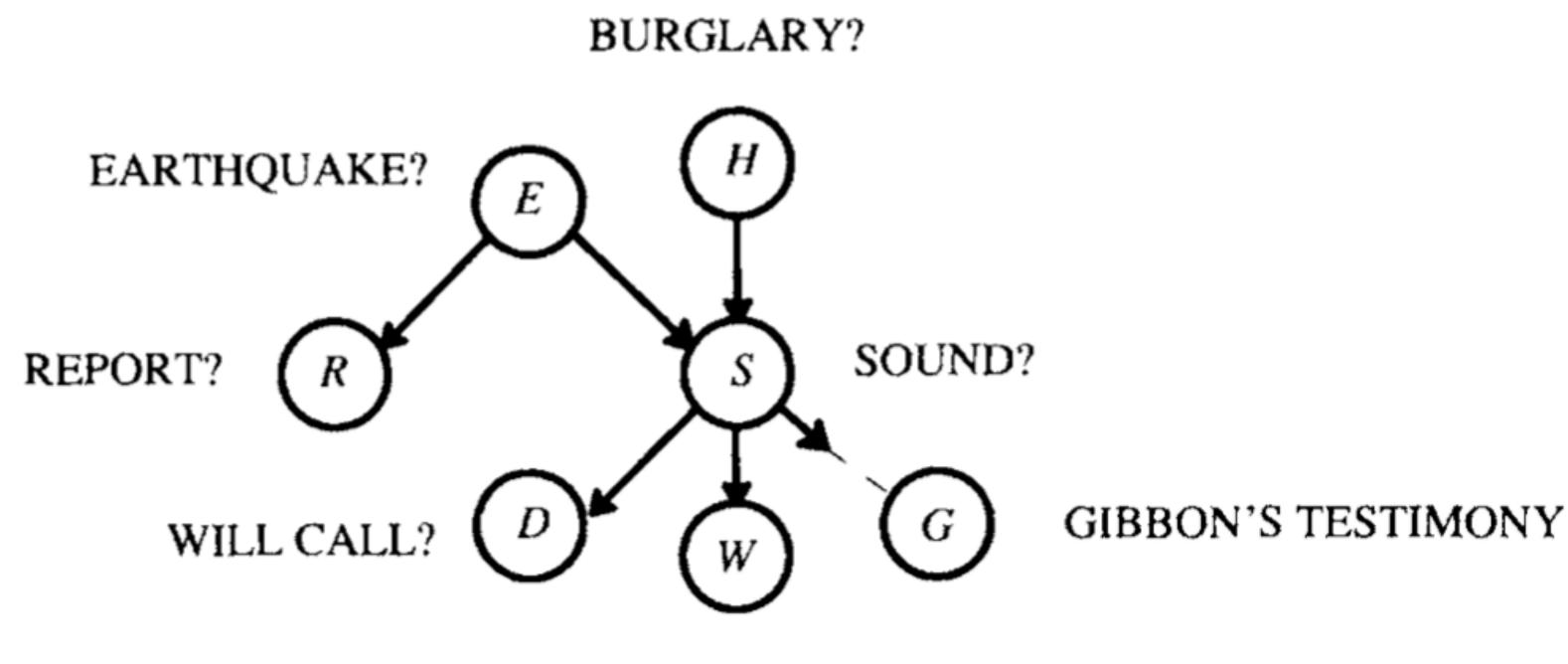
Graph Neural Networks

Demian Wassermann, Inria

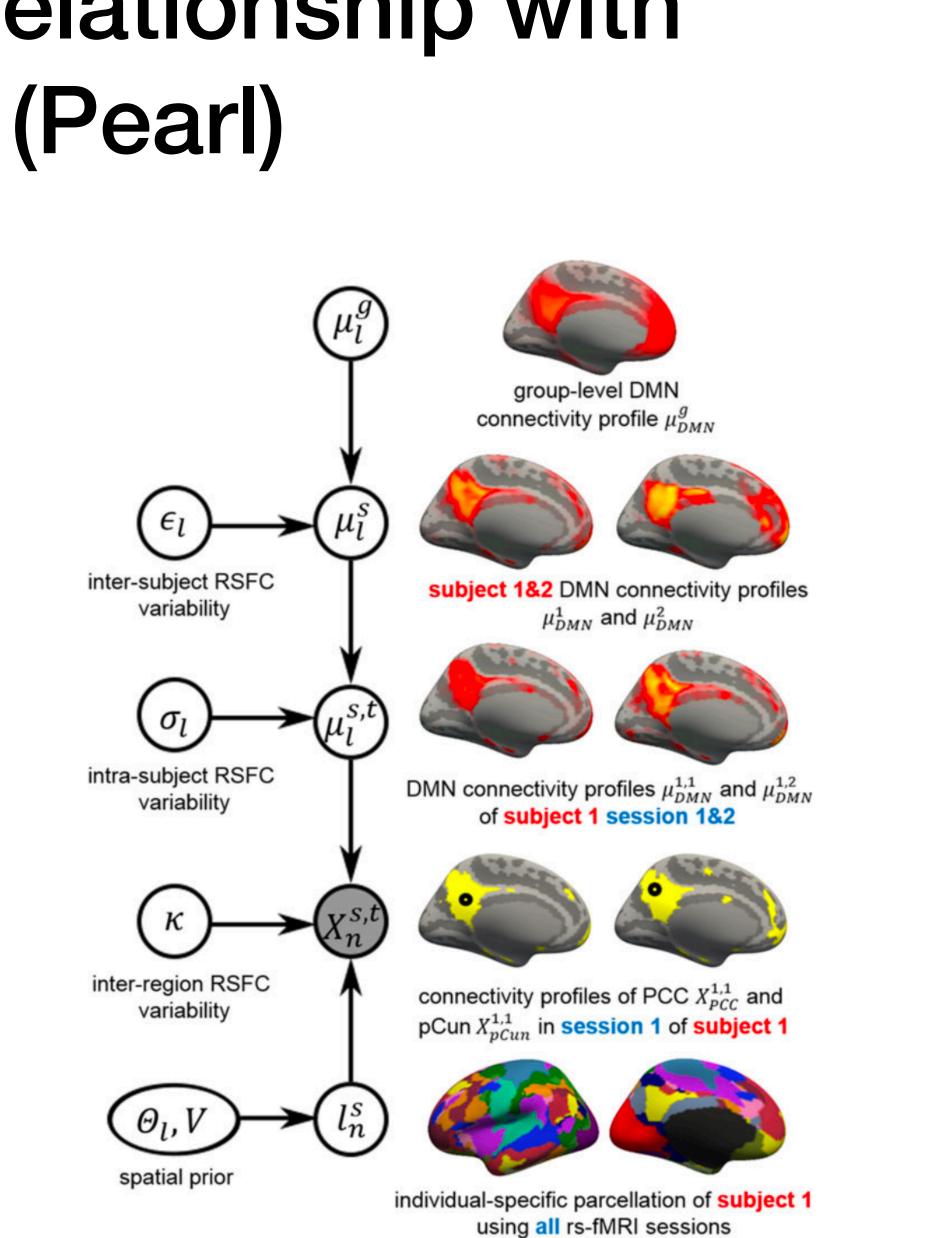
Graphical Models: Discrete Inference and Learning

Introduction to DAG and their relationship with Probability Functions (Pearl)



WATSON'S CALL = TRUE

[Pearl 1987]



[Kong et al 2019]

And the Usual Graph Slide

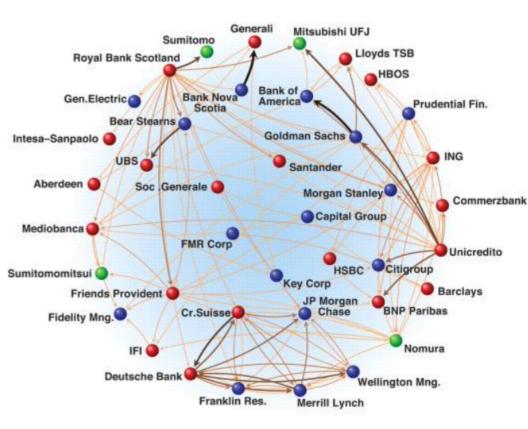


Image credit: <u>Science</u>

Image credit: <u>Medium</u>

Economic Networks Communication Networks **Social Networks**

Image credit: Lumen Learning

Image credit: Missoula Current News

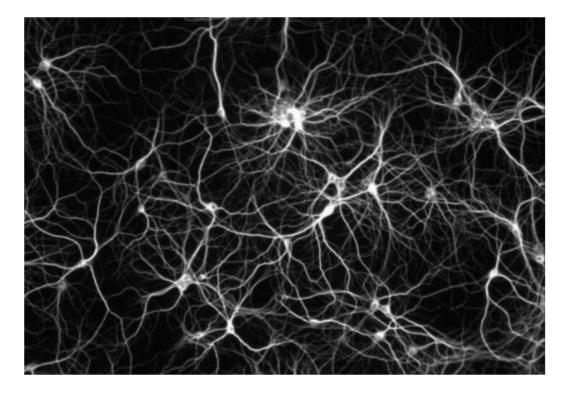
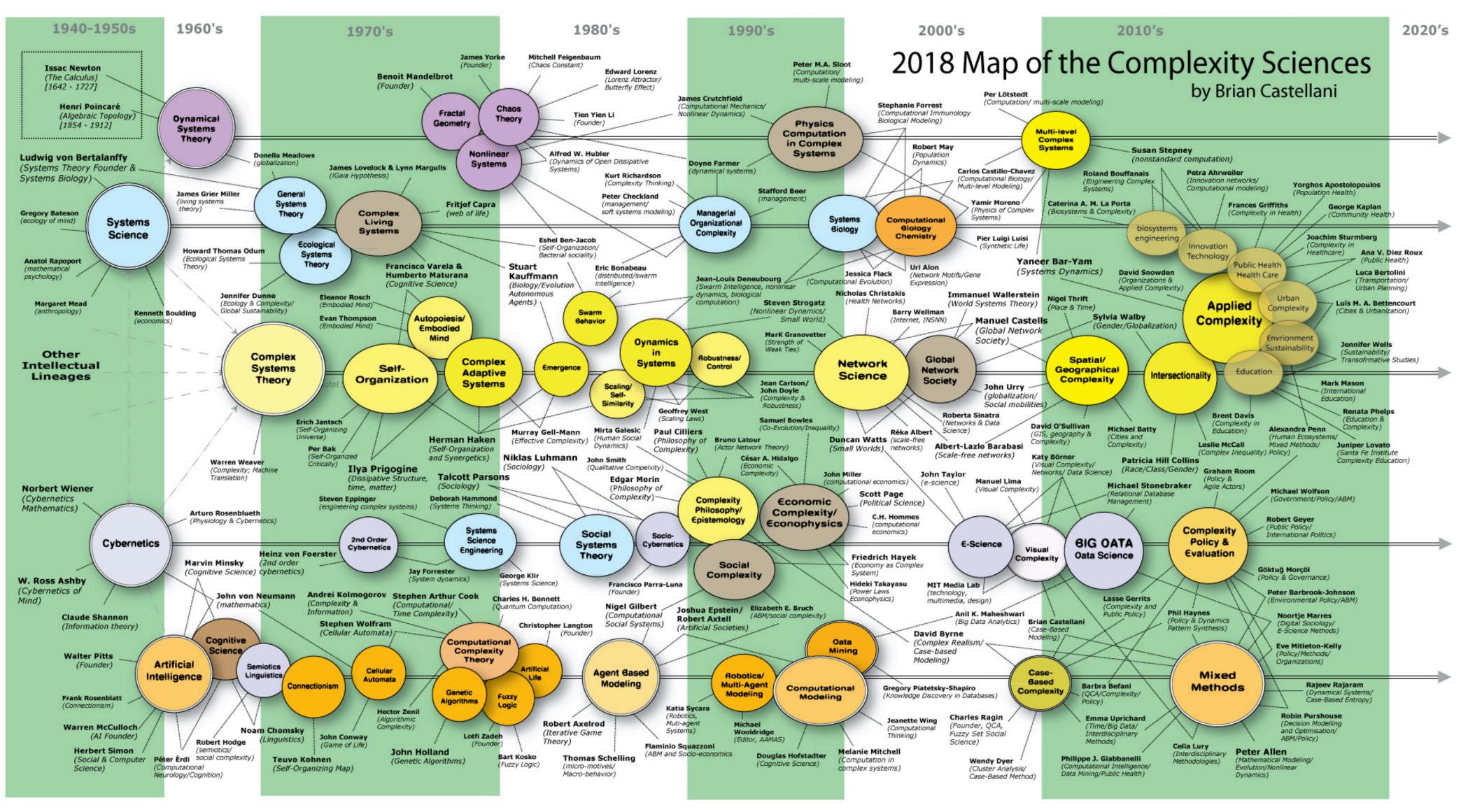


Image credit: The Conversation

Internet

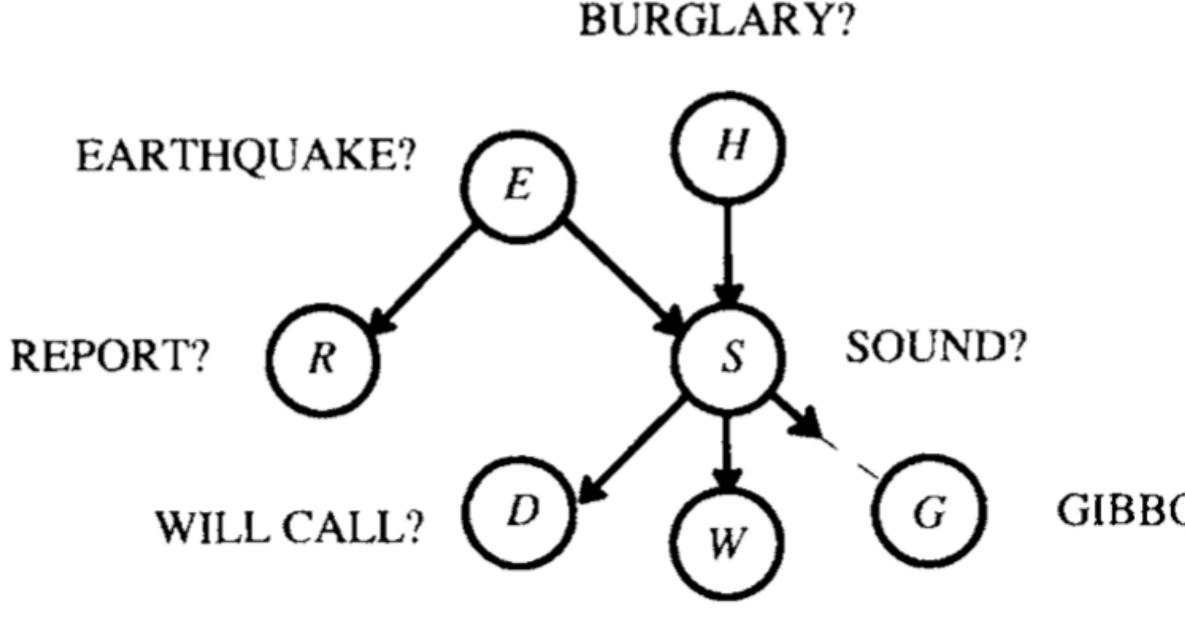
Networks of Neurons

Complex Systems to Understand the World



Wikipedia

Main Epistemological Angles on Graphs and Knowledge



WATSON'S CALL = TRUE

[Pearl 1987]

4 August 1972, Volume 177, Number 4047

SCIENCE

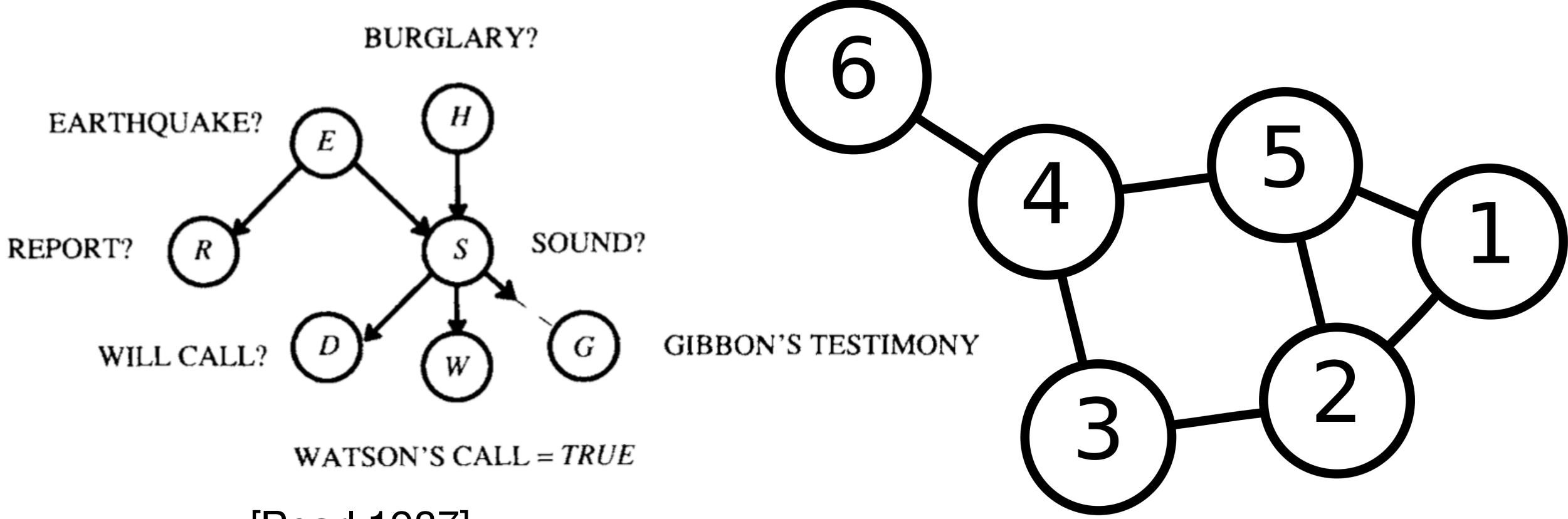
More Is Different

Broken symmetry and the nature of the hierarchical structure of science.

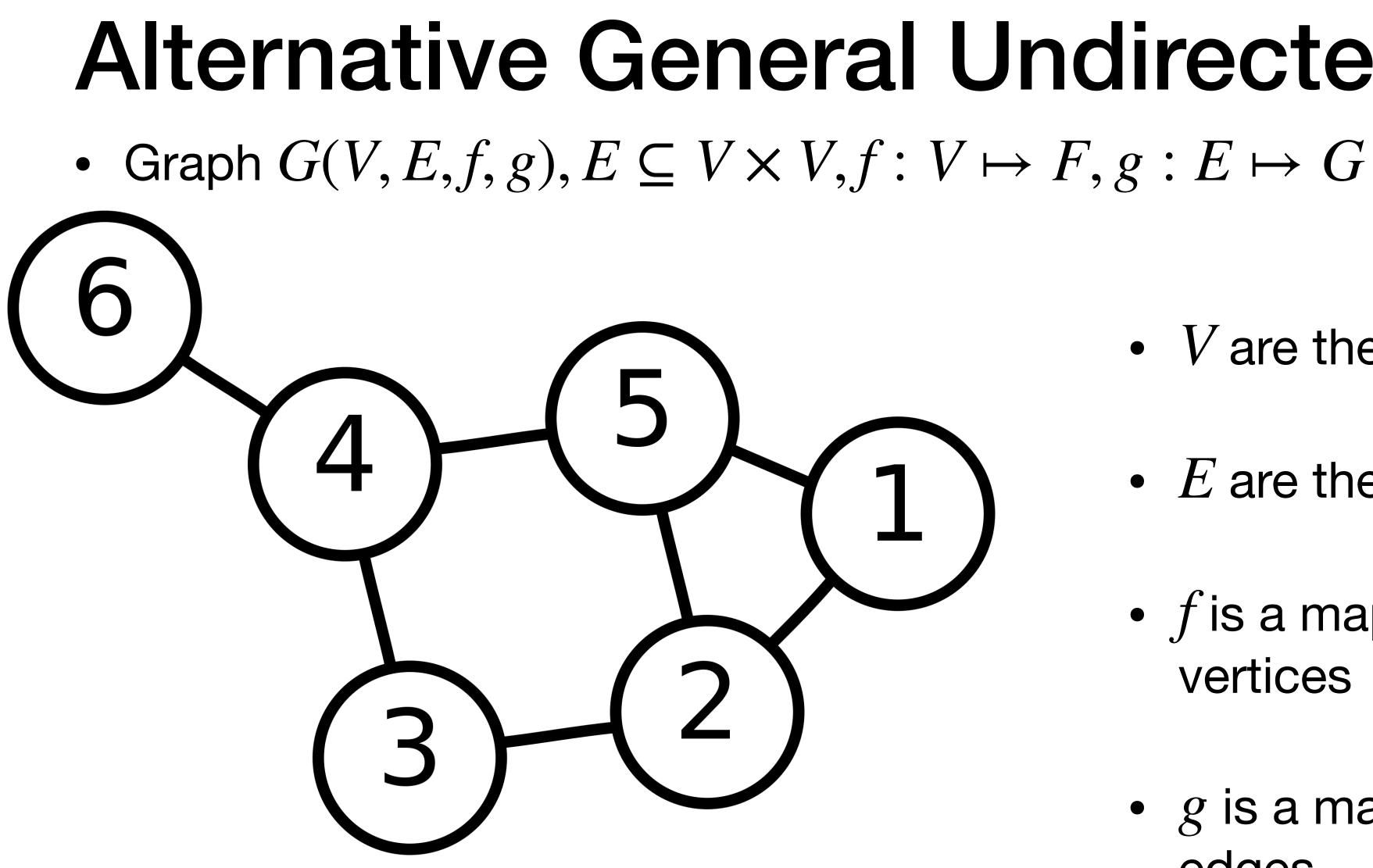
P. W. Anderson

GIBBON'S TESTIMONY

Main Epistemological Angles on Graphs and Knowledge



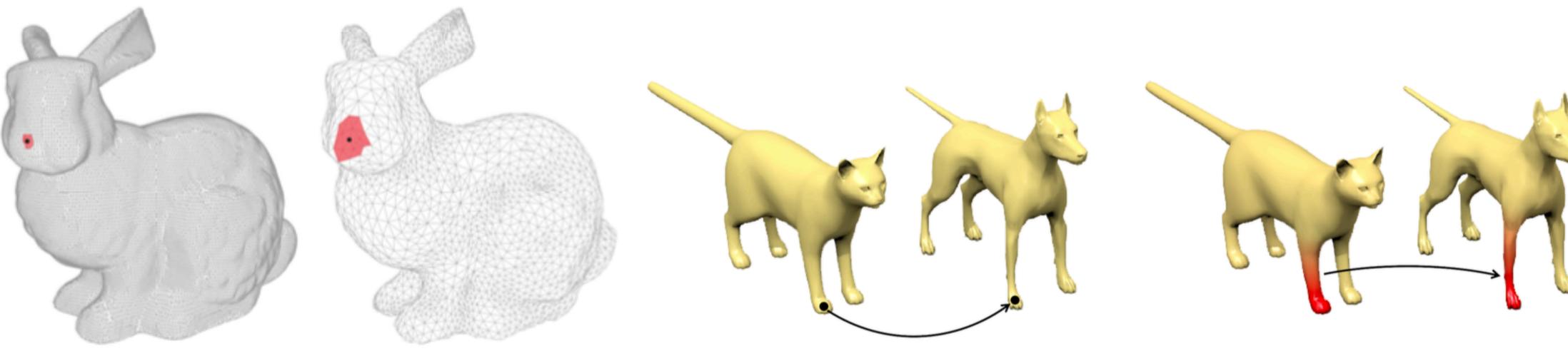
[Pearl 1987]



Alternative General Undirected Graphs

- V are the vertices
- *E* are the edges
- *f* is a mapping of features for vertices
- g is a mapping of features for edges

Structure and Parameterization are Important

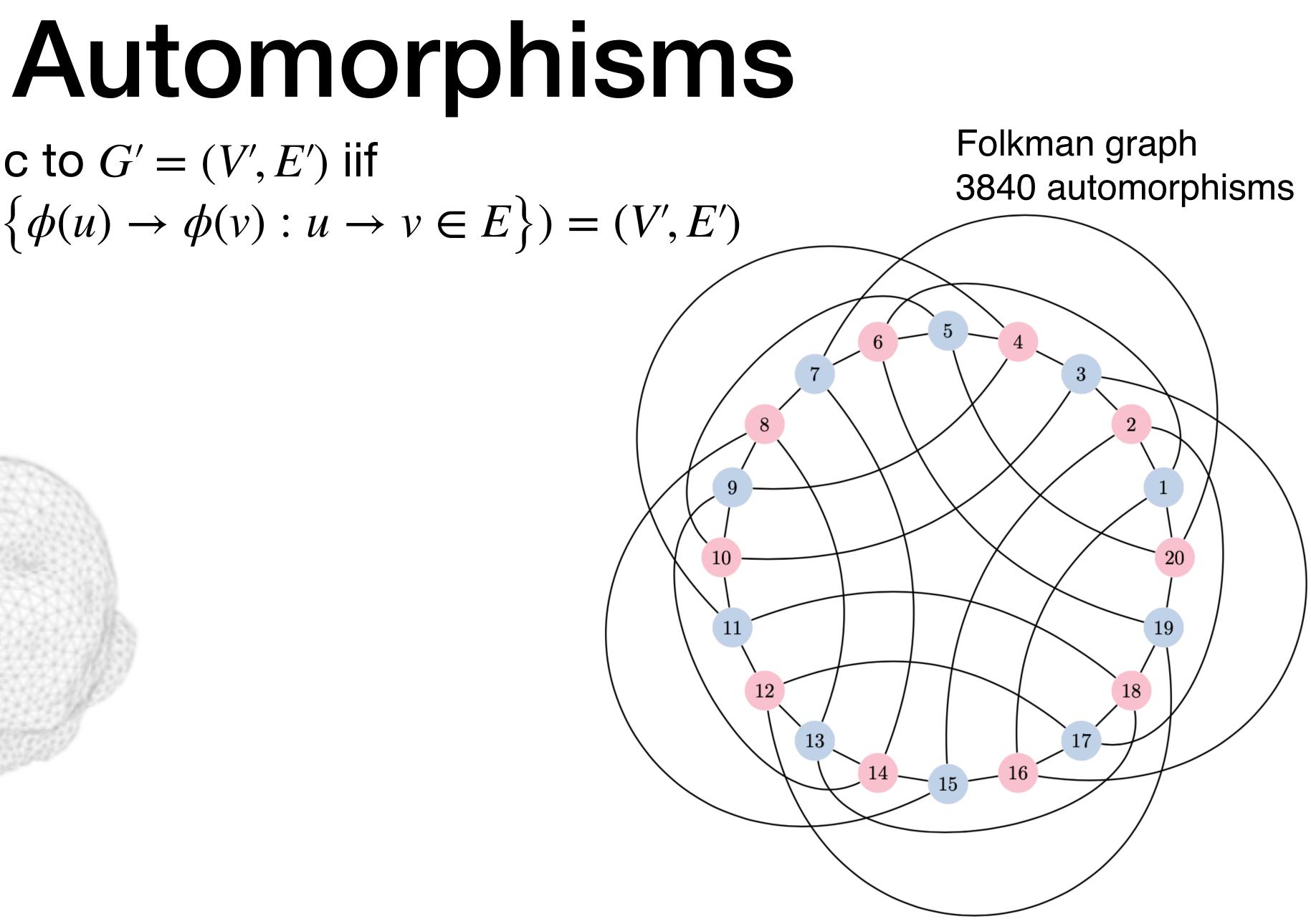


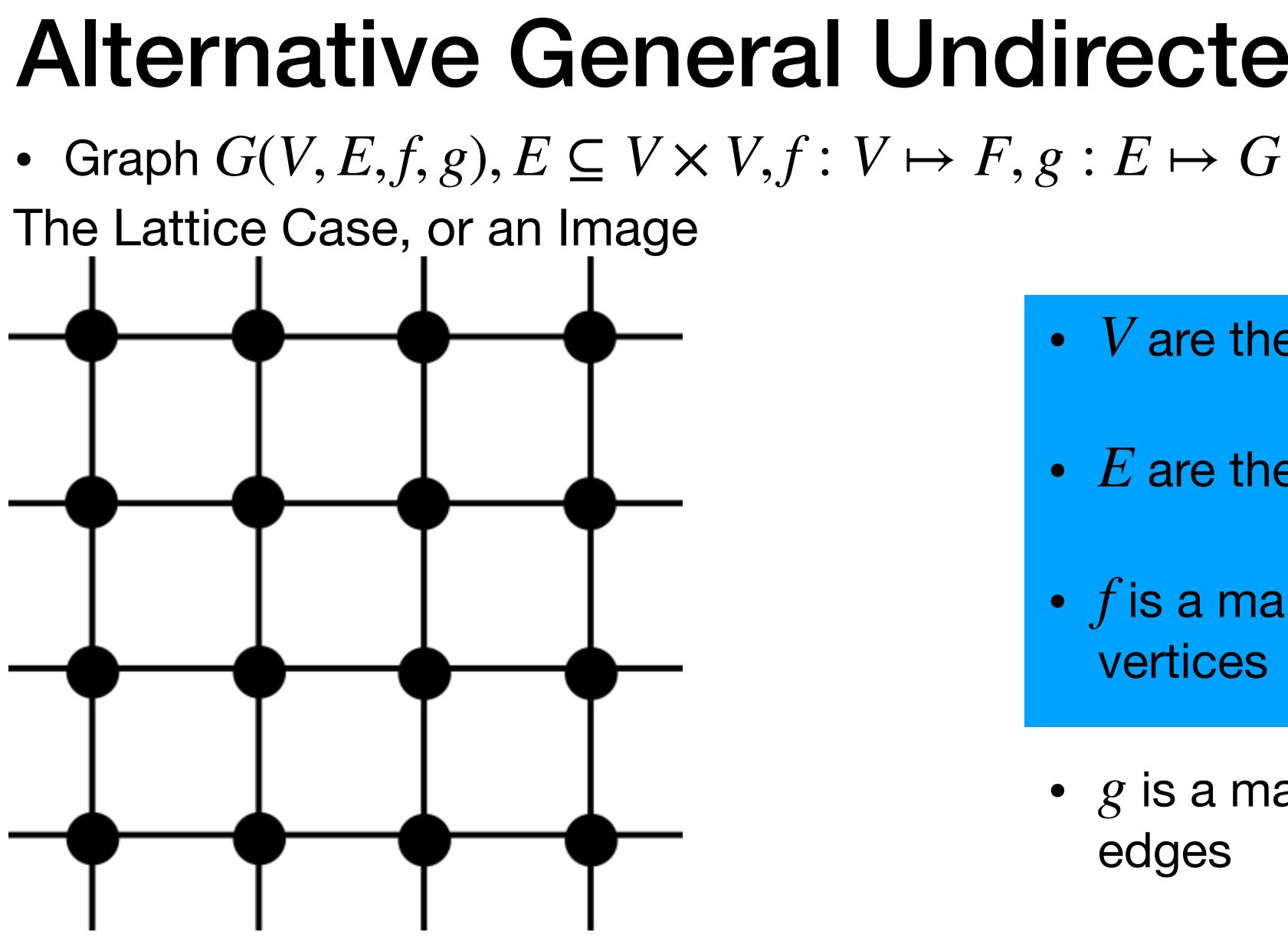
Two Different Resolutions

Point-wise vs Functional Equivalence

[Bronstein et al 2024]

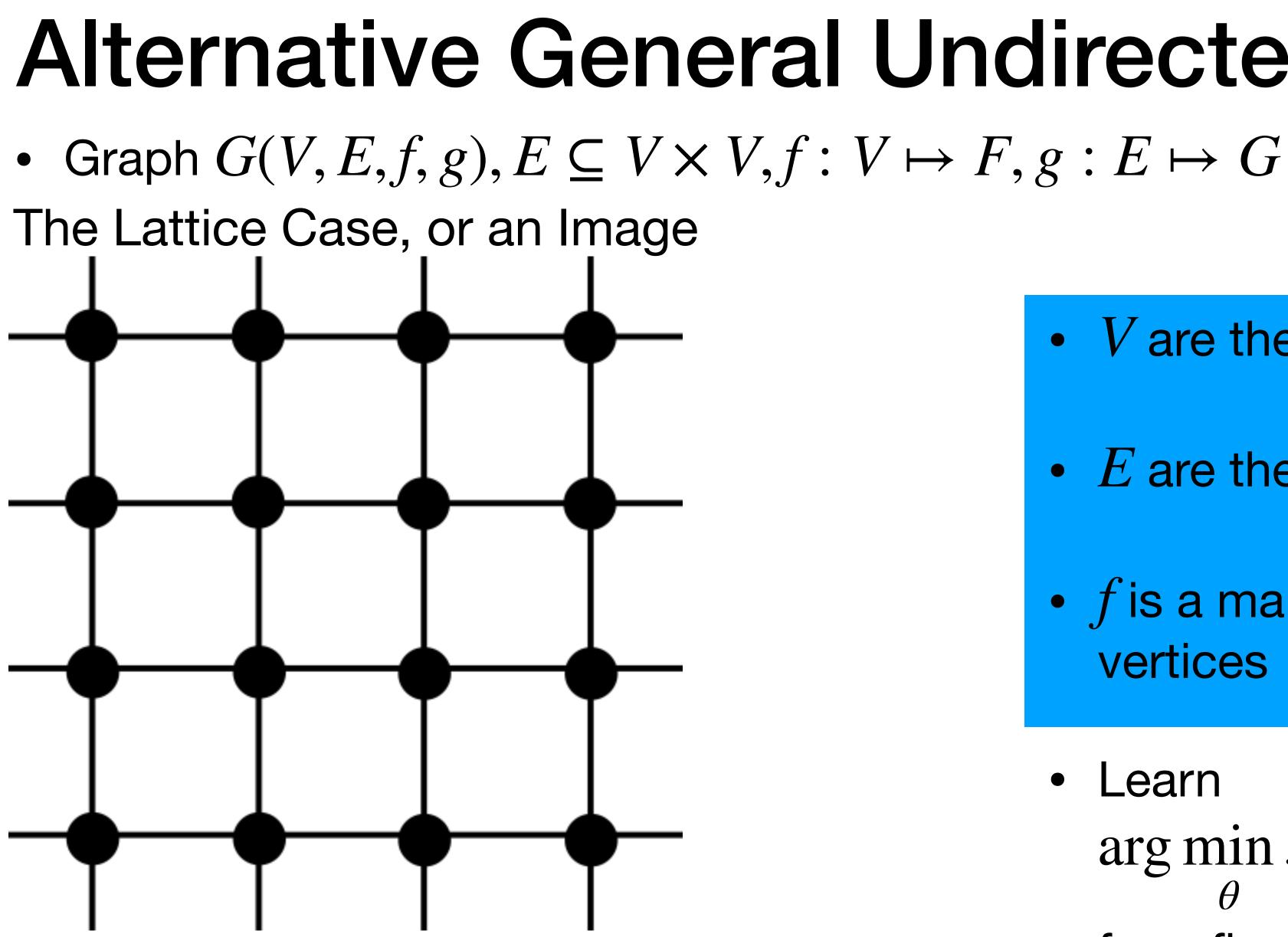
G = (V, E) automorphic to G' = (V', E') if $\exists \phi : V \mapsto V' \text{ s.t. } (\phi(V), \{\phi(u) \to \phi(v) : u \to v \in E\}) = (V', E')$





Alternative General Undirected Graphs

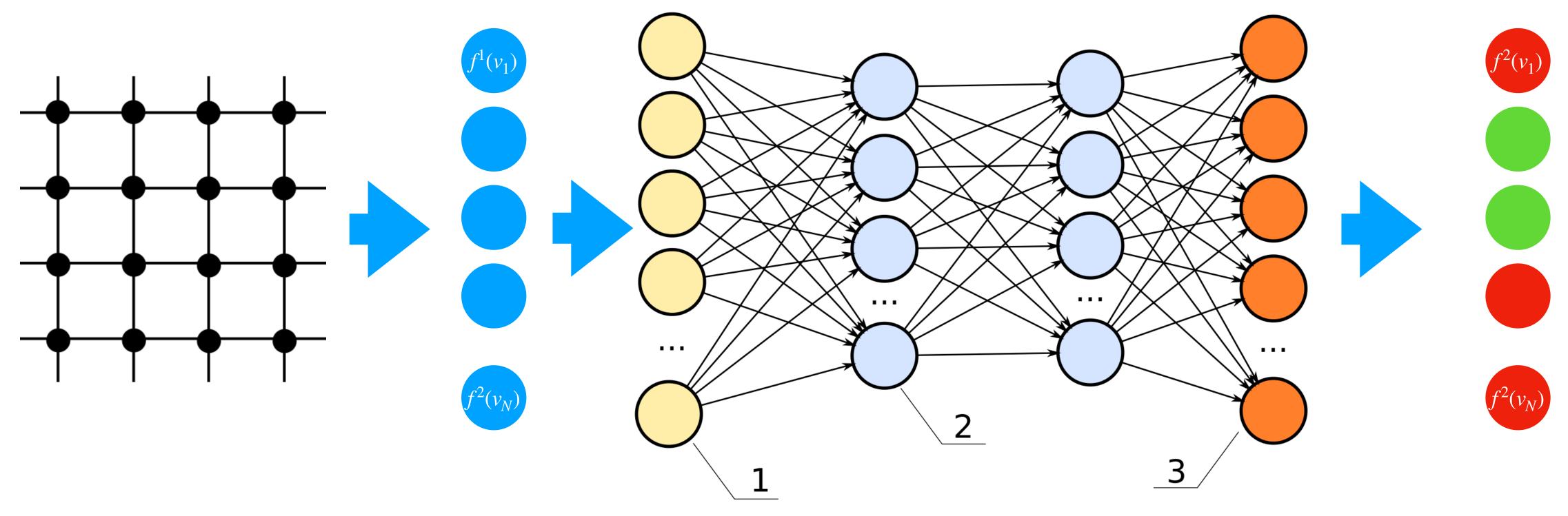
- V are the vertices
- *E* are the edges
- *f* is a mapping of features for vertices
- g is a mapping of features for edges



Alternative General Undirected Graphs

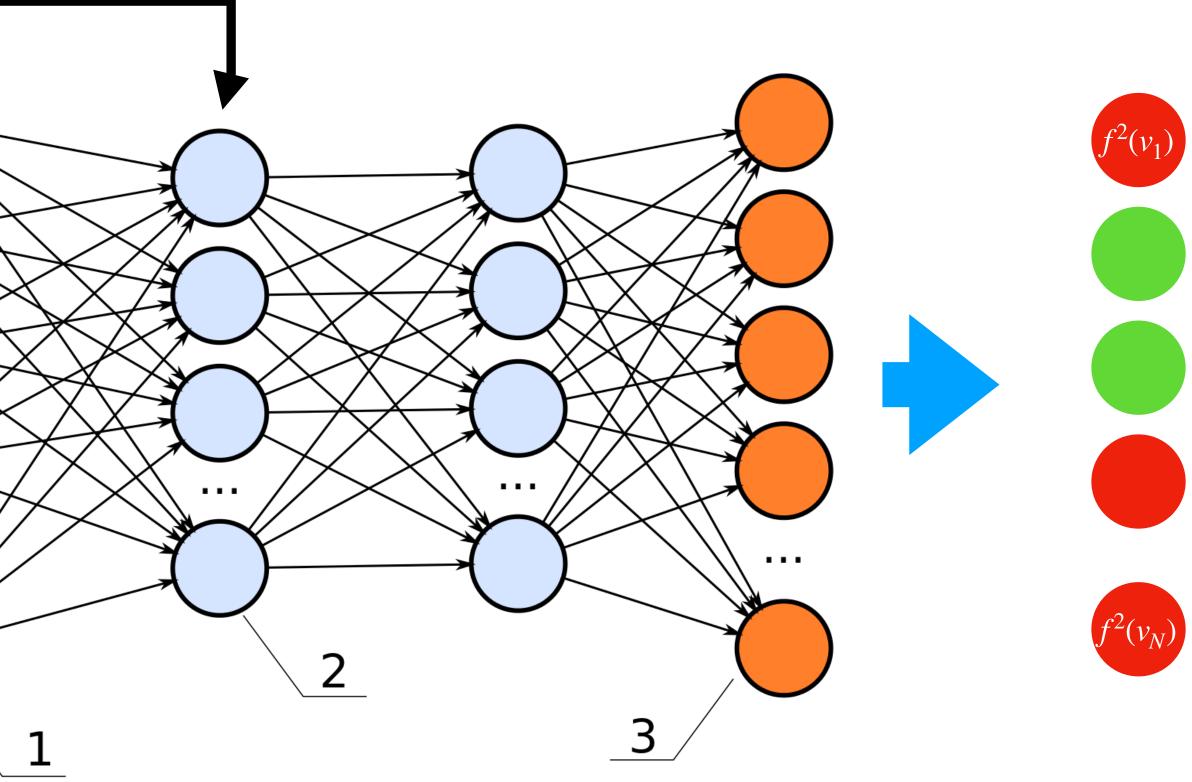
- V are the vertices
- *E* are the edges
- *f* is a mapping of features for vertices
- Learn $\arg\min_{i} \mathscr{L}([f(v_i)]_i, [\phi_{\theta}(v_i)]_i)$ for a fixed ordering i

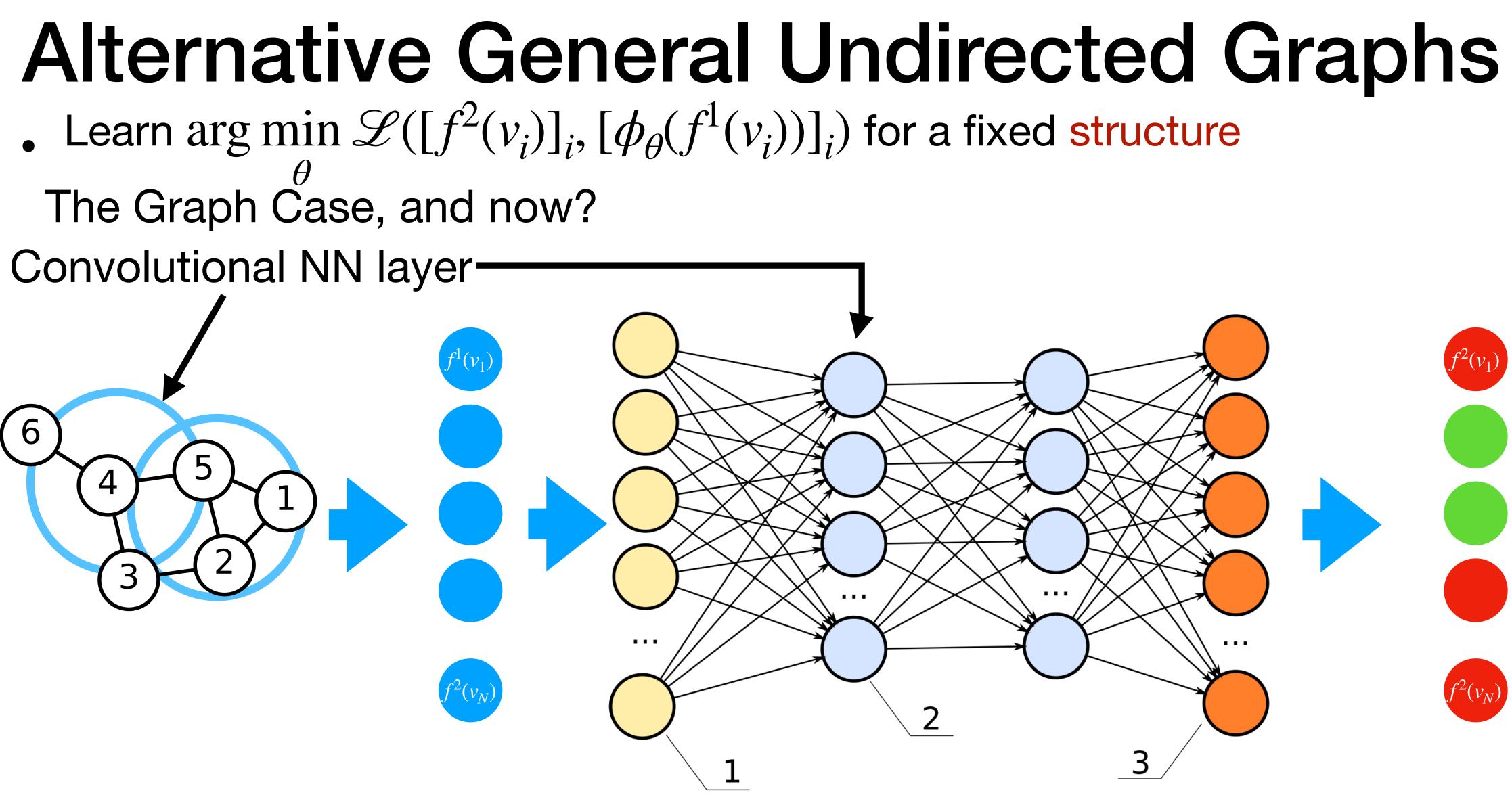
Alternative General Undirected Graphs . Learn $\arg\min \mathscr{L}([f^2(v_i)]_i, [\phi_{\theta}(f^1(v_i))]_i)$ for a fixed ordering *i* The Lattice Case, or an Image



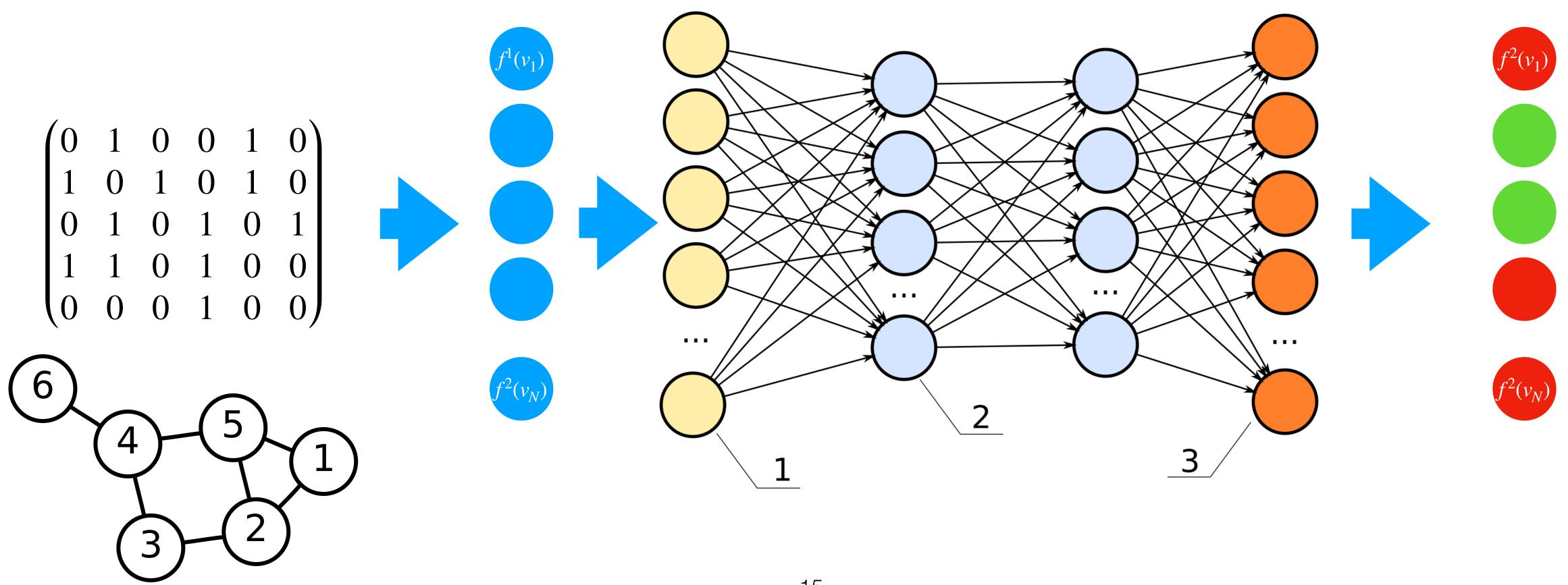
Alternative General Undirected Graphs . Learn $\arg\min_{\theta} \mathscr{L}([f^2(v_i)]_i, [\phi_{\theta}(f^1(v_i))]_i)$ for a fixed ordering *i* The Lattice Case, or an Image Convolutional NN layer

 $f^{1}(v_{1})$

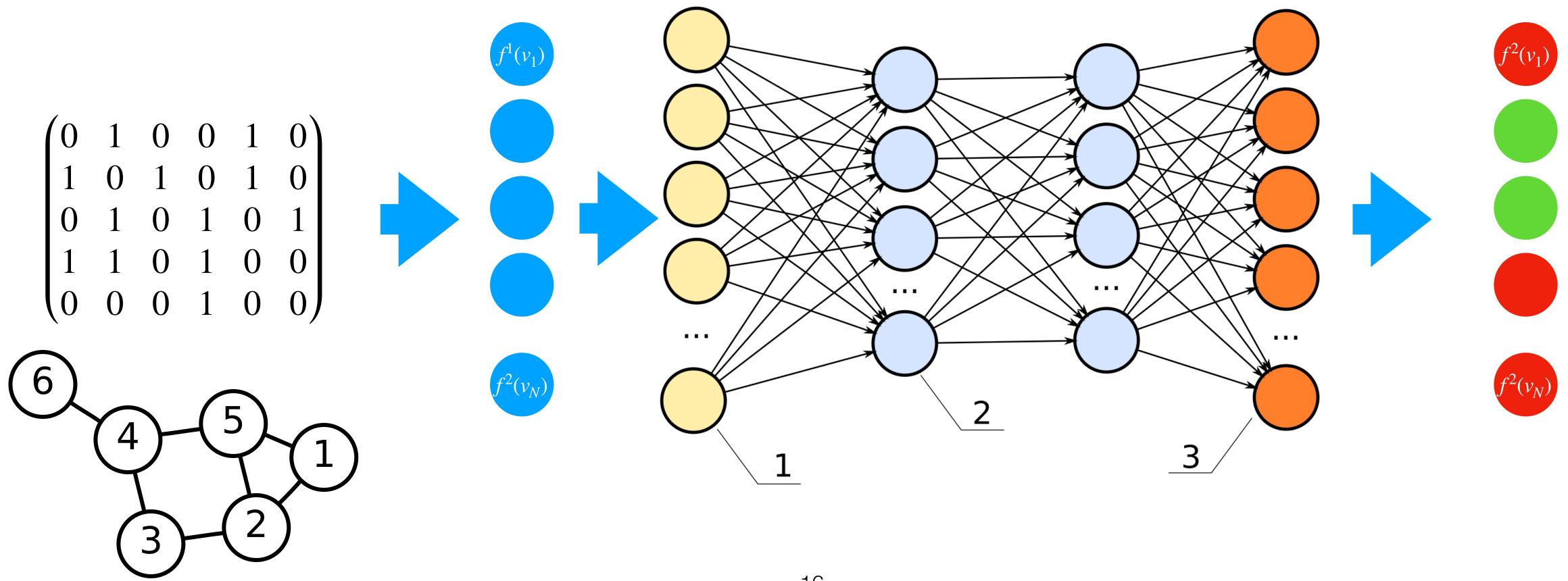




Alternative General Undirected Graphs • Learn arg min $\mathscr{L}([f^2(v_i)]_i, [\phi_{\theta}(f^1(v_i))]_i)$ for a fixed structure The Graph Case, use the affinity matrix

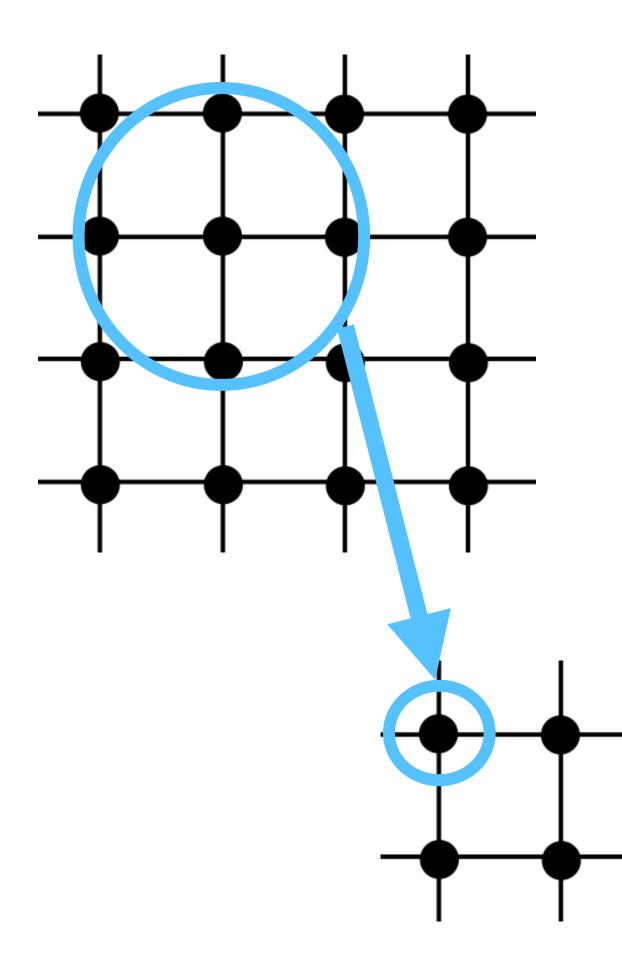


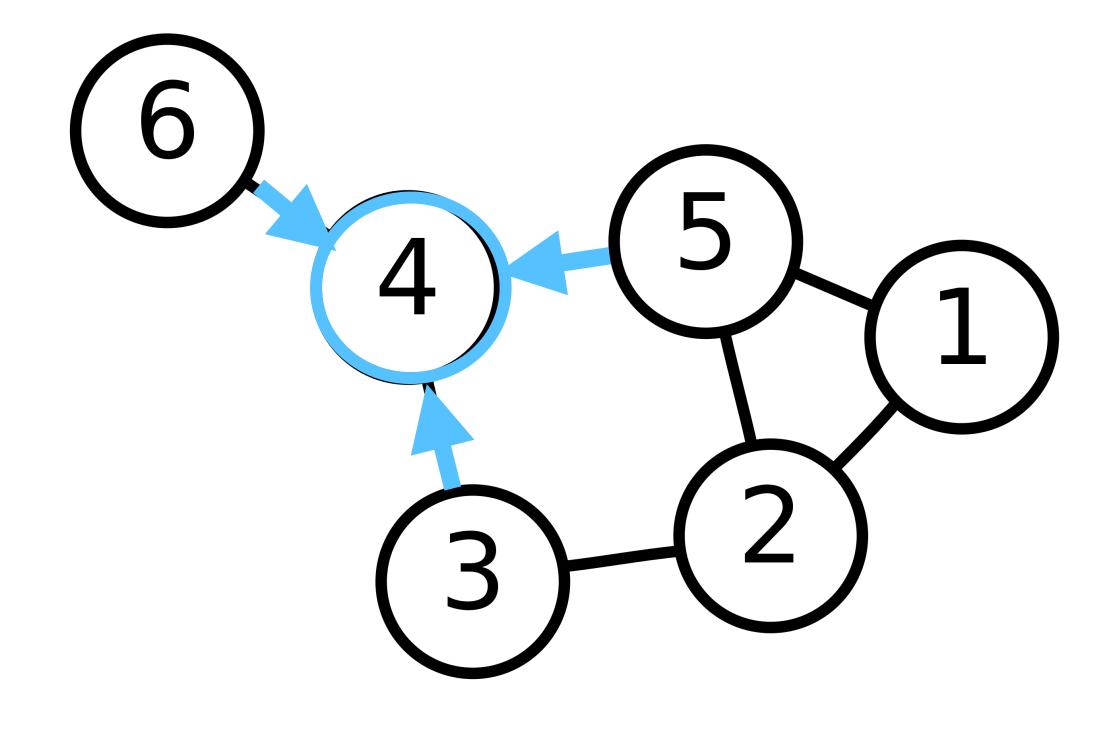
Alternative General Undirected Graphs • Learn arg min $\mathscr{L}([f^2(v_i)]_i, [\phi_{\theta}(f^1(v_i))]_i)$ for a fixed structure Issues O(|V|) Parameters The Graph Case, use the affinity matrix



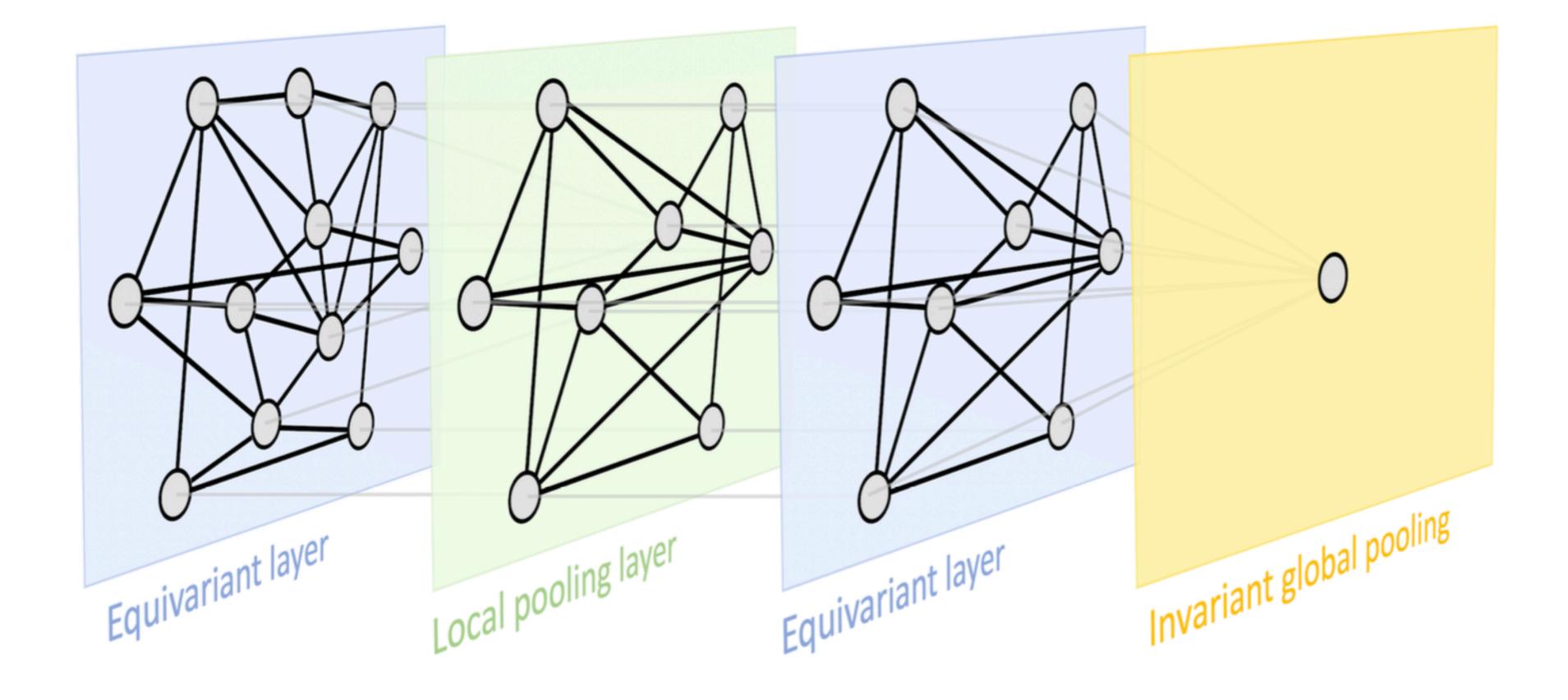
- Not applicable different sizes
- Sensitive to node ordering

Convolutions on Graphs: Message Passing

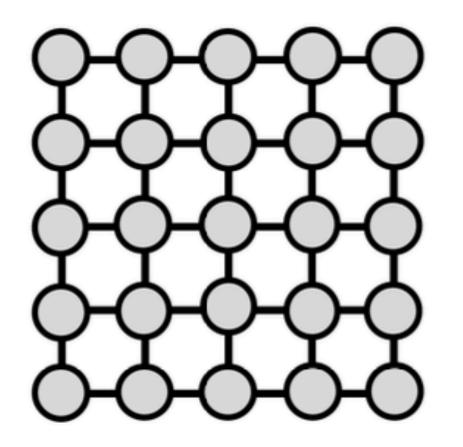




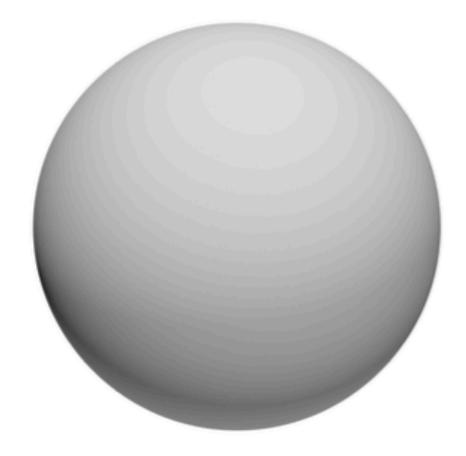
The Blueprint (Bronstein et al 2023)



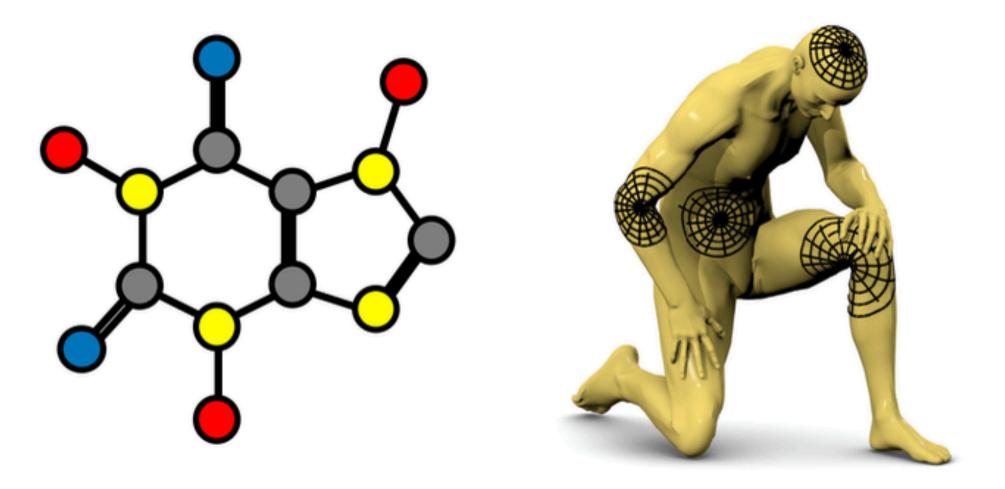
The 5G of Geometric/Graph DL



Grids



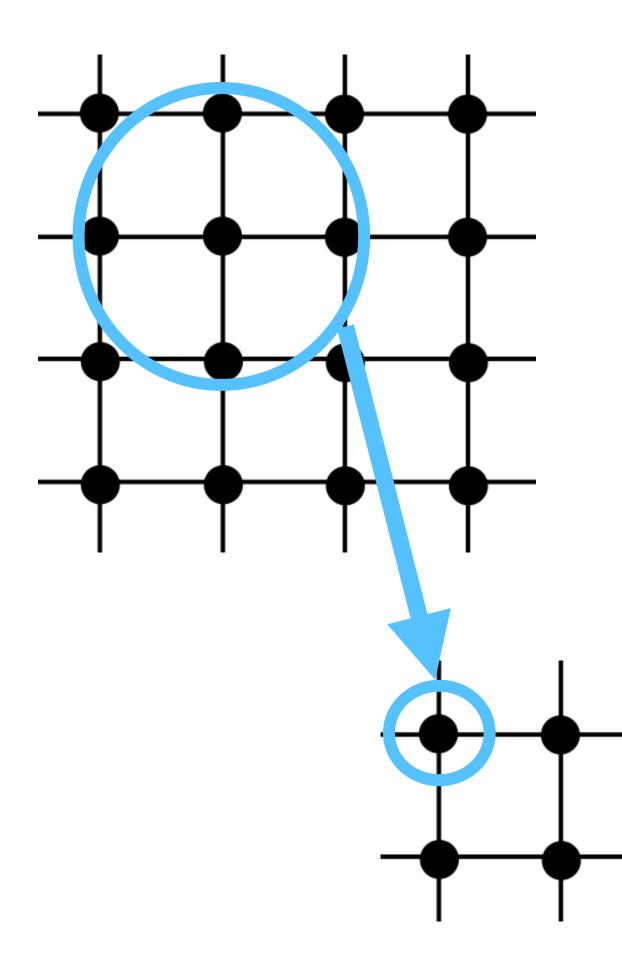
Groups

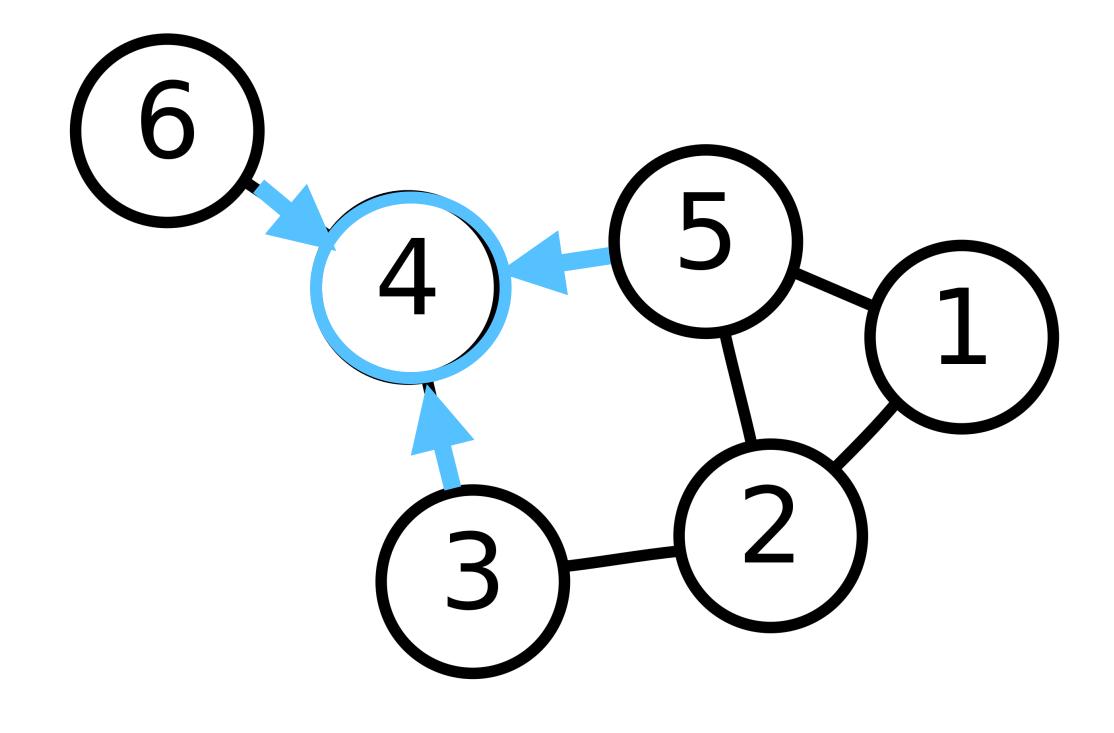


Graphs

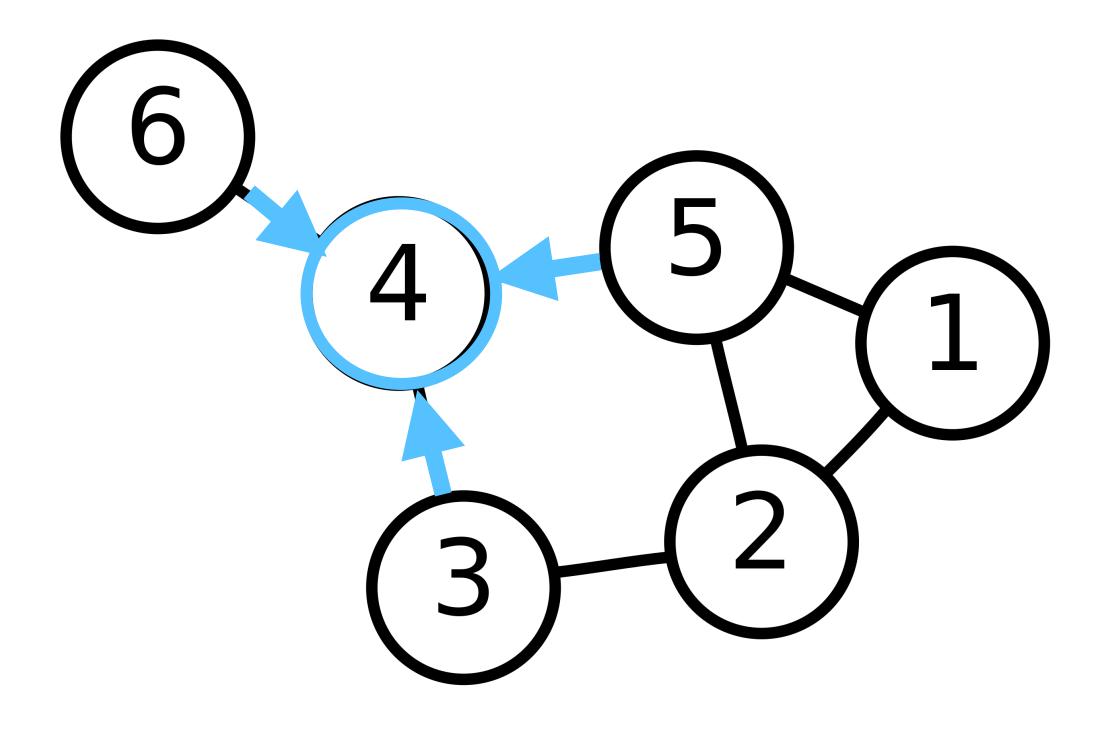
Geodesics & Gauges

Convolutions on Graphs: Message Passing





Convolutions on Graphs: Message Passing



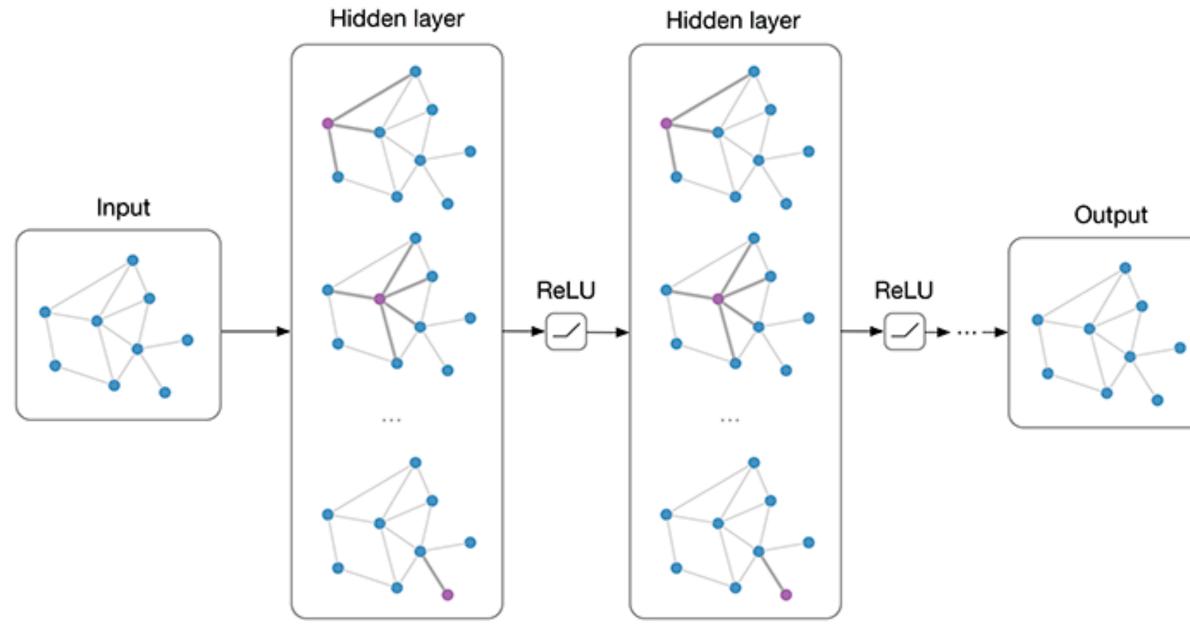


Image from T. Kipf's blog. Kipf et al. ICLR 2017

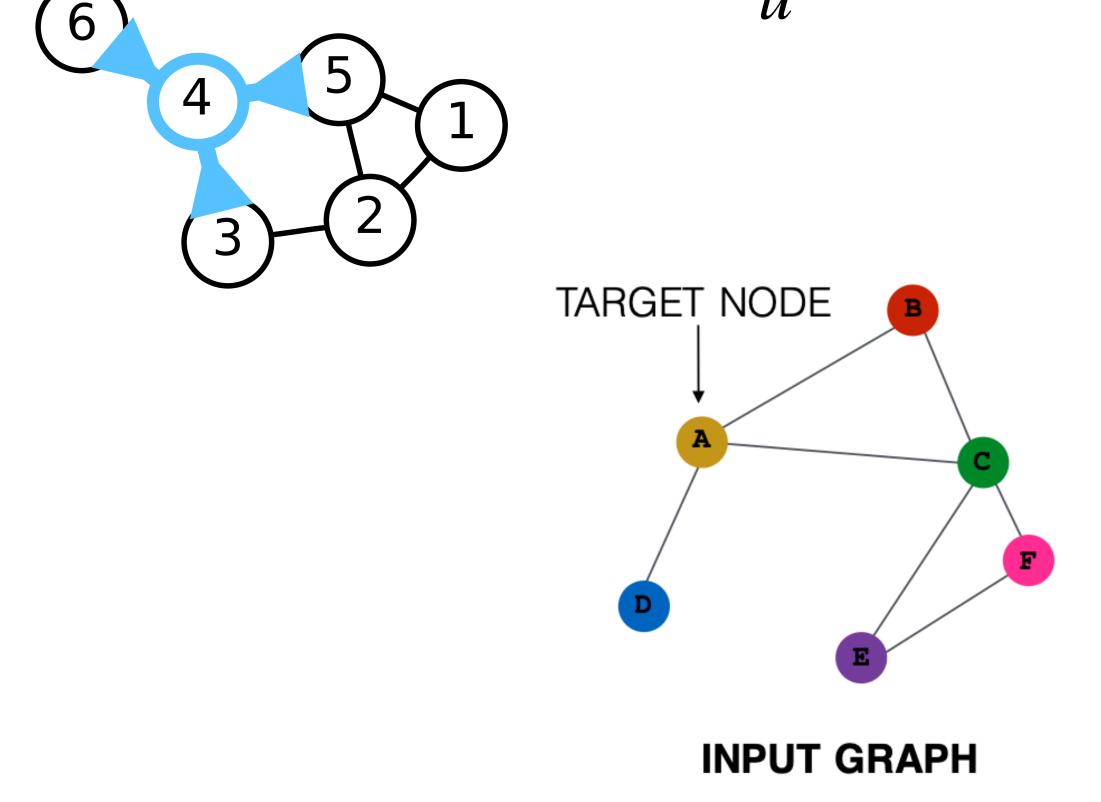
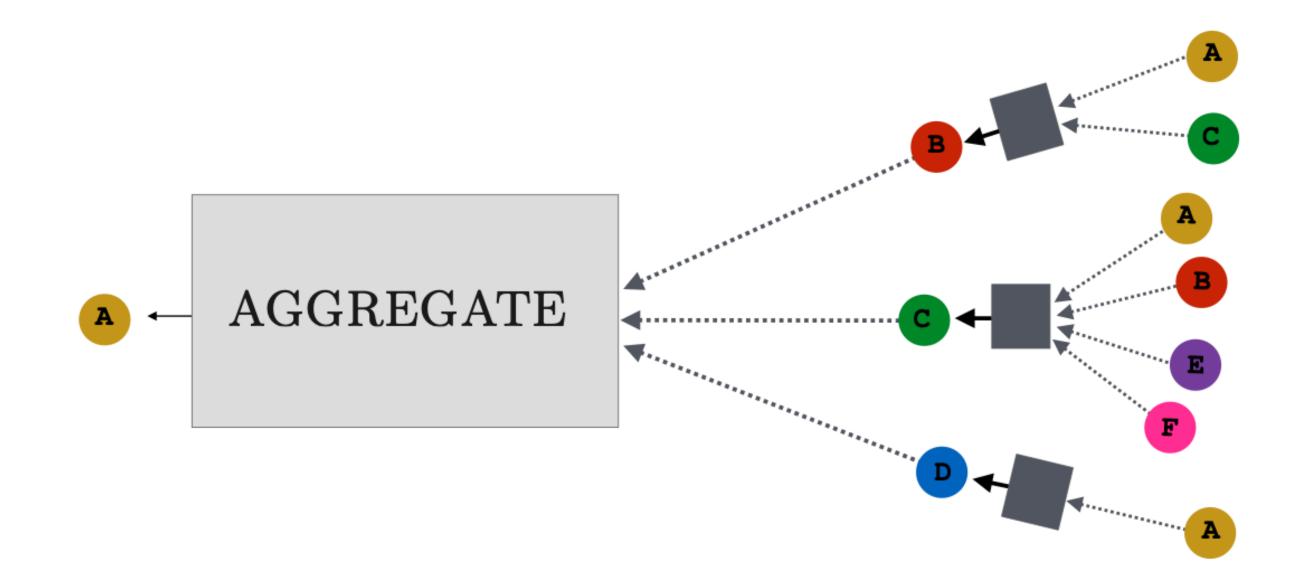


Image from Hamilton, "Graph Representation Learning Book"

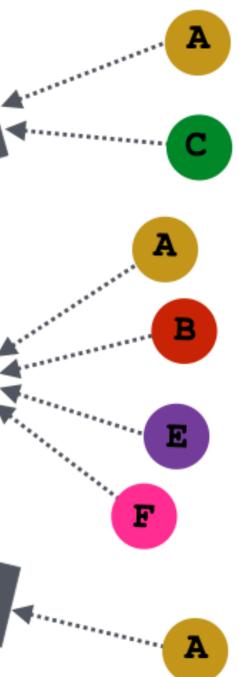
Convolutions on Graphs: Message Passing $h_u^{(k+1)} = update^{(k)}(h_u^{(k)}, agg_{v \in \mathcal{N}(u)}^{(k)}h_v^{(k)})$



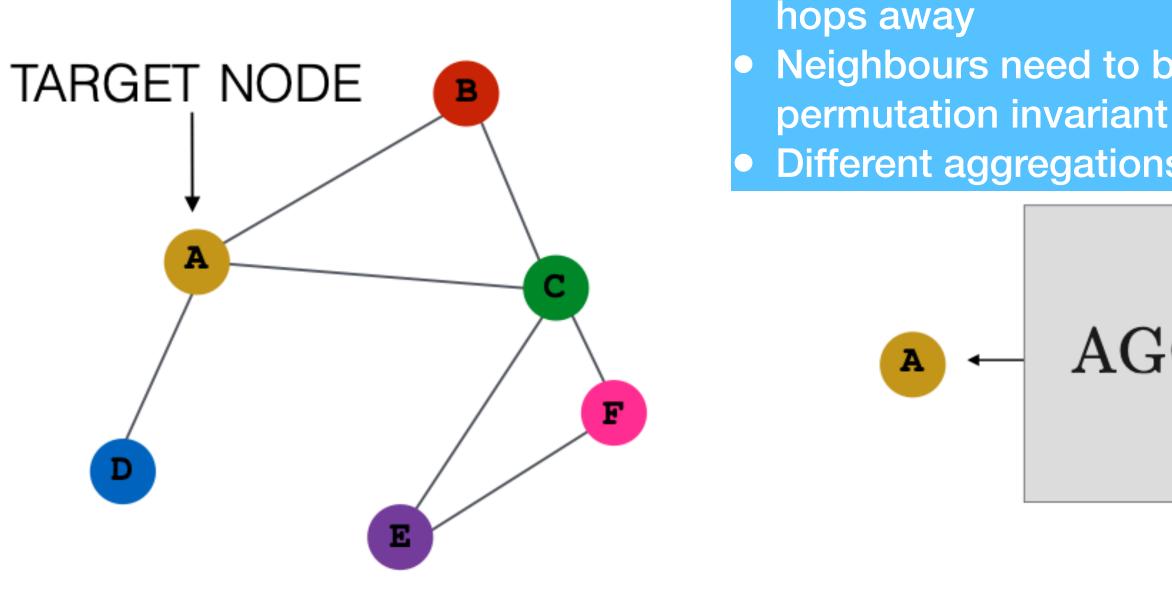
Convolutions on Graphs: Message Passing $h_u^{(k+1)} = update^{(k)}(h_u^{(k)}, agg_{v \in \mathcal{N}(u)}^{(k)}h_v^{(k)})$ **Main Points** Each gray block is a trainable network Each node has a different architecture Some will have the same TARGET NODE В We can learn over different architectures Α AGGREGATE •••• F

INPUT GRAPH

Image from Hamilton, "Graph Representation Learning Book"



Convolutions on Graphs: Message Passing $h_u^{(k+1)} = update^{(k)}(h_u^{(k)}, agg_{v \in \mathcal{N}(u)}^{(k)}h_v^{(k)})$



INPUT GRAPH

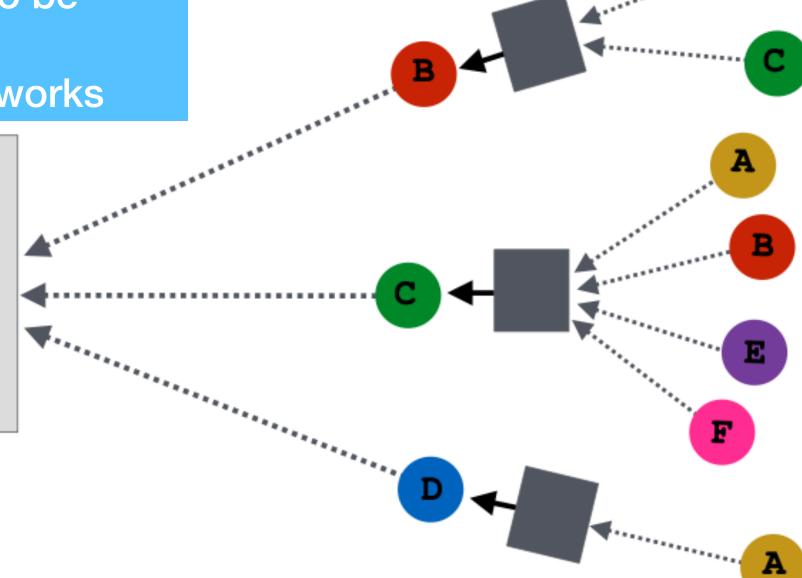
Image from Hamilton, "Graph Representation Learning Book"

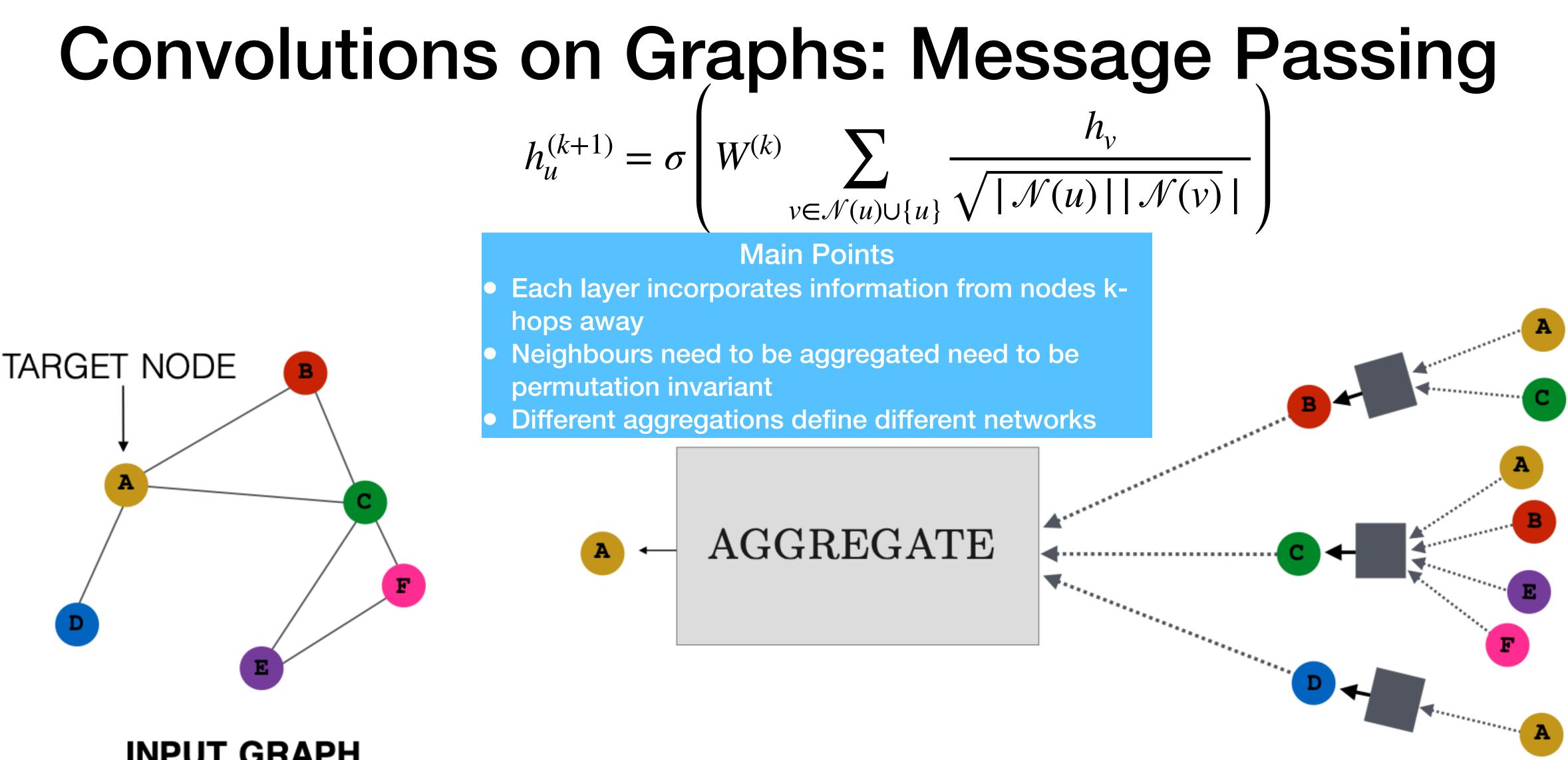
Main Points Each layer incorporates information from nodes k-

Neighbours need to be aggregated need to be

Different aggregations define different networks

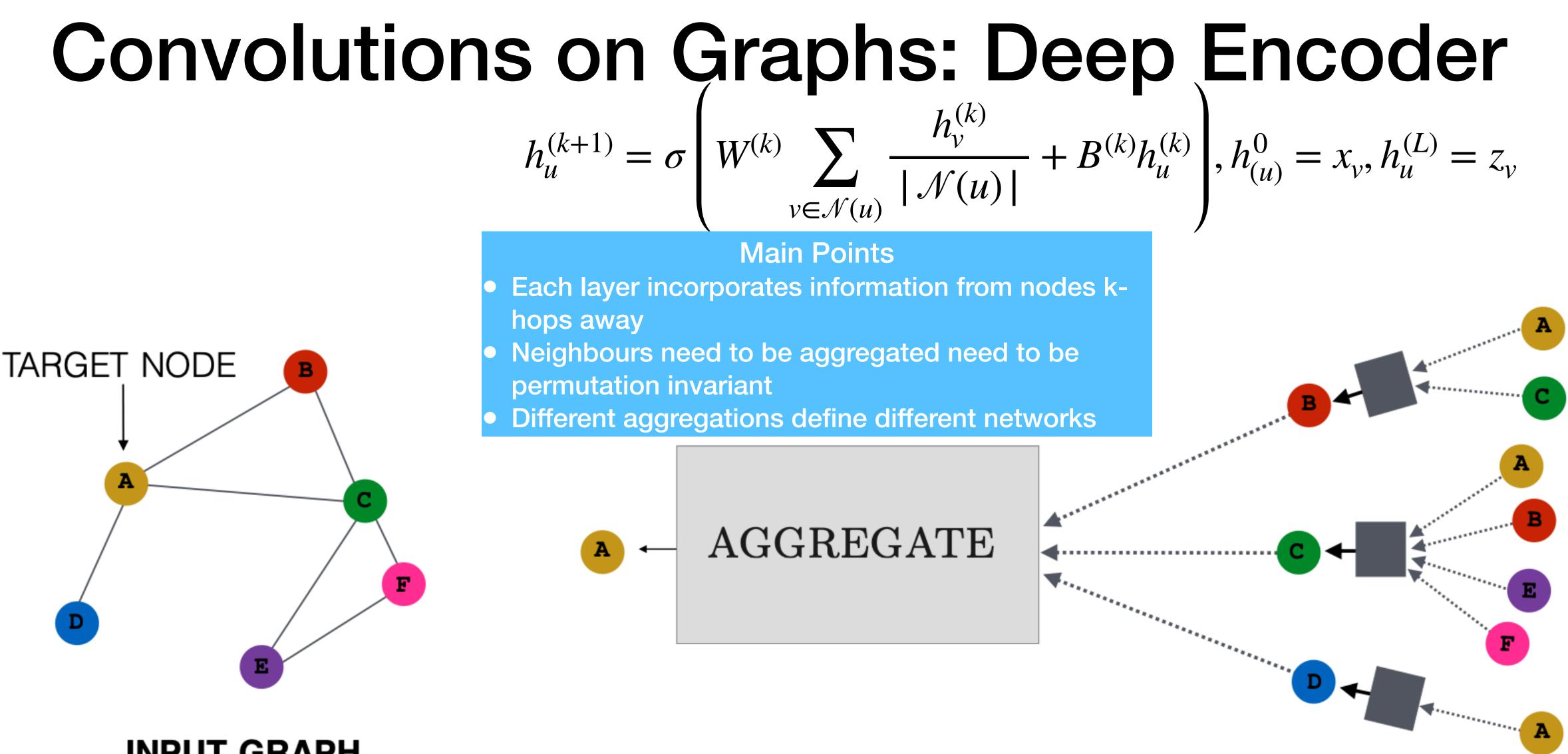
AGGREGATE





INPUT GRAPH

Image from Hamilton, "Graph Representation Learning Book"



INPUT GRAPH

Image from Hamilton, "Graph Representation Learning Book"

Convolutions on Graphs: Deep Encoder $h_{u}^{(k+1)} = \sigma \left[W^{(k)} \sum_{v \in \mathcal{N}(u)} \frac{h_{v}^{(k)}}{|\mathcal{N}(u)|} + B^{(k)} h_{u}^{(k)} \right],$

- Feed $W^{(k)}$ and $B^{(k)}$ to a loss and minimise with Stochastic gradient descent The matrices need to be shared across nodes

- In general, we can do this in matrix form $H^{(k)} = [h_i^{(k)}]_i$, define the diagonal degree matrix $D_{u,u} = Deg(u) = |\mathcal{N}(u)|$ • Then, $H^{(k+1)} = \sigma(D^{-1}AH^{(k)}W^{k^T} + H^{(k)}B^{k^T})$
- $D^{-1}A$ is sparse
- If the aggregation function is complex, the matrix formulation does not work

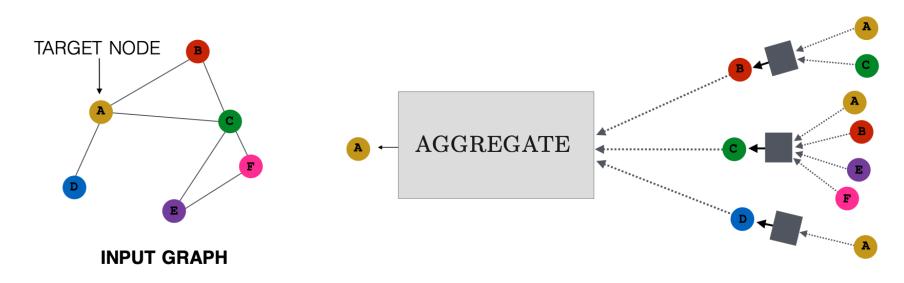
$$h_{(u)}^{0} = x_{v}, h_{u}^{(L)} = z_{v}$$

To train this model:

Convolutions on Graphs: Deep Encoder

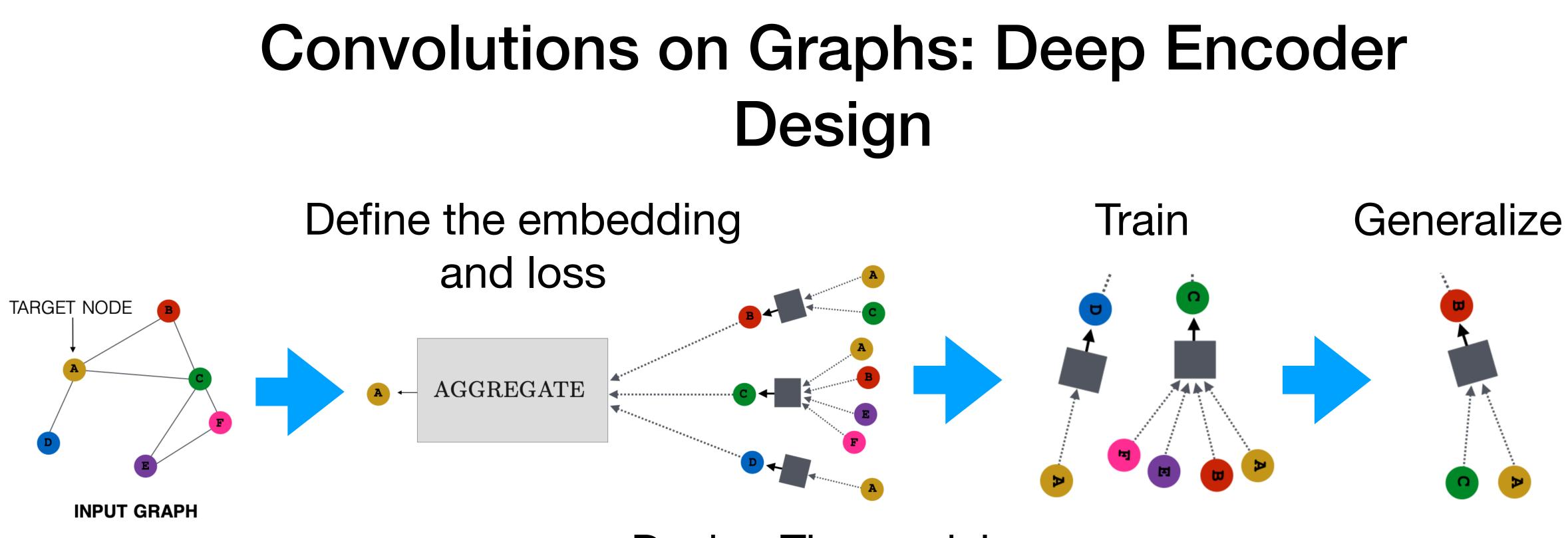
 $H^{(k+1)} = \sigma(D^{-1}AH^{(k)}W^{k^{T}} + H^{(k)}B^{k^{T}}), h_{\mu}^{(L)} = z_{\nu}$

- Supervised learning $\arg\min \mathscr{L}(Y, f(z_v))$
 - Example for classification with cross entropy loss $\mathcal{L} = \sum y_u \log(\sigma(z_u^T \theta)) + (1 - y_u) \log(1 - \sigma(z_u^T \theta))$ \mathcal{U}
- nodes u and v are similar



To train this model:

• For unsupervised learning $\mathscr{L} = sum_{u,v}CE(y_{u,v}, DEC(z_u, z_v))$ where $y_{u,v} = 1$ if



- 1. Define the embedding: define a neighbourhood aggregation function
- 2. Define a loss function on the embedding and batch-train
- 3. Train the model on batch-computed graphs. Which are selected from a node batch + subgraph
- 4. Generate embeddings for nodes. This is applicable to different graphs and nodes

Design The model:

Convolutions on Graphs: Results

Published as a conference paper at ICLR 2017

SEMI-SUPERVISED CLASSIFICATION WITH **GRAPH CONVOLUTIONAL NETWORKS**

Thomas N. Kipf University of Amsterdam T.N.Kipf@uva.nl 🗹

Max Welling

University of Amsterdam Canadian Institute for Advanced Research (CIFAR) M.Welling@uva.nl

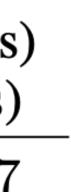
Method

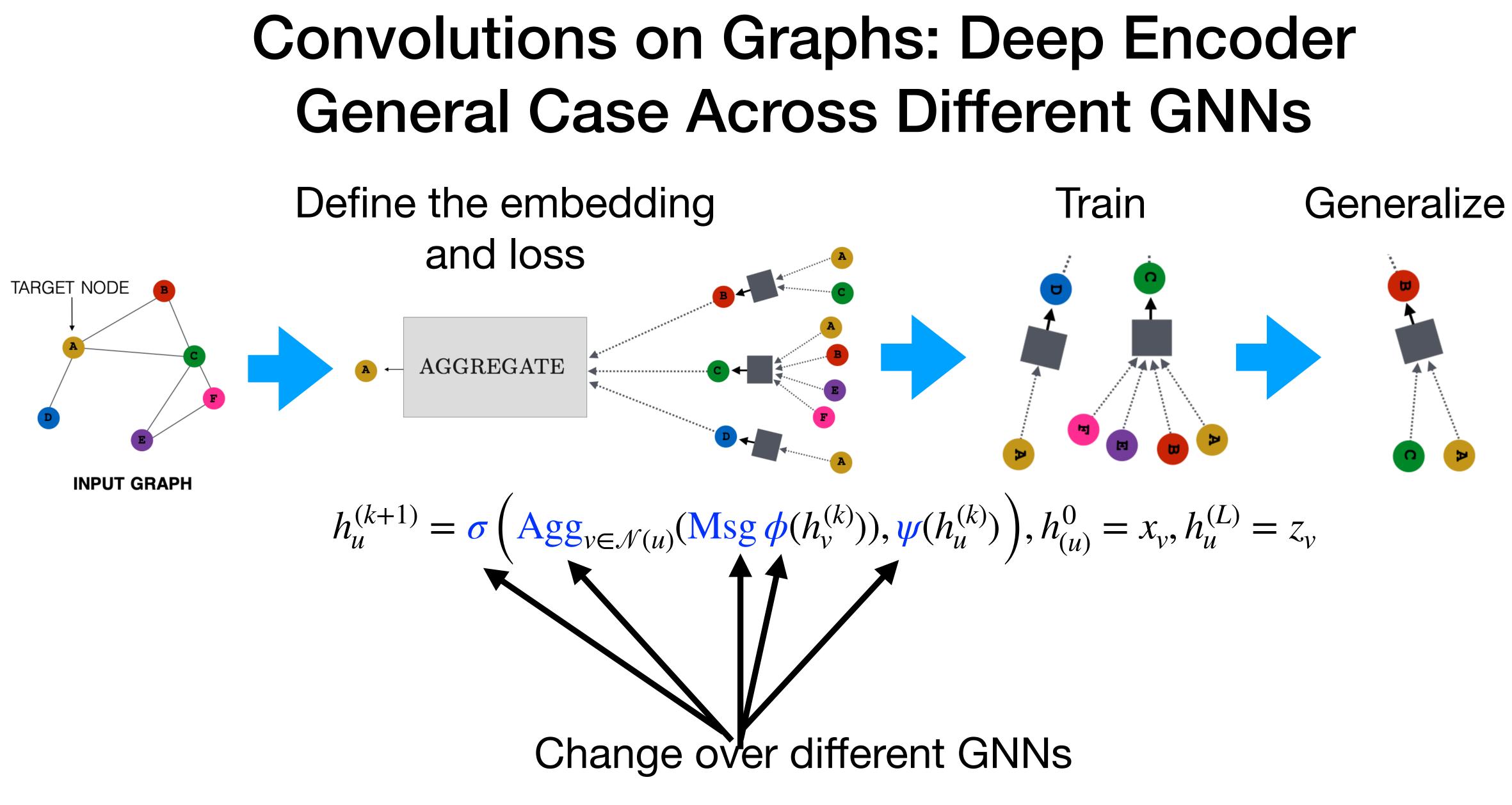
ManiReg [3] SemiEmb^[28] LP [32] DeepWalk [22] ICA [18] Planetoid* [29] GCN (this paper

GCN (rand. splits)

Summary of results in terms of classification accuracy (in percent).

	Citeseer	Cora	Pubmed	NELL
	60.1	59.5	70.7	21.8
	59.6	59.0	71.1	26.7
	45.3	68.0	63.0	26.5
	43.2	67.2	65.3	58.1
	69.1	75.1	73.9	23.1
	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s
r)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
ts)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7





Convolutions on Graphs: Deep Encoder General Case Across Different GNNs

 $h_u^{(k+1)} = \sigma \left(\operatorname{Agg}_{v \in \mathcal{N}(u)}(\operatorname{Msg} \phi(h)) \right)$

GCN

- σ is the sigmoid function
- Msg is the weighting of nodes $W^{(k+1)}h_v^{(k)}$
- Agg is the average
- ϕ is the identity function
- ψ is null

$$(h_v^{(k)})), \psi(h_u^{(k)})), h_{(u)}^0 = x_v, h_u^{(L)} = z_v$$

GraphSage

- σ is the sigmoid function
- Msg is the weighting of nodes $W^{(k+1)}h_{v}^{(k)}$
- Agg is two-stage
 - Aggregate from networks
 - Different aggregation with the node itself
- ϕ is the identity function
- ψ is null

Convolutions on Graphs: Deep Encoder General Case Across Different GNNs

$$h_{u}^{(k+1)} = \sigma \left(Agg_{v \in \mathcal{N}(u)}(Msg \phi(h_{v}^{(k)})), \psi(h_{u}^{(k)}) \right), h_{(u)}^{0} = x_{v}, h_{u}^{(L)} = z_{v}$$

GraphSage

- σ is the sigmoid function sometimes $\sigma(x) = \sigma\left(\frac{x}{\|x\|_2}\right)$
- Msg is the weighting of nodes $W^{(k-1)}$
- Agg is two-stage
 - Aggregate from networks
 - Different aggregation with the node itself
- ϕ is the identity function
- ψ is null

GraphSage Aggregations

$$(+1)h_{v}^{(k)}$$

- Mean, like GCN
- Pool, by applying a non-identity Ф
 - LSTM aggregations

GraphSage: Results

Inductive Representation Learning on Large Graphs

William L. Hamilton* wleif@stanford.edu

Rex Ying* rexying@stanford.edu

Jure Leskovec jure@cs.stanford.edu

Department of Computer Science Stanford University Stanford, CA, 94305

Table 1: Prediction results for the three datasets (micro-averaged F1 scores). Results for unsupervised and fully supervised GraphSAGE are shown. Analogous trends hold for macro-averaged scores.

Name

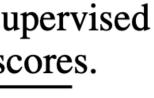
Random Raw feat DeepWal DeepWal GraphSA

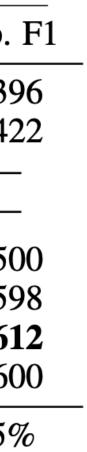
GraphSA

GraphSA GraphSA

% gain o

1			0			0
	Citation		Reddit		PPI	
	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1	Unsup. F1	Sup.
n	0.206	0.206	0.043	0.042	0.396	0.39
atures	0.575	0.575	0.585	0.585	0.422	0.42
alk	0.565	0.565	0.324	0.324		
alk + features	0.701	0.701	0.691	0.691		
AGE-GCN	0.742	0.772	0.908	0.930	0.465	0.50
AGE-mean	0.778	0.820	0.897	0.950	0.486	0.59
AGE-LSTM	0.788	0.832	0.907	0.954	0.482	0.61
AGE-pool	0.798	0.839	0.892	0.948	0.502	0.60
over feat.	39%	46%	55%	63%	19%	45%





Convolutions on Graphs: Deep Encoder General Case Across Different GNNs

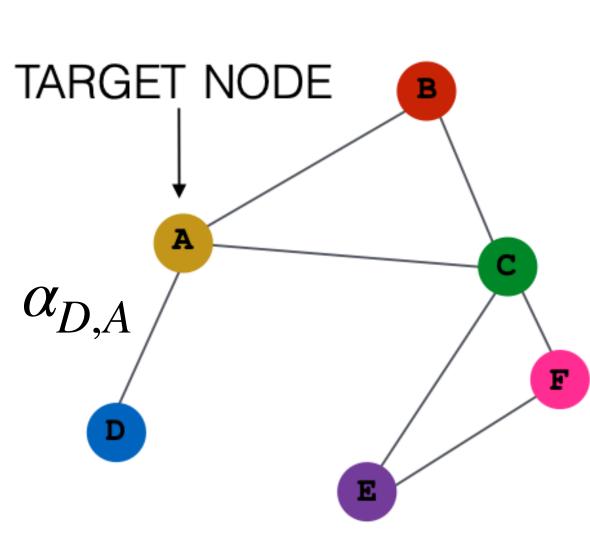
 $h_{u}^{(k+1)} = \sigma \left(\operatorname{Agg}_{v \in \mathcal{N}(u)}(\operatorname{Msg} \phi(h)) \right)$

Graph Attention Network (GAT)Most parameters are arbitrary

- Msg is the weighting of nodes $\alpha_{uv} W^{(k+1)} h_v^{(k)}$
- this learnable weighting $\alpha_{u,v}$ will learn which nodes are more important for any give node embedding.

$$h_u^{(k+1)} = \sigma \left(\sum_{v \in \mathcal{N}(u)} \alpha_{u,v} W^{(k)} \frac{h_v^{(k)}}{|\mathcal{N}(u)|} + B^{(k)} h_u^{(k)} \right)$$

$$(h_v^{(k)})), \psi(h_u^{(k)})), h_{(u)}^0 = x_v, h_u^{(L)} = z_v$$



INPUT GRAPH

$$h_{(u)}^0 = x_v, h_u^{(L)} = z_v, \alpha_{u,\cdot} = \sum_{v \in \mathcal{N}(v)} \alpha_{u,v} = 1$$

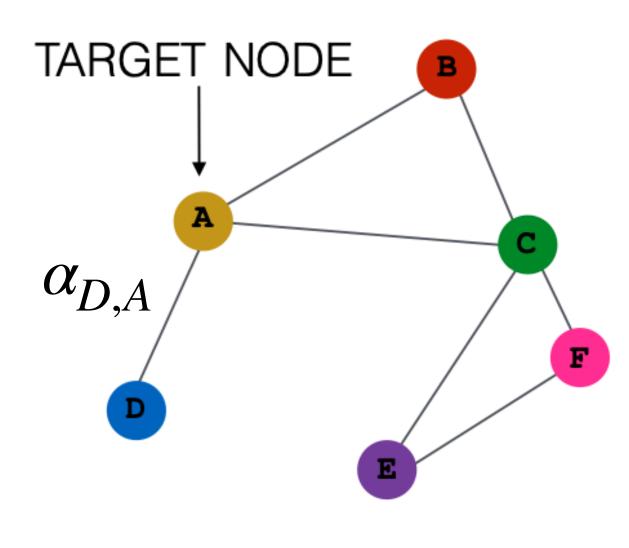
Convolutions on Graphs: Deep Encoder General Case Across Different GNNs

 $h_u^{(k+1)} = \sigma \left(\operatorname{Agg}_{v \in \mathcal{N}(u)}(\operatorname{Msg} \phi(h)) \right)$

Graph Attention Network (GAT)

- Main Benefits:
 - Implicit importance of neighbours
 - Computationally efficient
 - Storage efficient O(V+E) entries and fixed
 - Localised
 - Inductive, it doesn't depend on the graph structure

$$(h_v^{(k)})), \psi(h_u^{(k)})), h_{(u)}^0 = x_v, h_u^{(L)} = z_v$$



INPUT GRAPH

Graphic Attention Network Results

Transductive							
Method	Cora	Citeseer	Pubmed				
MLP	55.1%	46.5%	71.4%				
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%				
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%				
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%				
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%				
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%				
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%				
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%				
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%				
MoNet (Monti et al., 2016)	$81.7\pm0.5\%$		78.8 ± 0				
GCN-64*	$81.4\pm0.5\%$	$70.9\pm0.5\%$	79.0 \pm 0				
GAT (ours)	$\textbf{83.0}\pm0.7\%$	$\textbf{72.5}\pm0.7\%$	79.0 \pm 0				

Published as a conference paper at ICLR 2018

GRAPH ATTENTION NETWORKS

Petar Veličković* Department of Computer Science and Technology University of Cambridge petar.velickovic@cst.cam.ac.uk

Arantxa Casanova* Centre de Visió per Computador, UAB ar.casanova.8@gmail.com

Guillem Cucurull* Centre de Visió per Computador, UAB gcucurull@gmail.com

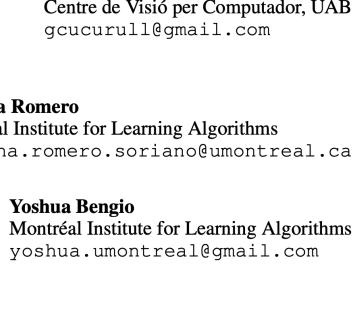
Adriana Romero Montréal Institute for Learning Algorithms adriana.romero.soriano@umontreal.ca

Yoshua Bengio

Pietro Liò Department of Computer Science and Technology University of Cambridge nietro lioûcst cam ac uk 🛤

Inductive

Method	PPI
Random	0.396
MLP	0.422
GraphSAGE-GCN (Hamilton et al., 2017)	0.500
GraphSAGE-mean (Hamilton et al., 2017)	0.598
GraphSAGE-LSTM (Hamilton et al., 2017)	0.612
GraphSAGE-pool (Hamilton et al., 2017)	0.600
GraphSAGE*	0.768
Const-GAT (ours)	0.934 ± 0.00
GAT (ours)	0.973 ± 0.00



Summarising

- scale invariance, and sometimes topological invariance
- Graphs are good representations of data support and relationships Going from grid/lattices to graphs in non-trivial, we need permutation invariance, • The main trick, is detect patches or motifs and generalise them to global
- structure
- There's ample evidence that taking into account heterogeneous structure improves supervised/semi-supervised tasks
- Novel techniques in graph networks, like GCNN, GraphSage, GAT, and others clearly improve on the results that don't take into account structure

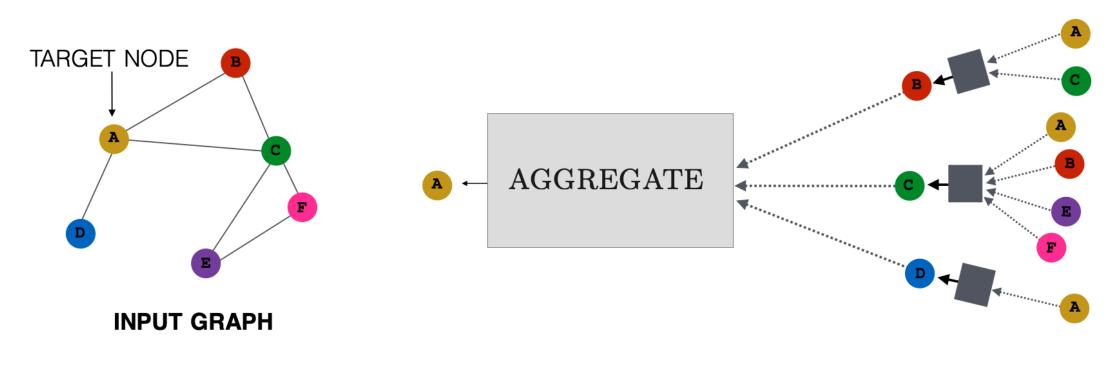


Image from Hamilton, "Graph Representation Learning Book"

