and its detailed evaluation, and

compare it with the best performing methods for this taskpels [108,117, 164, 166].

5.3.1 Datasets

For the experimental analysis we used two datasets, narmedt siew text (SVT) [4] and ICDAR
2003 robust word recognition [11]. The SVT dataset contaimeges taken from Google Street View.
We used the SVT-word dataset, which contains 647 imagesyamet for the recognition task. A lex-
icon of 50 words is also provided with each image. The lexifmrthe ICDAR dataset was obtained
from [164]. Following the protocol of [164], we ignore wordsth less than two characters or with non-
alphanumeric characters, which results in 863 words dvelkidte that we could not use the ICDAR

2011 dataset since it has no associated lexicon.

5.3.2 Implementation details

Synthetic Word Generation. For every lexicon word we generated synthetic words with if@rent

styles and fonts using ImageMadicWe chose some of the most commonly occurring fonts, such as

2www.imagemagick.org/
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Figure 5.4 Few sample results. Top-5 synthetic word retrieval rediatsscene text query. First
column shows the test image. Top-5 retrieval for the tesganare shown from left to right in each
row. The icon in the right most column shows whether a wordoisectly recognized or not. We
observe that the proposed word matching method is robustrtations in fonts and character size. In
the fourth row, despite the unseen style of word image “ttjtine top two retrievals are correct. (Note
that following the experimental protocol of [164], we do eassensitive recognition). The last two
rows are failure cases of our method, mainly due to near édarite words (like center and centers) or

high degradations in the word image.
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Method SVT-WORD|ICDAR(50)
ABBYY [10] 35 56
Wanget al.[164] 56 72
Wanget al.[166] 70 90
Novikovaet al.[117] 72 82
Pairwise CRF (Chapter4) 73 82
This work 77.28 89.69

Table 5.2 Cropped word recognition accuracy (in %): We show a comparid the proposed method
to the popular commercial OCR system ABBYY and many recerthous. We achieve a signi cant

improvement over previous works on SVT and ICDAR.

Arial, Times, Georgia. Our observations suggest that felgcsion is not a very crucial step for overall
performance of our method. A ve pixel-width padding was ddor all the images. We noted that all
the lexicon words were in uppercase, and that the scene ssxtontain lowercase letters. To account
for these variations, we also generated word images whgmnly the rst character is in upper case;
and (ii) all characters are in lower case. This result8 in lexicon size 20images in the synthetic
database. For the SVT dataset, the synthetic dataset c®mataund3000images.

Preprocessing.Prior to feature computation, we resized all the word images width of300 pixels,
with the respective aspect ratio. We then applied the popula-local means Iter smoothing on scene
text images. We also remove the stray edges pixels les2thamumber. Empirically, we did not nd
this Itering step to be very critical in our approach.

Features.We used vertical strips of wid#hpixels and &-pixel horizontal shift to extract the histogram
of gradient orientation features. We computed signed gradirientation in this step. Each vertical strip
was represented with a histogramediins. We evaluated the performance of these features ie Bab)

in comparison with that of pro le features used in [127]. Redeatures consist of: (1) projection
pro le, which counts the number of black pixels in each cotun{2) upper and lower pro le, which
measures the number of background pixels between the wardhenword-boundary (3) transition
pro le, is calculated as the number of text-background sriaons per column. We used the binarization
method in Chapter 3 prior to computing the pro le featureso B features have shown noteworthy
performance on tasks such as handwritten and printed wottrgp but fail to cope with the additional
complexities in scene text (e.g., low contrast, noise,, duge intra-class variations). Infact, our results

show that gradient features substantially outperform lgrbased features for scene text recognition.

85



Figure 5.5 Few images from ICDAR 2003
dataset where our method fails. This may be ad-
dressed with inclusion of more variations in our

synthetic image database.

Weighted dynamic time warping. In our experiments we used 30 clusters to compute the weiGhis
analysis comparing various methods are shown in Table 5elobgerve that with wDTW, we achieve

a high recognition accuracy on both the datasets.

Dynamic k-nearest neighbor. Given a scene text image to recognize, we retrieve word im&gen
database of synthetic words. The retrieval is ranked baseihtilarity score. In other words, synthetic
words more similar to the scene text word get a higher ranku¥®edynamid-NN with an initial value

of k = 3 for all the experiments.

5.3.3 Comparison with previous work

We retrieve synthetic word images corresponding to lexizords and use dynamicNN to assign
text label to a given scene text image. We compared our metfithcdthe most recent previous works
related to this task, and also the commercial OCR ABBYY inl@dbh2. From the results, we see that
the proposed holistic word matching based scheme outpesfant only our earlier work (Chapter 4),
but also many recent works as [117, 164, 166] on the SVT dat@sethe ICDAR dataset, we perform
better than almost all the methods, except [166]. This matlyi inferior performance (of abo@3%)
is mainly because our synthetic database fails to model fetveofonts in ICDAR dataset (Fig. 5.3.3).
These type of fonts are rare in the street view images. A spe@processing or more variations in the
synthetic dataset may be needed to deal with such fonts5Highows the qualitative performance of
the proposed method on sample images. We observe that thesga method is robust to noise, blur,

low contrast and background variations.

In addition to being simple, our method signi cantly impes/the prior art. This gain in accuracy
can be attributed to the robustness of our method, whicho@sdot rely on character segmentation
rather do holistic word recognition; and (ii) learns diggnitiveness of features in a principled way and

use this information for robust matching using wDTW.
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Figure 5.6 A few sample images with text in non-planner surface, eegt,dn cloth banner and curved
surfaces. We collected a small subset of such images fromQ¥E[2] and our own collection, and

evaluated our recognition methods on it.

5.4 Extension to speci ¢ cases

We have tested our methods on public benchmark datasetse @atasets contain images from street
scenes with different view angle, variable illuminatioiffatent contrast and occlusion. However, we
have not veri ed our methods on speci ¢ cases such as textuoved surface and cloth banner. This is

mainly due to the unavailability of suf cient training datar these speci c cases of scene text images.

We conducted a small experiment to demonstrate the getyeaiali extensibility of our recognition
methods. To this end, we collected a dataset of 20 imagesevitreris written on non-planer surfaces.
These images are manually collected from NEOCR datasetgidi@Jour personal collection. We have
created a lexicon of size 50 corresponding for each word. ¢fetve images of this dataset are shown

in Figure 5.6. We observe that these images have non-lingartibns.

We have tested our two recognition methods on this smalsttshamely higher order CRF method
(Chapter 4) and holistic recognition method (this chapt@gr methods as such have limited success on
recognizing these images. We achieve 50% and 65% word reémogaccuracies with these methods
respectively. This inferior performance is mainly due totfthat the character and word distortions

present in these images are not seen by these methods.

In order to extend our methods to these categories of scet® t#e enriched our dataset with
examples of images subjected to non-linear transformatiBor this we created synthetic images with
ten popular fonts and two different plane to cylinder transfations. We have shown few examples

of these synthetic images in Figure 5.5. We added these sBri@ageur synthetic database, and the
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Attributes OCR based Higher order CRF Holistic recognition

Cursive font v’
Uniform background v’

Complex background v’

Low contrast v’
Occlusion v’
High Illlumination change v’

Digital-born images v’

Table 5.3 Which method is effective where? Here tick mark under argbatie a and the method
m shows that the methoah is more effective as compared to others in recognizing stextehaving

attributea.

extracted characters of these synthetic words to our ctereraining set. We re-trained our character
classi er with this enrichment to the training data. We,nhre-evaluated our recognition methods, i.e.,
higher order CRF method and holistic recognition methodesehmethods achieved 60% and 80%
word recognition accuracy on this set respectively, whickigni cantly better as compared to original

implementation. This shows the robustness and geneializat our methods on scene text with variety
of real world challenges. Although our experiment is préliany with a small number of images, we

believe with some more engineering efforts our performancescognizing speci ¢ cases of scene text

can be further enhanced.

5.5 Comparison with our other recognition methods

We proposed three effective ways for scene text recognfiioblem in our thesis: (i) our rst ap-
proach was the off-the-shelf OCR with our binarization (@ea3), (ii) in our second approach of word
recognition, we proposed a method where character datestimres and languages priors are integrated
in a higher order CRF (Chapter 4), and (iii) nally, in thisater we proposed a holistic recognition
method which bypasses the need of character localizatidhbiaarization. We will refer these methods
as OCR based method, higher order CRF method and holistogmémn method respectively from

here onwards.
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Figure 5.7 We added few text images with

non-linear transformation, e.g., plane to cylin-

vvvvvvvvvvvv der transformation to our synthetic text image

database.

For a deeper analysis of the results, we categorized theeisnigm subsets of the datasets we
use, based on presence of following attributes : (i) cur&iwes, (ii) uniform background, (iii) complex
background, (iii) low contrast, (iv) occlusion, (v) higluilnination change, and (vi) digital-born images.
We evaluated all our methods separately on images with atetegories of attributes. We found that
our proposed methods are complementary in nature, and egttlodns superior to others in addressing
a speci ¢ challenge, e.g., our OCR based method performsribian others if background is uniform,
our holistic recognition methods works better as compaoegtiters in case of occlusion, and so on.
Table 5.3 summarizes various attributes present in sceharages, and which of our method is more
effective as compared to others in recognition of scenewskt speci ¢ attributes. In Figure 5.8, we
show few example scene text images and the method which is efife@ctive in recognizing them.

We performed another simple experiment on IlIT-5K datas#t emall lexicon to validate the com-
plementary nature of our proposed recognition methods. h@rdataset our OCR based, higher order
CRF and holistic recognition methods achieve 68%, 78%, &3¢ iféspectively. When we further ana-
lyze these results and found that 84% of the words are rezedmiorrectly by one of the methods. This
implies that a simple combinations of these methods can bé i applications like text-to-image
retrieval or suggesting multiple recognition outputs €thin our case) with one being correct with a
high rate. Smart ways of combining these recognition methuath also be explored in the future, for
example, lexicon reduction methods purposed in [134] orofapur higher order CRF method can be
used to reduce the lexicon size with preserving the grountti in the reduced lexicon. Once lexicon

size is reduced our holistic recognition method can be mifeetevely used to recognize the words.

5.6 Summary

In this chapter, we proposed an holistic method to recogsieae text. Our method neither requires
character segmentation nor relies on binarization, bueatsperforms holistic word recognition. We

show a signi cantly improved performance over the most ntagorks from 2011 and 2012. The
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(@) (b) (©

Figure 5.8 Images categorized according to the challenges they mqttéd/e observe that for cleaner
images, as shown in (a), OCR based method is most effectivehiGher order CRF method have a bias
towards a dictionary word, e.qg. it recognizes 20p as 200.elghar, since our higher order CRF method
is not trained on special characters, it does mistakes mygnézing words with special characters. On
the other hand our holistic recognition method makes méstdk case of its matching with similar
appearance words, e.g., RIDE gets confused with BIKE, GLA8B CLASS. For images with low
contrast, complex background images, fancy fonts, as showh), our higher order CRF method
performs better than others. For the cursive fonts, misgirfgncy characters our holistic recognition

method shows better performance. Few such examples are shda).

robustness of our word matching approach shows that theahagtension of this work can be in
direction of “text to scene image" retrieval.

We have also compared our holistic method with two othercéffe recognition methods proposed
in Chapter 3 and Chapter 4 respectively. All these recagmithethods are complementary in nature,

and can be combined effectively in future for higher scemererognition rates.
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Chapter 6

Text2lmage Retrieval

In this chapter, we present an approach for the text-to-eémagrieval problem based on textual
content present in images. Given the recent developmemntsdierstanding text in images, an appealing
approach to address this problem is to localize and receghig text, and then query the database,
as in a text retrieval problem. We show that such an approde$pite being based on state of the
art methods, is insuf cient, and propose a method, where @vaat rely on an exact localization and
recognition pipeline. We take a query-driven search approahere we nd approximate locations of
characters in the text query, and then impose spatial @nttrto generate a ranked list of images in
the database. The retrieval performance is evaluated ditcmaene text datasets as well as three large
datasets, namely IlIT scene text retrieval, Sports-10KTavideries-1M, we introduce. We further boost

our performance by using deep character classi er.

6.1 Introduction

In the context of ever-growing large data collections, ¢hare many challenging problems like
searching for, and retrieving relevant content. One apmprda retrieval usesext as a querywith
applications such as Google image search, which relies es ftam meta tags or text available in the
context of the image. The success of this approach is rathiéedl by the quality of the meta tags and
the contextual text. An alternate approach like Video Ged#8] enables image search usintage
as a queryby nding visually similar regions in the database. Altlguthis method exploits the visual
content, it may not necessarily be suf cient. For instarammsider four photos of restaurants shown in
Figure 6.1. There is very little visual information to suggéat these four images are of restaurants,

and thus are unlikely to be retrieved together by such msthbHdwever, the fact that all these images
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Figure 6.1 Consider an example query for restaurants. Here we showilmages of restaurants,
which have insuf cient visual cues (such as building styteproup them into a single restaurant cate-
gory. On the other hand, the text “restaurant” appearingherbanner/awning is an indispensable cue

for retrieval. We present a text-to-image retrieval methaged on the textual content present in images.

contain the wordestaurantis a very useful cue in grouping them. In this work, we aim tidhlis gap in
image retrieval withtext as a queryand develop an image-search based on the textual contsgnr
in it.

The problem of recognizing text in images or videos has ghméuge attention in the computer
vision community in recent years [29, 40, 108, 142, 144, 165%]. Although exact localization and
recognition of text in the wild is far from being a solved plein, there have been notable successes. We
take this problem one step further and ask the quesian:we search for query text in a large collection
of images and videos, and retrieve all occurrences of theygtext? Note that, unlike approaches
such as Video Google [148], which retrieve only similar amstes of the queried content, our goal is
to retrieve instances (text appearing in different placesi@w points), as well as categories (text in
different font styles).

Plausible approaches.One approach for addressing the text-to-image retrievatblpm is based on
text localization, followed by text recognition. Once thlexttis recognized, the retrieval task becomes
equivalent to that of text retrieval. Many methods have bgeposed to solve the text localization
and recognition problems [31, 40, 107, 108, 113]. We adaptedof these methods for our analysis
with the implementation from [13, 14]. We transformed thsual text content in the image into text,
either with [113] directly, or by localizing with [40], an¢hén recognizing with [108]. In summary, we
recognize the text contained in all images in the databa&secls for the query text, and then rank the

images based on minimum edit distance between the quenhand¢ognized text.
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Method mMAP
Neumann and Matas [113] |23.32
SWT [40]+ Mishraet al.[108]/19.25
Wanget al.[164] 21.25

Table 6.1 Baseline results for text-to-image retrieval on the stigetv text dataset [164] are shown
as mean average precision (mAP) scores. All the unique dgrouth words in the dataset are used as
queries. The rst two methods, based on the state of the wrtdealization and recognition schemes,
perform poorly. Wanget al. [164] is a word spotting method, which detects and recognilze lexicon
words in an image. In comparison, our approach, which do¢saip on an exact localization and

recognition pipeline, achieves an mAP of 56.24 (see TallE 6.

Table 6.1 shows the results of these two approaches on &t siew text (SVT) dataset. Note
that both of them fail to achieve a good performance. Thig pbow is likely due to the following:
(i) The loss of information during localization/recogoiti is almost irreversible. (ii) The recognition
methods are not query-driven, and do not take advantageedeitond or the third best predictions of
the classi er. (iii) The variation in view point, illuminain, font style, and size lead to incorrect word
localization and recognition. In other words, these apginea heavily rely on the localization and the

recognition performance, making them susceptible torfadun both these phases.

In terms of not relying on an explicit localization, the ags to our work is [164]. Although it is
a method for spotting (detecting and recognizing) one offéle( 50) lexicon words in one image.
In contrast, we aim to spot query words in millions of imagasq ef ciently retrieve all occurrences
of query. Thus our goals are different. Furthermore, theessg of [164] is largely restricted by the
size of the lexicon. We have performed two tests to show ttiapting it to our problem is inferior to
our proposed approach. (i) Using all the query words as dexiit gives a mean AP of 21.25% on the
SVT dataset (see Table 6.1). (ii) Using their characterdliete, and then applying our indexing and

re-ranking schemes, we obtain an mAP of 52.12%, about 4% lthae our approach.

Another plausible approach is based on advancements ieviaty similar visual content, e.g. bag
of words based image retrieval [148]. Such methods aredetttior instance retrieval withmage as
a query Itis not clear how well text queries can be used in combimatvith such methods to retrieve

scene text appearing in a variety of styles.
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Proposed method.We take an alternate approach, and do not rely on an accesdti®t¢alization and
recognition pipeline. Rather, we do a query-driven seamhnmages and spot the characters of the
words of a vocabulafyin the image database (Section 6.2.1). We then compute a sharacterizing
the presence of characters of a vocabulary word in everyémddne images are then ranked based
on these scores (Section 6.2.2). The retrieval performanéarther improved by imposing spatial
positioning and ordering constraints (Section 6.2.3). \&mdnstrate the performance of our approach
on publicly available scene text datasets. For a more cdmpsive study, we not only need a large
dataset with diversity, but also a dataset containing imleltbccurrences of text in different fonts, view
points and illumination conditions. To this end, we introduwo video datasets, nameBports-10K
andTV series-1Mwith more than 1 million frames, and an image dataset, It8he text retrieval (STR).
To our knowledge, the problem of text-to-image retrievad hat been looked at in such a challenging
setting yet.

Another possible way to solve the retrieval performance iglttain text proposals, recognize them
and do a simple text based search. Object proposals aredbet teend in object detection commu-
nity [178]. Inspired by their success text proposal methads also devised [61]. These methods
provide a ranked list of candidate text regions. These regigth recognition pipeline can signi cantly
boost the retrieval performance of the method. The retri@sults obtained using text proposal based

methods can also be ensembled with ours in future.

6.2 Scene text indexing and retrieval

Our retrieval scheme works as follows: we begin by detectingracters in all the images in the
database. After detecting characters, we have their patémtations. We assume that a set of vocabu-
lary words, is given to ua priori. We then spot characters of the vocabulary words in the immagd
compute a score based on the presence of these charactexs.dBi goal of retrieving images from a
large dataset, we need an ef cient method for retrieval. dleve this, we create an inverted index le
containing image id and a score indicating the presenceavbclers of the vocabulary words in the im-
age. Initial retrievals are obtained using the invertedeind/Ve then re-rank the tap-nitial retrievals
by imposing constraints on the order and the location ofattars from the query text. Figure 6.2

summarizes our indexing and retrieval scheme.

1We de ne vocabulary as a set of possible query words.
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(a) (b)

Figure 6.2 Summary of our indexing and retrieval scheme. (a) In thernaf phase, we rst detect the
characters. We then compute a score indicating the presdratgracters from the vocabulary words
(vocabulary presence score), and create an inverted indexith this score and image id. In the online
phase, user provides a query, which is searched on the iddiatabase to retrieve images based on
the vocabulary presence score. The topetrievals are then re-ranked using our re-ranking schemes
(b) After character detection, an imagig is represented as a grafh,, where nodes correspond to
potential character detections and edges model the speitidibn between two detections. The nodes
are characterized by their character likelihood vettpand the edges by their character pair pridrs
This graph is used to prune false positive detections, sswtalimpose order and position constraints

on the characters during the re-ranking phase. See SecHdargletails.

6.2.1 Potential character localization

Given a large collection of images or video frames, the tepsof our retrieval pipeline is to detect
potential locations of characters. We do not expect ideataztter detection from this stage, but instead
obtain many potential character windows, which are likelyriclude false positives. To achieve this,
we train a linear SVM classi er with HOG features [35]. We these a sliding window based detection
to obtain character locations and their likelihoods. Tharahter localization process is illustrated in
Figure 6.3. Note that this is an of ine step in our retrievagline.

For a robust localization of characters using sliding wingpwe need a strong character classi er.
The problem of classifying natural scene characters tilgicaffers from the lack of training data,
e.g. [36] uses only 15 samples per class. It is not trivial twlet the large variations in characters using
only a few examples. Also, elements in a scene may interfette the classi er, and produce many

false positives. For example, the corner of a door can betdetas the character "L'. To deal with these
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issues, we add more examples to the training set by applyiradj af ne transformations to the original
character imagesWe further enrich the training set by adding many negatieergles (non-characters,
i.e. background). With this strategy, we achieve a sigmtdaoost in character classi cation.

We use a multi-scale sliding window based detector, whigloular in many applications [35, 163,
164]. Each window is represented by its top-ledty) position, width and height in the original scale.
LetK be the set of all character classes, i.e. English chara@eZs a-z), digits (0-9) and a background
class. Given a window, we compute the likelihood? (ljjhog), i 2 K, using Platt's method [123].
Herehog denotes the HOG features extracted from the window his results in &3-dimensional
vector for every window, which indicates the presence ofaa&tter or background in that window. We
then perform character-speci ¢ non maximal suppressiokl8)to prune out weak windows. Further,
since for a given query word, we wish to retrieve all the insagtere the query word appears either in
upper or lower case, we transform t6&dimensional vector to 86-dimensional vector by taking the
maximum between the upper and lower case likelihoods fayestearacter and dropping the likelihood

for background.

6.2.2 Indexing

Once the characters are detected, we index the databasesdbofvocabulary words. Consider a
set of vocabulary wordk! 1; ;! kg, which are given to ua priori. In a general setting can be as
large as the number of words in English or all the words thaawesnterested in querying.

We rst remove a few spurious character windows. To do so, mastruct a graph, where each
character detection is represented as a node. These nedesnaected via edges based on their spa-
tial proximity. We then use contextual information, windewdth, size and spatial distance to remove
some of the edges. In other words, edges between two neigbbadraracters are removed if: (i) The
width ratio of two neighboring character windows exceegg , or (i) The spatial distance between
two character windows is more thags;, or (iii) The height ratio of two neighbouring character win
dows exceedspeight - The thresholdsyigth ; dist @nd nheight are estimated from the training set. This
may result in isolated nodes, which are discarded. Thisesspntially removes many false character
windows scattered in the image.

Each node of this graph is described by a 36-dimensionabré&kt Further, assuming these like-

lihoods are independent, we compute the joint probalslitiecharacter pairs for every edge. In other

2Note that the use of af ne transformations in training exésps shown to improve classi cation accuracy [110, 146].

96



words, we associate3 36 dimensional matriX/; containing joint probabilities of character pairs
to the edge connecting nodeandj (see Figure 6.2(b)).
Now, consider a word from the vocabuldry = ! ¢1! ko ! «p, represented by its charactérng,1
| p, wherep is the length of the word. To index an imabg for this word, we divide the imaghky,
into horizontal strips, each of height. We then compute a score denoting the presence of characters
from the query in these horizontal strips. This score forraagel ,, and a word! ¢, S(Im;! k), IS
computed as the maximum over all the horizontal strips ofriiege. In other words, sco®(I ;! k)
is given by:
xP xP

mﬁa\x maxU; (! ) = m%x maxP (! xjhog ); (6.1)
i i
=1 =1

wherej varies over all the bounding boxes representing potentiatacters whose top-left coordinate
falls in the horizontal strip antl varies over all the horizontal strips in the image. To avbiel domi-

nance of a single character, we modify the score in (6.1) as:

xXP
S(lm;tk) = m%x min(mjax P(! wjhog); ); (6.2)
1=1

where is a truncation constant.

Once these scores are computed for all the words in the vizogtand all the images in the database,
we create an inverted index le [101] containing image ick tlocabulary word and its score. We also
store the image and its corresponding graph (represerfti@agcter detections) in the indexed database.
These graphs and the associated probabilities are usedne-tanking schemes, which we will describe

in the following section.

6.2.3 Retrieval and re-ranking

We use the inverted index le to retrieve the images and rdmgt based on the score computed
in (6.2). This ensures that images containing charactera the query text have a high likelihood in
a relatively small area (the horizontal strip of heidh) get a higher rank. However, not all relevant
images may be ranked well in this step, as it does not ensareditect ordering and positioning of
characters. To address this, we propose two methods tokethra results as follows.

Spatial ordering. Character spotting does not ensure that characters atedjiothe same order as in
the query word. We address this by proposing a re-rankingmsetbased on spatial ordering (RSO). Let

total = Tt V! k1! kos ;! kptg be the set of all the bi-grams present in the query wardwhere
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Figure 6.3 Potential character localization. We compute HOG featategrious scales for all the
images. These features are then represented using?thkernel. A linear SVM trained on af ne
transformed (AT) training samples is used to obtain poa¢ctaracter windows. This results in a 63-
dimensional vector for every window, which denotes thelililad of every character/background class

in that window.

t denotes whitespace. We also construct a ggalsent Containing the pairs of spatially neighbouring
spotted characters. We now de ne the score of spatial orgesSso(I m;! k) = W where

j ] isthe cardinality. The sco®so(Im;! k) = 1, when all the characters in the query word are present
in the image, and have the same spatial order as the query Wdise this score to re-rank retrieval
results.

Spatial positioning. The re-ranking scheme based on spatial ordering does notitctor spotted
characters being in the correct spatial position. In otherds, these characters may not have uniform
inter-character gap. To address this, we use the graphssesging the character detections in the

images, the associatédl vectors, and the matri¥ to compute a new score. We de ne a new score

characterizing the spatial positioning of characters efghery word in the image &p(Im;! k) =
xXP X1

min(m?x U( ) )+ mijaXVij (M P ie): (6.3)
=1 =1
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This new score is high when all the characters and bi-gramgrasent in the graph in the same order
as in the query word and with a high likelihood. Additionalhigher value of new score ensures the
correct spatial positioning of the characters. This is beeahe graph is constructed such that nodes
representing characters spatially close to each othercameected. The retrieval results are then re-
ranked based on the summation of this score and the Sggr@btained from spatial ordering. We refer

to this scheme as re-ranking based on spatial positioniSg}R

6.2.4 Implementation details

Character detection. We use an overlap threshold of 40% to discard weak detectindows in the
non maximal suppression stage. The character classi ergrained on the train sets of ICDAR 2003
character [3] and Chars74K [36] datasets. We had@s#8 patches from scene images, with buildings,
sky, road and cars, which do not contain text, for additioregative training examples. We then apply
af ne transformations to all the character images, redimsrt to48 48, and compute HOG features.
We analyzed three different variations [45] (13, 31 and Boemsional) of HOG. To ef ciently train the
classi er with a large set of training examples, we use arlieifeature map [161] and the? kernel.
This feature map allows a signi cant reduction in classtica time as compared to non-linear kernels
like RBF. The performance of this classi er is evaluated ina@ter 4. Additionally, we also evaluate
our retrieval performance by using state of the art CNN dttaraclassi er [66].

Score computation.We divide the images into horizontal strips of hei@Btpixels and spot characters
from a set of character bounding boxes, as described indde@tR.2. The idea here is to nd images
where the characters of the vocabulary word have a hightided in a relatively small area. We set the
truncation parameter = 0:2 in (6.2) empirically, and retrieve an initial set of top-1@sults with this

score and re-rank them by introducing spatial ordering aitipning constraints.

6.3 Datasets

We evaluate our approach on three scene text (SVT, ICDAR 28d11IT scene text retrieval) and
two video (Sports-10K and TV series-1M) datasets. The nurobanages and queries used for these
datasets are shown in Table 6.2.

Street view text [4] and ICDAR 2011 [140]. These two datasets were originally introduced for scene

text localization and recognition. They contain 249 and @8&ges respectively. We use all the unique
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Datasets # queries# images/frames
SVT [140] 427 249
ICDAR [140]| 538 255
T STR 50 10K
Sports-10K 10 10K
TV series-1IM 20 1M

Table 6.2 Scene text datasets (SVT and ICDAR) contain only a few huharages. We introduce
an image (llIT scene text retrieval) and two video (Spof&-hnd TV series-1M) datasets to test the

scalability of our proposed approach.

ground truth words of these datasets as queries and perfatrAptimage retrieval.

IlIT scene text retrieval dataset. The SVT and ICDAR 2011 datasets, in addition to being rela-
tively small, contain many scene text words occurring omlgen To analyze our text-to-image retrieval
method in a more challenging setting, we introduce IlIT sctxt retrieval (STR) dataset. For this, we
collected data using Google image search with 50 query wards as Microsoft building, department,
motel, police. We also added a large number of distractog@sai.e. images without any text, down-
loaded from Flickr into the dataset. Each image is then ataedtmanually to say if it contains a query
text or not. This dataset contains 10K images in all, withrb00accurrences of each query word. It is
intended for category retrieval (text appearing in différéonts or styles), instance retrieval (text im-
aged from a different view point), and retrieval in the preseof distractors (images without any text).
Video datasets. To analyze the scalability of our retrieval approach, wednadarge dataset, where
query words appear in many locations. In this context, weéhice two video datasets. The rstone is
from sports video clips, containing many advertisememitsigrds, and the second is from four popular
TV series: Friends, Buffy, Mr. Bean, and Open All Hours. Wkerdo these two datasets as Sports-10K
and TV series-1M respectively. The TV series-1M containgartban 1 million frames. Words such
ascentral perk, pickles news SLW27Ra car number) frequently appear in the TV series-1M dataset
All the image frames extracted from this dataset are maynaalhotated with the query text they may

contain.

Annotations are done by a team of three people for about 15Bhuars. We use 10 and 20 query
words to demonstrate the retrieval performance on the SAOK and the TV series-1M datasets re-

spectively. All our datasets are available on the projedisite.
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Dataset Char. spot. RSO RSP
With HOG character classi er

SVT 17.31 46.12 56.24
ICDAR11 24.26 58.20 65.25
T STR 22.11 36.34 42.69
With deep character classi er

SVT 25.50 50.25 62.15
ICDAR11 30.00 64.73 69.55
T STR 24.44 39.00 44.50

Table 6.3 Quantitative evaluation of text-to-image retrieval. Wéiage a notable improvement in
mMAP with the proposed re-ranking schemes over baselineadehown in Table 6.1. Another baseline
we compare with uses character detections from [164] in doatibn with our spatial positioning re-

ranking scheme, which achieves 52.12% mAP on SVT, over 108érithan our result.

6.4 Experimental analysis

Given a text query our goal is to retrieve all images wherepiears. We aim instance, i.e., text
appearing in different view points, as well as categoryiee#l, i.e., text in different fonts and styles. In

this section, we evaluate all the components of the proposstiod to justify our choices.

6.4.1 Retrieval results

We rst evaluate our retrieval scheme on image datasets. rétreeval performance is quantita-
tively evaluated using the well-known mean average praci§inAP) measure, which is the mean of
the average precision for all the queries. The results arerarized in Table 6.3. We observe that the
performance of our initial naive character spotting mettsocomparable to the baselines in Table 6.1.
The re-ranking scheme improves the performance, and we\aclan mAP 066:24% on SVT and
65:25% on ICDAR. Recall from Table 6.1 that the state of the art lizesion and recognition based
method only achieves an mAP 88:32% on SVT. Reasonably high performance on IlIT STR, which
contains instances (text in different viewpoints), categg(text in different fonts), and distractors (im-
ages without any text) shows that the proposed method ismigtapplicable to retrieve instances and
categories of scene texts, but also robust to distractatditidnal gain in mAP due to change of a better

performing CNN classi er is also clearly noticed in all thatdsets.
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Dataset Char. Spot. RSO RSP

P@10 P@20 P@10|P@20 P@10|P@20
With HOG character classi er
Sports 26.21| 24.26| 39.11| 38.32| 44.82| 43.42
TV series 40.22| 39.20| 58.15| 57.21| 59.28| 59.02
With deep character classi e
Sports 29.12| 26.25| 42.24| 41.50| 47.20| 46.25
TV series 44.25| 44.00| 62.12| 61.85| 64.15| 63.88

Table 6.4 Quantitative analysis of retrieval results on video ddtas&Ve choose 10 and 20 query
words for Sports-10K and TV series-1M respectively. We apent retrieval to compute precision at

(denoted by P@).

We then evaluate the scalability of our proposed scheme orarge video datasets. We use preci-
sion computed using the tapfetrievals (denoted by P@ as the performance measure. These results
on video datasets are summarized in Table 6.4. The propesahking scheme achieves P@20 of
43.42% and 59.02% on Sports-10K and TV series-1M datasgtectvely. Low resolution videos and
fancy fonts appearing in advertisement boards make thetSpOK dataset challenging, and thus the
precision values are relatively low for this dataset.

Our indexing scheme allows us to retrieve images from a ldagaset containing 1M images in
about 3 seconds. The sliding window based character datestép and computation of index le are
performed of ine. They take around 9 seconds and 7 secondisnage.

Quialitative results of the proposed method are shown inrEigu4 for the query wordsestaurant
on SVT, moteland departmenton IIIT STR. We retrieve all the occurrences of the querstaurant
from SVT. The IlIT STR dataset contains 39 different occnoes of the wordnote| with notable
variations in font style, view point and illumination. Owptretrievals for this query are quite signi cant,
for instance, the tenth retrieval, where the query word appén a very different font. The query
word departmentas 20 occurrences in the dataset. Few of these occurrergces the same building.
We observe that, overcoming the changes in the visual cortte relevant images are ranked high.
Figure 6.5(a) shows precision-recall curves for two tex@ras: departmentand motelon T STR.
Our method achieves AP = 74.00 and 48.69 for these two quespgctively. The method tends to fail
in cases where almost all the characters in the word are necttée correctly or when the query text

appears vertically. A few such cases are shown in Figurd$.5(
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(a) Text queryrestaurant

(b) Text query:motel

Figure 6.4 Text query example: Top-10 retrievals of our method on SVA AT STR are shown. (a)
Text query: “restaurant”. There are in all 8 occurrencehisfquery in the SVT dataset. The proposed
scheme retrieves them all. The ninth and the tenth resutitgitomany characters from the query like R,
E, S, T, A N. (b) Text query: “motel". There are in all 39 oa@rrces of query in the llIT STR dataset,
with large variations in fonts, e.g. the rstand the tenttrievals. A failure case of our approach is when
a highly similar word (hotel in this case) is well-ranked.€Bl results support our claim of instance as

well as category retrieval.

We also show result of our method on Sports-10K video dataBe¢se results are shown in Fig-
ure 6.6. We observe that our method successfully able t@vettext appearing in wide variety of

styles.
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Figure 6.5 (a) Precision-Recall curves for two queries on the IlIT sctxt retrieval dataset. The blue
(solid) and green (dotted) curves correspond to queriegdidment” and “motel” respectively. (b) A
few failure cases are shown as cropped images, where owagtpfails to retrieve these images for the
text queries: Galaxy, India and Dairy. The main reasonsdihure are: the violation of near horizontal

assumption for scene texts (in case of Galaxy and India) stylizh font (Dairy).

6.5 Summary

We have demonstrated text-to-image retrieval based onettteal content present in images and
videos. The query-driven approach we propose outperfoooadization and recognition pipeline based
methods [40,113]. The bene ts of this work over methods Hasea localization-recognition pipeline [40,
113] are: (i) It does not require explicit localization oktiword boundary in an image. (ii) It is query-
driven, thus even in cases where the second or the third bedicpons for a character bounding box
are correct, it can retrieve the correct result. We also gldivat ensembelling the recent methods such

as deep character classi er instead of hand crafted fe&@ased character classi er improves the mAP.

The holistic recognition method presented in Chapter 5 ¢sm lze explored for text to image re-
trieval. However, there are two limitations with such anragh, (i) the DTW matching used in holis-
tic recognition are computationally expensive and iltsdifor our large scale image retrieval system,
and (i) the holistic recognition requires accurate wordrting boxes. The method presented in this

chapter works without explicit word localization.

There are few recent works where exact localization of abjéexts) is avoided [61, 122], rather

a set of text proposals are obtained. We also adopted [61duodatasets, and fed to modern scene
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(a) Text queryPAKISTAN

(b) Text querySONY

Figure 6.6 We show top-5 retrieval results of our method from the spb@i< video dataset for two

queries (a) PAKISTAN (b) SONY.

text recognition engines (including our higher order CRRhad). After obtaining the recognized texts
we perform simple text based search. This simple method wéstad on one of our datasets namely,
Sports-10K achieves signi cantly high P@10 and P@20 (waiob$5% and 60% of P@10 and P@20
from this method). Such method can also integrated with aerydriven approach for even better
retrieval performance in future.

To sum up, we have proposed a robust and scalable solutidextdio image retrieval problem. Our
method is effective in retrieving both category as well agance of scene text. We have demonstrated

our retrieval results on large-scale image and video datase
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Chapter 7

Conclusion and Future Work

In this chapter we conclude this thesis by discussing théribotions, impact and comparisons of
our proposed approaches with contemporary methods. ¥imadl also provide the future directions of

this dissertation.

7.1 Discussion

This thesis targets the problem of recognizing text in seerages and retrieving images or frames
from a large database using textual cues.

We have presented three effective ways of scene text raamgniFirst, we presented recognition
using robust segmentation (binarization). To this end, axelproposed a principled energy minimiza-
tion based framework for scene text binarization. The psedcenergy formulation uses the color and
stroke features of text, and produces clean binary outpbe pgroposed method in combination with
the off-the-shelf open source OCR signi cantly improves thcognition performance on public bench-
mark datasets. Next, we presented a framework where we $y@ad segmentation and build a CRF
model on potential character locations. We seamlesslgiiated language model in terms of higher or-
der priors, and ef ciently minimize the corresponding anefunction to recognize the words. We then
presented a holistic framework for word spotting. In théxiton words are transformed into synthetic
images and the problem of word spotting is posed as matcliiscene text words and synthetic words.
The proposed method achieves reasonably high performancieadlenging benchmark datasets.

Going ahead, we have proposed a novel scheme for text-tgpeimerieval. The bene t of our ap-
proach are two: (i) it does not require explicit localizatiof the word boundary in an image. (ii) Itis

query-driven, thus even in cases where the second or thiklibst predictions for a character bounding
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box are correct, it can retrieve the correct result. We haaahstrated our results on public scene text
datasets as well as three large datasets, namely, llIT seeneetrieval, Sports-10K and TV series-1M

which we introduce.

Comparisons with contemporary methods. Our work proposed in Chapter 4 belongs to the class
of word recognition methods which build on individual chetex localization, similar to methods such
as [58, 111]. In this framework, the potential characteeslacalized, then a graph is constructed from
these locations, and then the problem of recognizing the&lweoformulated as nding an optimal path
in this graph [114] or inferring from an ensemble of HMMs [58Dur approach shows a seamless
integration of higher order language priors into the grapti(e form of a CRF model), and uses more

effective modern computer vision features, thus makingearty different from previous works.

Since the publication of our original work in CVPR 2012 [108)d BMVC 2012 [107] papers,
several approaches for scene text understanding (e.glotadization [59, 64,103, 113], word recogni-
tion [22,64,66,142,167,171] and text-to-image retri¢¥él 64,109,134]) have been proposed. Notably,
there has been an increasing interest in exploring deemhtdinnal network based methods for scene
text tasks (see [22,59, 64,66, 166] for example). Theseoappes are very effective in general, but the
deep convolutional network, which is at the core of these@ghes, lacks the capability to elegantly
handle structured output data. To understand this with ¢y ¢f an example, let us consider the prob-
lem of estimating human pose [157,159], where the task isgdigt the locations of human body joints
such as head, shoulders, elbows and wrists. These locaiernsnstrained by human body kinemat-
ics and in essence, form a structured output. To deal with stractured output data, state of the art
deep learning algorithms include an additional regresstep [159] or a graphical model [157], thus
showing that these techniques are complementary to theldagpng philosophy. Similar to human
pose, text is structured output data [63]. To better hartdiestructured data, we develop our energy
minimization framework [107, 108] with the motivation ofiliing a complementary approach, which
can further bene t methods built on the deep learning paradiindeed, we saw that combining the two

frameworks further improves text recognition results (Gtka4).

Further, our retrieval scheme outperforms localizatiod satognition pipeline based methods [40,
113]. We have also shown that mAP of our retrieval perforreacan further be improved with the
integration of deep character classi cation [66] and ré¢enhnique of text proposal [61] followed by

our recognition.

107



Impact of this thesis. This thesis advances the eld of scene text understandiggi santly. The
proposed methods achieve noticeable improvements on waorgalated character recognition accura-
cies, and text binarization performance on multiple beratkndatasets. Many of the methods proposed
in this thesis are based on principled frameworks with venyimmal assumptions. This allows for the
possibility of (i) improving the recognition performancerther, and (ii) developing solutions for other
languages such as Indian languages scene text recognitierewesearch has not progressed much.
The existing datasets related to scene text understandang either too small or simple, as a part of
this work we have introduced multiple scene text benchmat&sits. These datasets are being used by

various groups across the globe [66,132,171,173], andratagiresearch in this area.

7.2 Future directions
This thesis opens many promising avenues for future relseertsted below:

« Exploring CRF framework. Our proposed higher order CRF framework (Chapter 4) seaiygles
integrates multiple cues for word recognition. Some irgting techniques such as automatically
learning the appropriate energy functions and the straatfithe graph for the word image, are

not explored in this thesis. These can be fascinating direxbf research in the future.

» Deep binarization. There have been recent works on addressing the segmeritattennatural
images in deep learning framework. Deep mask [122] is onda@fniost successful methods
among those works. It has shown state of the art results oa Boage segmentation benchmarks.
For a given image, deep mask produces, (i) class-agnosggmesgation mask, and (ii) likelihood
of the patch being centered on a full object. We believe sikeltihood scores can be integrated
with our energy minimization framework for the problem ofge text binarization to further

enhance the performance in the future.

* Integrating deep bigrams and higher order grams classi er €£ores. With the availability of
immense data for training [65], it is now possible to traiepelassi ers for bigrams, trigrams and
higher order grams. Such classi er scores can be integiatedur higher order CRF framework
(Chapter 4). Such integration will take advantage of botigleage models as well as appearance

of n-grams in a real or synthetic data.
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« Improving ef ciency of holistic recognition. The holistic recognition method which we present
in Chapter 5 shows promising performance in recognizingiesdext. This method with some
modi cations can show big gain in recognition accuracy bking advantage of availability of
large synthetic word dataset [65]. One of the limitationgtho$ method is the computational
complexity of matching. Improving computation time of thigethod is one of the potential

directions of research.

« Extension to video.The techniques proposed in this thesis are designed fogméam in images.
Although we show retrieval performance on video datase@Ghapter 6, but treating each frame
independently as image. It should be noted that videos haperdiency among frames, for
example, if a frame contain a word, the next frame is mord\like contain the same word in
almost same location. Modeling such dependencies and usiagent spatio-temporal cues in an

energy minimization framework is another possible way teetlsp the proposals of this thesis.

« Multi-script scene text understanding. In many countries like India, multiple scripts are used

in various regions of the country. Robustly recognizing ynahthese scripts is still an open

challenging. The reader is encouraged to refer to one ofritimliworks [147] on this direction
where we propose an end-to-end framework for script ideation in scene images. Once scripts
are identi ed, some of the techniques in this thesis as suetith some minor modi cations can

be applied for recognizing scene texts in multiple scripts.

« Generating image annotations. Text present in images gives an indispensable cue about the
content of the images. Text understanding combined withottject understanding can tell a
lot about the content of the image and can signi cantly inygramage annotations. Moreover,
guestions such as “can text understanding improve objet¢rgtanding?”, and vice versa, are

exciting to investigate and answer in future.

* Integrating textual and visual cues for image retrieval. In our work we have demonstrated
image retrieval using textual cues, and have not exploreduste of visual cues. Consider an
example where we wish to retrieve all the ambulance images & large image database. The

use of text ambulance written on the vehicle along with Mise@tures of the vehicle is likely to
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help retrieval system be more effective. Moreover, usexititd and visual features can also be

useful in effectively retrieving movie posters, CD covert,.
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