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Abstract

The problem of recognizing text in images taken in the wild has gained significant
attention from the computer vision community in recent years. Contrary to recognition
of printed documents, recognizing scene text is a challenging problem. We focus on the
problem of recognizing text extracted from natural scene images and the web. Significant
attempts have been made to address this problem in the recentpast. However, many
of these works benefit from the availability of strong context, which naturally limits
their applicability. In this work we present a framework that uses a higher order prior
computed from an English dictionary to recognize a word, which may or may not be
a part of the dictionary. We show experimental results on publicly available datasets.
Furthermore, we introduce a large challenging word datasetwith five thousand words to
evaluate various steps of our method exhaustively.

The main contributions of this work are: (1) We present a framework, which incor-
porates higher order statistical language models to recognize words in an unconstrained
manner (i.e. we overcome the need for restricted word lists, and instead use an English
dictionary to compute the priors). (2) We achieve significant improvement (more than
20%) in word recognition accuracies without using a restricted word list. (3) We intro-
duce a large word recognition dataset (atleast 5 times larger than other public datasets)
with character level annotation and benchmark it.

1 Introduction

On one extreme Optical Character Recognition (OCR) is considered as one of the most suc-
cessful applications of computer vision, and on the other hand text images taken from street
scenes, video sequences, text-captcha, and born-digital (the web and email) images are ex-
tremely challenging to recognize. The computer vision community has shown a huge interest
in this problem of text understanding in recent years. It involves various sub-problems such
as text detection, isolated character recognition, word recognition. These sub-problems are
either looked at individually [3, 6, 8] or jointly [14, 21]. Thanks to the recent work of [6, 8],
text detection accuracies have significantly improved, butthey were less successful in rec-
ognizing words. Recent works on word recognition [13, 20, 21] have addressed this to some
extent, but in a limited setting where a list of words is provided for each image (referred to as
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Figure 1:Some sample images from theIIIT 5K-word dataset. Images in this dataset contain
examples that have a large variety of appearances, and are much more complex than the ones
seen in typicalOCR datasets.

a small size lexicon). Such strong assumptions, although effective, are valid only for limited
applications,e.g.recognizing a certain text in a grocery store, where a list ofgrocery items
can serve as a lexicon. However, the availability of such lists is not always possible, or the
word may not be part of the given list. In other words, text recognition performance in a
general setting leaves a lot to be desired.

In this paper we rely on a large English dictionary (with around 0.5 million words, pro-
vided by authors of [23]) instead of an image specific word list. We present a framework
that uses then-gram information in the language to address the problem of small size lex-
icons. The use ofn-grams as a post-processor is not new to theOCR community [18]. We
combine these useful priors into a higher order potential function in a Conditional Random
Field (CRF) [11] model defined on the image. The use of higher order potentials not only
deals with weak character detections but also allows us to recognize non-dictionary words,
as shown in the latter sections.

Another issue with many of the previously published works [13, 17, 21] is that they
were evaluated on datasets containing a few hundred words. For a comprehensive evalua-
tion of methods, we need a large dataset with diversity. Thus, we introduce a dataset with
5000 word images referred to as the IIIT 5K-word dataset. Thedataset contains words from
both street scene texts and born-digital images. Note that automatically extracting text from
born-digital images has many applications such as improvedindexing and retrieval of web
content, enhanced content accessibility, content filtering,e.g.advertisements or spam emails.
Moreover, the IIIT 5K-word dataset will also be useful to evaluate the performance of char-
acter detection module, as we also provide character bounding box level annotation for this
dataset.

The main contributions of this work can be summarized as: (1)We relax the assumption
of recognizing a word with the help of small size lexicons, unlike previously published work
on this problem [13, 20, 21]. (2) We present aCRF framework, which incorporates higher
order statistical language models to infer the word (Section 2). It allows us to by-pass the
use of edit distance based measures.1 (3) We introduce a large dataset of scene text and born-
digital images harvested from Google image search. We have evaluated and benchmarked
this dataset (Section3). Our method achieves a significant improvement of over 20% on the
IIIT 5K-word and other datasets.

2 The Recognition Model

We propose aCRF based model for recognizing words. TheCRF is defined over a set of
random variablesx= {xi |i ∈V}, whereV = {1,2, ...,n}. Each random variablexi denotes a
potential character in the word, and can take a label from thelabel setL = {l1, l2, ..., lk}∪ ε,
which is the set of English characters and digits, and a null label to suppress weak detections

1The edit distance between two strings is defined as the minimum number of edits needed to transform one
string into the other. For example words ‘BMVC’ and ‘BMVA’ have edit distance of one. A single edit distance
computation has time complexity ofO(|s1||s2|) wheres1 ands2 are the length of the string. Moreover, the edit
distance based measure can not be used for the problem we consider, i.e. out-of-vocabularyrecognition.
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(similar to [13]). The most likely word represented by the set of charactersxi is found by
minimizing the energy function,E : Ln →R, corresponding to the random field. The energy
functionE(·) can be typically written as sum of potential functions:

E(x) = ∑
c∈C

ψc(xc), (1)

whereC represents a set of subsets ofV, i.e. cliques. Herexc is the set of random variables
included in a cliquec. The set of potential characters is obtained by the character detection
step discussed in Section2.1. The neighbourhood relations among characters, which deter-
mine the structure of the random field, are based on the spatial arrangement of characters in
the word image. Details of the potentials defined on these relations are given in Section2.2.

2.1 Detecting Characters
The first step in our approach is to detect potential locations of characters in a word image.
We apply a sliding window based approach to achieve this. Sliding window based detectors
have been very successful for challenging tasks, such as face [19] and pedestrian [7] detec-
tion. Although character detection is similar to such problems, it has its unique challenges.
Firstly, there is the issue of dealing with a large number of categories (62 in all). Secondly,
often, parts of a character or a part of two consecutive characters are similar in appearance to
another character. We use a standard sliding window based approach with character aspect
ratio prior, similar to [13]. This approach produces many potential character windows, but
not all of them are useful for recognizing words. Dealing with large number of false positives
becomes challenging, especially because we use a dictionary to learn the context. Moreover,
our objective is to recognize a word that may not be in the given dictionary. In Section3
we study the trade-off between true and false positives, andits effect on the overall word
recognition accuracy. We exhaustively evaluate the performance of character detection on
IIIT 5K-word dataset with various ways of pruning weak detections.

2.2 Recognizing Words
The character detection step provides us with a large set of windows potentially containing
characters within them. Our goal is to infer the most likely word from this set of characters.
We formulate this problem as that of minimizing the energy in(1), where the best energy
solution represents the ground truth word we aim to find. The energy function defined over
cliques of size one is referred to as a unary potential, and that of size two is referred to as a
pairwise potential. The potentials defined over cliques of size greater than two are commonly
known as higher order potentials.

For introducing higher order, we add an auxiliary variablexa
c for every cliquec ∈ C.

This auxiliary variable takes label from a label setLe. In our case the extended label set
Le contains all possibleh-gram combination present in the lexicons plus one, assuming we
modelCRF of orderh. We define a very high cost for an auxiliary variable to take a label
which is not present in the dictionary. Increasing the orderof the CRF allows us to capture
a larger context. However, arbitrarily increasing order may force a recognized word to be a
dictionary word. Since, we also aim to recognize words whichmay not be in a dictionary,
we need to be mindful in choosing the order of theCRF. This is investigated in Section3.

2.2.1 Graph Construction and Energy Formulation
We solve the energy minimization problem on a correspondinggraph, where each ran-
dom variable is represented as a node in the graph. We begin byordering the character



4 Mishraet al.: Scene Text Recognition using Higher Order Language Priors

(a) (b)

Figure 2: The proposed graphical model. (a) Each (non-auxiliary) node takes one of the
labels from the label set{l1, l2, ..., lk} ∪ ε, where li represents an English character or a
digit, andε is a null label. The auxiliary nodes can take labels from the set of all h-grams
that are present in an English dictionary, and an additionallabel to enforce high cost for a
h-gram that is not present in the dictionary. Labels{L1,L2, ...,Ln} are the possible trigrams
in the dictionary whereas label Ln+1 represents trigrams that never occur in the dictionary.
(b) An example word image with the proposed model: Tri-gramslike OPE, PEN have very
high frequency in an English dictionary (> 1500), and thus are of low cost. Integrating
higher order information into theCRF results in the correct word.

windows based on their horizontal location, and add one nodeeach for every window se-
quentially from left to right. The nodes are then connected by edges. To enforce higher
order constraints, we add an auxiliary node for every cliqueof sizeh, whereh is the or-
der of theCRF. Each (non-auxiliary) node in this graph takes one label from the label set
L = {l1, l2, ..., lk}∪ ε. Note that eachl i is an English character or digit. The cost associated
with such labeling is known as unary cost. Further, there is also a cost associated with two
neighboring nodes taking some labell i andl j respectively, which is known as pairwise cost.
This cost is learnt from the dictionary. The auxiliary nodesin the graph take labels from the
extended label setLe. Each element ofLe represents one of theh-grams present in the dic-
tionary and an additional label to assign constant (high) cost to all thoseh-grams that are not
present in the dictionary. The proposed graphical model is shown and explained in Figure2.
We show aCRF of order three for clarity, but it can be extended to any orderwithout loss of
generality.

Unary Cost. The unary cost of a node taking a character label is determined by theSVM

confidence. The unary termψ1, which denotes the cost of a nodexi taking labell j , is defined
as:

ψ1(xi = l j) = 1− p(l j |xi), (2)

wherep(l j |xi) is theSVM score of character classl j for nodexi .

Pairwise Cost. The pairwise cost of two neighboring nodesxi and x j taking a pair of
character labelsl i andl j respectively is determined by their probability of occurrence in the
dictionary as:

ψ2(xi ,x j) = λl (1− p(l i, l j )), (3)

wherep(l i , l j) is the joint probability of the character pairl i andl j occurring together in the
dictionary. The parameterλl determines the penalty for a character pair occurring in the
lexicon.
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Higher Order Cost. The higher order costs in theCRF energy are decomposed into unary
and pairwise costs, similar to the approach described in [16]. For simplicity, let us assume
we use aCRF orderh = 3. Then, an auxiliary node corresponding to every clique of size
3 is added to the graph, and every auxiliary node takes one of the labels from the extended
label setLe = {L1,L2, ...Ln}∪Ln+1, where labelsL1 . . .Ln represent all possible trigrams in
the dictionary. The additional labelLn+1 denotes all those trigrams that do not occur in the
dictionary. The unary cost for the auxiliary variable is defined as:

ψa
1(xi = Li) =

{

0 if i ∈ {1,2, ..., n},
λa otherwise,

(4)

whereλa is a constant and penalizes all those character triples which are not in the dictionary.
The pairwise cost between an auxiliary nodexi taking a labelLk = l i l j lk and left-most

non-auxiliary node in the clique,x j , taking a labell l is given by:

ψa
2(xi = Lk,x j = l l ) =

{

0 if l = i
λa′ otherwise,

(5)

whereλa′ penalizes a disagreement between the auxiliary and non-auxiliary nodes.

Inference. After computing the unary, pairwise and higher order terms,we use the se-
quential tree-reweighted message passing (TRW-S) algorithm [10] to minimize the energy
function. TheTRW-S algorithm maximizes a concave lower bound on the energy. It begins
by considering a set of trees from the random field, and computes probability distributions
over each tree. These distributions are then used to reweight the messages being passed dur-
ing loopy BP [15] on each tree. The algorithm terminates when the lower boundcannot be
increased further, or the maximum number of iterations has reached.

In summary, given an image containing a word, we: (i) detect the possible characters in
it; (ii) define a random field over these characters; (iii) compute the language based priors;
and (iv) infer the most likely word.

3 Experiments
In what follows, we present a detailed evaluation of our method. We evaluate various com-
ponents of the proposed approach to justify our choices. We compare our results with the
best performing methods [13, 20, 21] for the word recognition task.

3.1 Datasets
We used the public datasets Street View Text (SVT) [20] and theICDAR 2003 robust word
recognition [2] to evaluate the performance of our method. We also introduce a large dataset
containing scene text images and born-digital images, and evaluate the performance of the
proposed method.

SVT and ICDAR 2003. The Street View Text (SVT) dataset contains images taken from
Google Street View. Since, in our work, we focus on the word recognition task, we used
theSVT-WORD dataset, which contains 647 word images. Similar to [21], we ignored words
with less than two characters or with non-alphanumeric characters, which results in 829
words overall. We also evaluated using the ICDAR 2003 word recognition dataset [2].
Additionally, a lexicon of about 50 words is provided with each image as part of both these
datasets by the authors of [21].
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Training Set Testing Set
Easy Hard Total Easy Hard Total

Number of word images 658 1342 2000 734 2266 3000
ABBYY9.0 (without binarization) 44.98 16.57 20.25 44.96 5.00 14.60
ABBYY9.0 (with binarization) 43.74 24.37 30.74 42.51 18.45 24.33

Table 1:TheIIIT 5K-word dataset contains a few easy and many hard images. Poor recog-
nition accuracy of the state-of-the-art commercialOCR ABBYY 9.0 (especially for the hard
category word images) shows that the new dataset is very challenging. We also observe that
binarization techniques like [12] improve overall ABBYY recognition accuracy significantly.
However, a study of binarization is not in the scope of this work.

3.1.1 IIIT 5K-Word Dataset

We introduce the IIIT 5K-word Dataset2, which contains both scene text and born-digital
images (a category which recently gained interest inICDAR 2011 competitions). Born-
digital images are inherently low-resolution (made to be transmitted on-line and displayed on
a screen) and have variety of font sizes and styles. On the other hand, scene texts are already
considered to be challenging for recognition due to the presence of varying illuminations,
projective distortions. This dataset is not only much larger than public datasets likeSVT and
ICDAR 2003 but also more challenging.

Data collection and Image Annotation. All the images were harvested from Google im-
age search. Query words like billboards, signboard, house numbers, house name plates,
movie posters were used to collect images. Words in images were manually annotated with
bounding boxes and corresponding ground truth words. To summarize, the robust reading
dataset contains total 1120 images and total 5000 words. We split the data into a training set
of 380 images and 2000 words, and a testing set of 740 images and 3000 words. We further
divided the words in the training and testing sets intoeasyandhard categories based on
their visual appearance. Table1 describes these splits in detail. Furthermore, to evaluatethe
modules like character detection and recognition we provide annotated character bounding
boxes.

3.2 Detection
We applied the sliding window based detection scheme described in Section2.1. We com-
puted denseHOG features with a cell size of 4×4 using 10 bins, after resizing each image
to a 22×20 window. A 1-vs-allSVM classifier with anRBF kernel was learnt using these
features. We used theICDAR 2003 train-set to train theSVM classifiers with theLIBSVM

package [4]. We varied the classification score3 threshold and obtained the correspond-
ing overall word recognition accuracy. We used classification score thresholdsτ1 = 0.08,
τ2 = 0.1 andτ3 = 0.12 in our experiments. We computed the word recognition accuracy for
these detections and observed that the thresholdτ2 produces the best results. Thus, we chose
τ2 = 0.1 as the threshold for detecting a window as potential character location for rest of
the experiments. The Precision-Recall curve and characterwise detection performance for
the thresholdτ2 are shown in Figure3. Note that we compute the intersection over union
measure of a detected window compared to the ground truth, similar to PASCAL VOC [9], to
evaluate the detection performance.

2available at: http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/
3SVM classification results probability score of predicted class, we call this a classification score
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Figure 3:(a) Precision-Recall curves for character detection on theIIIT 5K-word dataset.
Classification score thresholdsτ1, τ2 andτ3 achieve recall of around 89%, 78%, and 48%
respectively, but the thresholdτ2 results in best overall word recognition accuracy. (b) Char-
acter detection performance of detection with the threshold τ2 showing character wise aver-
age precision.

CRF order 2 3 4 5 6
Accuracy 29.10 42.40 44.30 39.20 33.20

Table 2:The effect of changing the order of theCRFon theIIIT 5K-word dataset. We observe
that the accuracy increases with the order upto a certain point, and then falls.

3.3 Recognition

In this section, we provide details of our experimental setup. We used the detections obtained
from the sliding window procedure to build theCRF model as discussed in Section2.2. We
add one node for every detection window, and connect it to other windows based on its
spatial distance and overlap. Two nodes spatially distant from each other are not connected
directly. The unary cost of taking a character label is determined by theSVM confidence, and
the pairwise and higher order priors are computed from an English dictionary.
Pairwise. We compute the joint probabilityP(l i , l j) for character pairsl i andl j occurring
in the dictionary. We compute position-specific probabilities, similar to [13], and choose the
lexicon based penaltyλl = 2 in equation (3).
Higher Order. The higher order cost is decomposed into the unary cost of an auxiliary
node taking some label and the pairwise cost between auxiliary and non-auxiliary nodes. To
determine all possible labels for an auxiliary node, we compute probability of allh-grams
in the dictionary. The unary cost of an auxiliary variable taking a label is 1−P(Li), where
P(Li) is the probability of theh-gramLi occurring in the dictionary. We choose the penalty
λa = 2 in equation (4) and the penaltyλa′ = 1 in equation (5) respectively. The unary and
pairwise costs supportingε (null) labels are defined similar to [13].

Once the energy is formulated, we used theTRW-S algorithm [10] to find the minimum
of the energy. In this section, we study the effect of changing theCRF order and lexicon size
on the overall accuracy.
CRF order. We varied the order of theCRF from 2 to 6. Table2 shows the recognition
accuracy on IIIT 5K-word dataset with these orders. We observed that order = 4 gives the
best accuracy for the IIIT 5K-word dataset. The result is notsurprising because increasing
CRF order forces a recognized word to be a dictionary word which causes poor recognition
performance for non-dictionary words.
Lexicon size and edit distance. We conducted experiments by computing priors on vary-
ing lexicon sizes. We report accuracies based on correctionwith and without edit distance.
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Datasets Pairwise Higher-order
Small Medium Large Small Medium Large

With Edit distance based correction
SVT 73.26 66.30 34.93 73.57 66.3 35.08
ICDAR 81.78 67.79 50.18 80.28 67.79 51.02
5K-word 66 57.5 24.25 68.25 55.50 28

Without Edit distance based correction
SVT 62.28 55.50 23.49 68.00 57.03 49.46
ICDAR 69.90 60 45 72.01 61 57.92
5K-word 55.50 51.25 20.25 64.10 53.16 44.30

Table 3: The performance of the recognition system with priors computed from lexicons
of varying sizes. We observe that the effect of correction with minimum edit distance(ED)
based measure (a recognized word is compared with lexicon words and is replaced with a
word with minimum edit distance) becomes insignificant whenthe lexicon size is large. We
also see a clear gain in accuracy (around 25%, 12% and 22% on SVT, ICDAR andIIIT
5K-word respectively) with the higher orderCRFwhen a large lexicon is used to compute the
priors.

The small size lexicon contains a list of 50 words, medium size lexicon contains 1000 words
and the large size lexicon (from the authors of [23]) contains 0.5 million words. Note that
the small and medium size lexicons contain the ground truth words, whereas the large size
lexicon does not necessarily contain ground truth words. Results based on varying size of
lexicons are summarized in Table3. We observe that higher orderCRF captures the larger
context and is more powerful than pairwiseCRF. Moreover, as the lexicon size increases the
minimum edit distance based corrections are not really helpful. Let us consider an example
from Table5 to understand the need for avoiding edit distance based correction. The pair-
wise energy function recognizes the word BEER as BEEI. If we use the edit distance based
correction here, we may obtain a word BEE (at edit distance 1). However, the proposed
method uses better context and thus allows us to by-pass editdistance based correction.

We compared the proposed method with recent works and the state-of-the-art commercial
OCR, under experimental settings identical to [21]. These results are summarized in Table4.
We note that the proposed method outperforms the previous results. The gain in accuracy is
significant when the lexicon size increases, and is over 20%.Note that when the lexicon size
increases, minimum edit distance based measures become insignificant as can be observed
in Table4, however our method by-passes the use of edit distance by exploiting context from
the English language.

Figure5 shows the qualitative performance of the proposed method onsample images.
Here, the higher orderCRF outperforms the unary and pairwiseCRFs. This is intuitive due to
the better expressiveness of higher order potentials. Moreover, we are also able to recognize
non-dictionary word such as SRISHTI which is a common south Asian word (shown in the
last row).

3.4 Discussions
Although our method appears similar to [13], we differ from it in many aspects as detailed
below. We address a more general problem of scene text recognition, i.e. recognizing a word
without relying on a small size lexicon. Note that recent works [13, 20, 21] on scene text
recognition, recognize a word with the help of an image-specific small size lexicon (around



Mishraet al.: Scene Text Recognition using Higher Order Language Priors 9

Methods SVT-WORD ICDAR 5K-word
Small Large Small Large Small Large

PLEX [21] 56 - 72 - - -
ABBYY9.0* [ 1] 32 - 52 - 24.33 -
Pairwise CRF [13](without ED) 62.28 23.49 69.90 45 55.50 20.25
Proposed(without ED) 68 49.46 72.01 57.92 64.10 44.30

Table 4: Comparison with the most recent methods [13, 21]. Small size lexicon contains
50 words for each image whereas the large size lexicon has 0.5million words. We observe
that the proposed method outperforms all the recently published works. Note that we use
lexicons only to compute the priors, minimum edit distance (ED) based corrections are not
used in this experiment. The proposed method works well evenwhen a restricted small size
lexicon is unavailable. We used the original implementation of our previous work [13] to
obtain results onIIIT 5K-word dataset. *ABBYY 9.0uses its own lexicons, so the accuracies
reported here are not based on the external lexicons we used to compute the priors for the
proposed method.

Test Image Unary Pairwise Higher order(=4)

Y0UK YOUK YOUR

TWI1IOHT TWILI OHT TWILIGHT

JALAN JALAN JALAN

KE5I5T KESIST RESIST

BEE1 BEEI BEER

SRISNTI SRISNTI SRISHTI

Table 5:Sample results of the proposed higher order model. Characters in red represent in-
correct recognition. The unary term alone, i.e. theSVM classifier, yields very poor accuracy,
and adding pairwise terms improves it. However, due to the limited expressiveness, they do
not correct all the errors. On the other hand, higher order potentials capture larger context
from the English language, which provides us better recognition. Note that we are also able
to recognize non-dictionary words (last row) and non-horizontal image (third row) with our
approach. Although, our method is less successful in the case of arbitrarily oriented word
images – mainly due to poor detection. (Best viewed in colour)

50 words per image). Our method computes the prior from an English dictionary and by-
passes the use of edit distance based measures. In fact, we also recognize words missing
from the given dictionary. One of the main reasons for the improvements we achieve is
the use ofn-grams present in the English language. Our method outperforms [13] not only
on the (smaller)SVT and ICDAR 2003 datasets, but also on the IIIT 5K-Word dataset. We
achieve a significant improvement of around 25%, 12% and 22% on SVT, ICDAR 2003, and
IIIT 5K-word datasets respectively.

Comparison with other related works. Scene text recognition is being explored by many
works [5, 23], but they tend to rely on a fairly accurate segmentation, apply post-processing
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to improve recognition performance, or focus on small traditional OCR-style data with re-
stricted fonts and clean background. Our approach jointly infers the detections representing
characters and the word they form as a whole, and show resultson a large dataset with a
wide variety of variations in terms of fonts, style, view-point, background and contrast. The
closest work to ours in term of joint inferencing is [22]. However, it is not clear, that it can
handle the challenges in the recent real world datasets.

4 Conclusions
In summary, we proposed a powerful method to recognize scenetext. The proposedCRF

model infers the location of true characters and the word as awhole. We evaluated our
method on publicly available datasets and a large dataset introduced by us. The beauty of
the method is that it computes the priors from an English dictionary, and it by-passes the use
of edit distance based measures. We are also able to recognize a word that is not a part of the
dictionary.
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