Graphical Models
 Discrete Inference and Learning

MVA

2023-2024

http://thoth.inrialpes.fr/~alahari/disinflearn

Recap

Why Graphs?
 Graphs are a general language for describing and analyzing entities with relations/interactions

\square

Many Types of Data are Graphs (1)

Event Graphs

Image credit: SalientNetworks
Computer Networks

Disease Pathways

Image credit: Wikipedia
Food Webs

Image credit: Pinterest
Particle Networks

Image credit: visitlondon.com
Underground Networks

Many Types of Data are Graphs (2)

Image credit: Medium
Social Networks

Citation Networks

Image credit: Science

Image credit: Lumen Learning

Economic Networks Communication Networks

Image credit: Missoula Current News
Internet

Image credit: The Conversation
Networks of Neurons

Many Types of Data are Graphs (3)

Image credit: Maximilian Nickeletal
Knowledge Graphs

Image credit: ResearchGate
Code Graphs

Image credit: ese.wustl.edu
Regulatory Networks

Image credit: math.hws.edu
Scene Graphs

Image credit: MDP|
Molecules

Image credit: Wikipedia
3D Shapes

Graphs and Relational Data

Image credit: ResearchGate
Code Graphs

Molecules

Image credit: Wikipedia
3D Shapes

Graphs: Machine Learning

Complex domains have a rich relational structure, which can be represented as a relational graph

By explicitly modeling relationships we achieve better performance!

What have we seen?

- Inference
- Belief propagation
- Graph cuts (to be completed)
- Variational inference
- Simulation-based inference

Outline

The st-mincut problem

Connection between st-mincut and energy minimization?

What problems can we solve using st-mincut?

st-mincut based Move algorithms

St-mincut and Energy Minimization

Minimizing a Qudratic Pseudoboolean function $E(x)$

Functions of boolean

 variables $\{0,1\}^{n} \rightarrow R^{n}$$$
E(y)=\sum_{i} c_{i} y_{i}+\sum_{i, j} c_{i j} y_{i}\left(1-y_{j}\right)
$$

Polynomial time st-mincut algorithms require non-negative edge weights

So how does this work?

Construct a graph such that:
1.Any st-cut corresponds to an assignment of x
2.The cost of the cut is equal to the energy of x :
$\mathrm{E}(\mathrm{x})$

Solution

Graph Construction

$E\left(a_{1}, a_{2}\right)$

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}$

Sink (1)

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}$

Graph Construction

$E\left(a_{1}, a_{2}\right)=\mathbf{2} a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}$

Graph Construction

$E\left(a_{1}, a_{2}\right)=\mathbf{2} a_{1}+\mathbf{5} \bar{a}_{1}+\mathbf{9} a_{2}+\mathbf{4} \bar{a}_{2}+2 a_{1} \bar{a}_{2}$

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Energy Function Reparameterization

Two functions E_{1} and E_{2} are reparameterizations if

$$
E_{1}(\mathbf{x})=E_{2}(\mathbf{x}) \text { for all } \mathbf{x}
$$

For instance:

$$
\begin{aligned}
& E_{1}\left(a_{1}\right)=1+2 a_{1}+3 \bar{a}_{1} \\
& E_{2}\left(a_{1}\right)=3+\bar{a}_{1}
\end{aligned}
$$

a_{1}	\bar{a}_{1}	$1+2 a_{1}+3 \bar{a}_{1}$	$3+\bar{a}_{1}$
0	1	4	4
1	0	3	3

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=2+3 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

$$
\begin{aligned}
& 2 a_{1}+5 \bar{a}_{1} \\
& =2\left(a_{1}+\bar{a}_{1}\right)+3 \bar{a}_{1} \\
& =2+3 \bar{a}_{1}
\end{aligned}
$$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=2+3 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=2+3 \bar{a}_{1}+5 a_{2}+4+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=6+3 \bar{a}_{1}+5 a_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=6+3 \bar{a}_{1}+5 a_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=6+3 \bar{a}_{1}+5 a_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=8+\bar{a}_{1}+3 a_{2}+3 \bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=8+\bar{a}_{1}+3 a_{2}+3 \bar{a}_{1} a_{2}$

No more
augmenting paths possible

Flow and Reparametrization

Flow and Reparametrization

Example: Image Segmentation

$$
E(y)=\sum_{i} c_{i} y_{i}+\sum_{i, j} c_{i j} y_{i}\left(1-y_{j}\right)
$$

$$
\begin{gathered}
\text { E: }\{0,1\}^{n} \rightarrow R \\
0 \rightarrow f g \\
1 \rightarrow \mathrm{bg}
\end{gathered}
$$

$$
\begin{gathered}
y^{*}=\arg \min _{y} E(y) \\
\text { How to minimize } \\
E(x) ?
\end{gathered}
$$

Global Minimum (\mathbf{y}^{*})

How does the code look like?

```
Graph *g;
For all pixels p
    /* Add a node to the graph */
    nodeID(p) = g->add_node();
    /* Set cost of terminal edges */
    set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
    add_weights(nodeID(p), nodeID(q), cost);
end
g->compute_maxflow();
label_p = g->is_connected_to_source(nodelD(p));
Sink (1)
// is the label of pixel p (0 or 1)

\section*{How does the code look like?}

\section*{Graph *g;}
```

For all pixels p
/* Add a node to the graph */
nodeID(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end

```
for all adjacent pixels \(p, q\)
add_weights(nodeID(p), nodeID(q), cost);
end
g->compute_maxflow();
label_p = g->is_connected_to_source(nodelD(p));
 // is the label of pixel \(p\) ( 0 or 1 )

\section*{How does the code look like?}

\section*{Graph *g;}

For all pixels \(\mathbf{p}\)
/* Add a node to the graph */
nodeID(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels \(p, q\)
add_weights(nodeID(p), nodelD(q), cost(p,q));
end

label_p = g->is_connected_to_source(nodelD(p)); // is the label of pixel \(p\) ( 0 or 1 )

\section*{How does the code look like?}

Graph *g;
For all pixels \(\mathbf{p}\)
/* Add a node to the graph */
nodeID(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels \(p, q\)
add_weights(nodeID(p), nodelD(q), cost(p,q));
end
g->compute_maxflow();
label_p = g->is_connected_to_source(nodelD(p)); // is the label of pixel \(p\) ( 0 or 1 )

\[
a_{1}=b g \quad a_{2}=f g
\]

\section*{Outline}

\section*{The st-mincut problem}

Connection between st-mincut and energy minimization?

\section*{What problems can we solve using st-mincut?}
st-mincut based Move algorithms

\section*{Minimizing Energy Functions}
- General Energy Functions
- NP-hard to minimize
- Only approximate minimization possible
- Easy energy functions
- Solvable in polynomial time
- Submodular ~ O(n \(\left.{ }^{6}\right)\)


Space of Function Minimization Problems

\section*{Minimizing Submodular Functions}
- Minimizing general submodular functions
\(-O\left(n^{5} Q+n^{6}\right)\) where \(Q\) is function evaluation time [Orlin, IPCO 2007]
- Symmetric submodular functions
\(-E(y)=E(1-y)\)
- \(O\left(n^{3}\right)\) [Queyranne 1998]
- Quadratic pseudoboolean
- Can be transformed to st-mincut
- One node per variable ( \(\mathrm{O}\left(\mathrm{n}^{3}\right)\) complexity)
- Very low empirical running time

\section*{Submodular Pseudoboolean Functions}

Function defined over boolean vectors \(\mathbf{y}=\left\{y_{1}, y_{2}, \ldots . y_{n}\right\}\)

\section*{Definition}
- All functions for one boolean variable (f: \(\{0,1\} \rightarrow \mathbb{R}\) ) are submodular
- A function of two boolean variables ( \(\mathrm{f}:\{0,1\}^{2} \rightarrow \mathbb{R}\) ) is submodular if
\[
f(0,1)+f(1,0) \geq f(0,0)+f(1,1)
\]
- A general pseudoboolean function \(f: 2^{n} \rightarrow \mathbb{R}\) is submodular if all its projections \(f p\) are submodular i.e.
\[
f \mathfrak{f p}(0,1)+f \mathfrak{f}(1,0) \geq f p(0,0)+f p(1,1)
\]

\section*{Quadratic Submodular Pseudoboolean Functions}
\[
\begin{aligned}
& \qquad \begin{array}{l}
E(y)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{i, j} \theta_{i j}\left(y_{i}, y_{j}\right) \\
\text { For all } i j \quad \theta_{\mathrm{ij}}(0,1)+\theta_{\mathrm{ij}}(1,0) \geq \theta_{\mathrm{ij}}(0,0)+\theta_{\mathrm{ij}}(1,1)
\end{array}
\end{aligned}
\]

\section*{Quadratic Submodular Pseudoboolean Functions}
\[
\begin{aligned}
& \qquad E(y)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{i, j} \theta_{i j}\left(y_{i}, y_{j}\right) \\
& \text { For all ij } \quad \theta_{i j}(0,1)+\theta_{i j}(1,0) \geq \theta_{i j}(0,0)+\theta_{i j}(1,1)
\end{aligned}
\]

Equivalent (transformable)
\[
E(y)=\sum_{i} c_{i} y_{i}+\sum_{i, j} c_{i j} y_{i}\left(1-y_{j}\right) \quad c_{i j} \geq 0
\]
i.e. all submodular QPBFs are st-mincut solvable

\section*{How are they equivalent?}
\[
A=\theta_{i j}(0,0) \quad B=\theta_{i j}(0,1) \quad C=\theta_{i j}(1,0) \quad D=\theta_{i j}(1,1)
\]

\[
\begin{aligned}
\theta_{\mathrm{ij}}\left(y_{\mathrm{i}}, y_{\mathrm{j}}\right)= & \theta_{\mathrm{ij}}(0,0) \\
& +\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) y_{i}+\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) y_{\mathrm{j}} \\
& +\left(\theta_{\mathrm{ij}}(1,0)+\theta_{\mathrm{ij}}(0,1)-\theta_{\mathrm{ij}}(0,0)-\theta_{\mathrm{ij}}(1,1)\right)\left(1-\mathrm{y}_{\mathrm{i}}\right) \mathrm{y}_{\mathrm{j}}
\end{aligned}
\]
\(B+C-A-D \geq 0\) is true from the submodularity of \(\theta_{i j}\)

\section*{How are they equivalent?}
\[
A=\theta_{i j}(0,0) \quad B=\theta_{i j}(0,1) \quad C=\theta_{i j}(1,0) \quad D=\theta_{i j}(1,1)
\]

\[
\begin{aligned}
\theta_{\mathrm{ij}}\left(y_{\mathrm{i}}, y_{\mathrm{j}}\right)= & \theta_{\mathrm{ij}}(0,0) \\
& +\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) \mathrm{y}_{\mathrm{i}}+\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) \mathrm{y}_{\mathrm{j}} \\
& +\left(\theta_{\mathrm{ij}}(1,0)+\theta_{\mathrm{ij}}(0,1)-\theta_{\mathrm{ij}}(0,0)-\theta_{\mathrm{ij}}(1,1)\right)\left(1-\mathrm{y}_{\mathrm{i}}\right) \mathrm{y}_{\mathrm{j}}
\end{aligned}
\]
\(B+C-A-D \geq 0\) is true from the submodularity of \(\theta_{i j}\)

\section*{How are they equivalent?}
\[
A=\theta_{i j}(0,0) \quad B=\theta_{i j}(0,1) \quad C=\theta_{i j}(1,0) \quad D=\theta_{i j}(1,1)
\]

\[
\begin{aligned}
\theta_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right)= & \theta_{\mathrm{ij}}(0,0) \\
& +\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) \mathrm{y}_{\mathrm{i}}+\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) \mathrm{y}_{\mathrm{j}} \\
& +\left(\theta_{\mathrm{ij}}(1,0)+\theta_{\mathrm{ij}}(0,1)-\theta_{\mathrm{ij}}(0,0)-\theta_{\mathrm{ij}}(1,1)\right)\left(1-\mathrm{y}_{\mathrm{i}}\right) \mathrm{y}_{\mathrm{j}}
\end{aligned}
\]
\(B+C-A-D \geq 0\) is true from the submodularity of \(\theta_{i j}\)

\section*{How are they equivalent?}
\[
A=\theta_{i j}(0,0) \quad B=\theta_{i j}(0,1) \quad C=\theta_{i j}(1,0) \quad D=\theta_{i j}(1,1)
\]

\[
\begin{aligned}
\theta_{\mathrm{ij}}\left(y_{\mathrm{i}}, y_{\mathrm{j}}\right)= & \theta_{\mathrm{ij}}(0,0) \\
& +\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) y_{i}+\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) \mathrm{y}_{\mathrm{j}} \\
& +\left(\theta_{\mathrm{ij}}(1,0)+\theta_{\mathrm{ij}}(0,1)-\theta_{\mathrm{ij}}(0,0)-\theta_{\mathrm{ij}}(1,1)\right)\left(1-y_{\mathrm{i}}\right) y_{\mathrm{j}}
\end{aligned}
\]
\(B+C-A-D \geq 0\) is true from the submodularity of \(\theta_{i j}\)

\section*{How are they equivalent?}
\[
A=\theta_{i j}(0,0) \quad B=\theta_{i j}(0,1) \quad C=\theta_{i j}(1,0) \quad D=\theta_{i j}(1,1)
\]

\[
\begin{aligned}
\theta_{\mathrm{ij}}\left(y_{\mathrm{i}}, y_{\mathrm{j}}\right)= & \theta_{\mathrm{ij}}(0,0) \\
& +\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) y_{\mathrm{i}}+\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) y_{\mathrm{j}} \\
& +\left(\theta_{\mathrm{ij}}(1,0)+\theta_{\mathrm{ij}}(0,1)-\theta_{\mathrm{ij}}(0,0)-\theta_{\mathrm{ij}}(1,1)\right)\left(1-y_{\mathrm{i}}\right) y_{\mathrm{j}}
\end{aligned}
\]
\(B+C-A-D \geq 0\) is true from the submodularity of \(\theta_{i j}\)

\section*{Quadratic Submodular Pseudoboolean Functions}
\[
E(y)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{i, j} \theta_{i j}\left(y_{i}, y_{j}\right)
\]

For all ij
\[
\theta_{\mathrm{ij}}(0,1)+\theta_{\mathrm{ij}}(1,0) \geq \boldsymbol{\theta}_{\mathrm{ij}}(0,0)+\boldsymbol{\theta}_{\mathrm{ij}}(1,1)
\]

Equivalent (transformable)


\section*{Recap}
- Exact minimization of Submodular QBFs using graph cuts
- Obtaining partially optimal solutions of nonsubmodular QBFs using graph cuts

\section*{Outline}

\section*{The st-mincut problem}

Connection between st-mincut and energy minimization?

\section*{What problems can we solve using st-mincut?}
st-mincut based Move algorithms

\section*{St-mincut based Move algorithms}
\[
E(\mathbf{y})=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{i, j} \theta_{i j}\left(y_{i} y_{j}\right)
\]
\(y \in\) Labels \(L=\left\{1_{1}, L_{2}, \ldots, I_{k}\right\}\)
- Commonly used for solving non-submodular multi-label problems
- Extremely efficient and produce good solutions
- Not Exact: Produce local optima

\section*{Move Making Algorithms}

\(\longleftarrow\) Solution Space

\section*{Move Making Algorithms}

\begin{tabular}{|c|c|}
\hline \(\bullet\) & Current Solution \\
\hline & Search Neighbourhood \\
\hline & Optimal Move \\
\hline
\end{tabular}

\section*{Move Making Algorithms}

\begin{tabular}{|c|c|}
\hline - & Current Solution \\
\hline & Search Neighbourhood \\
\hline & Optimal Move \\
\hline
\end{tabular}

\section*{Move Making Algorithms}

\begin{tabular}{rl}
\(\quad\) - & Current Solution \\
\(\mid \ldots . . . . . .\). & Search \\
\(\ldots \ldots .\). & Neighbourhood \\
Optimal Move
\end{tabular}

\section*{Move Making Algorithms}

\begin{tabular}{ll}
\(\bullet\) & \begin{tabular}{l} 
Current Solution \\
\(\mid \cdots \cdots . . . . .\).
\end{tabular} \\
Search \\
Neighbourhood \\
\(\ldots . . . . .\). & Optimal Move
\end{tabular}

\section*{Move Making Algorithms}

\begin{tabular}{|c|c|}
\hline - & Current Solution \\
\hline & Search Neighbourhood \\
\hline & Optimal Move \\
\hline
\end{tabular}

\section*{Move Making Algorithms}

- Current Solution

\(\ldots . . .\). Optimal Move
\(\longleftarrow\) Solution Space


\section*{Computing the Optimal Move}



\section*{Moves using Graph Cuts}

\section*{Expansion and Swap move algorithms}
[Boykov Veksler and Zabih, PAMI 2001]
- Makes a series of changes to the solution (moves)
- Each move results in a solution with smaller energy


Space of Solutions (y) : LN
- Current Solution
\(\square\) Search
Neighbourhood
N Number of
Variables
L Number of
Labels

\section*{Moves using Graph Cuts}

\section*{Expansion and Swap move algorithms}
[Boykov Veksler and Zabih, PAMI 2001]
- Makes a series of changes to the solution (moves)
- Each move results in a solution with smaller energy


> How to minimize move functions?

\section*{General Binary Moves}

\[
E_{m}(t)=E\left(t y^{1}+(1-t) y^{2}\right)
\]

Minimize over move variables \(\mathbf{t}\) to get the optimal move

Move energy is a submodular QPBF (Exact Minimization Possible)

\section*{Expansion Move}
- Variables take label \(\alpha\) or retain current label
[Boykov, Veksler, Zaßiih]

\section*{Expansion Move}
- Variables take label \(\alpha\) or retain current label


Ground
House
Status: Initialize with Tree
Sky

[Boykov, Veksler, Zabiih]

\section*{Expansion Move}
- Variables take label \(\alpha\) or retain current label
\begin{tabular}{ll} 
& \(\longrightarrow\) \\
Status: Expand Ground & \begin{tabular}{l} 
Tree \\
Ground
\end{tabular} \\
\begin{tabular}{l} 
House \\
Sky
\end{tabular} \\
\hline
\end{tabular}

[Boykov, Veksler, Zabih]

\section*{Expansion Move}
- Variables take label \(\alpha\) or retain current label
Status: Expand House \(\quad \longrightarrow\)\begin{tabular}{l} 
\\
\\
\hline
\end{tabular} \begin{tabular}{l} 
Tree \\
Ground \\
House \\
Sky
\end{tabular}

[Boykov, Veksler, Zabih]

\section*{Expansion Move}
- Variables take label \(\alpha\) or retain current label

[Boykov, Veksler, Zabih]

\section*{Expansion Move}
- Variables take label \(\alpha\) or retain current label
- Move energy is submodular if:
- Unary Potentials: Arbitrary
- Pairwise potentials: Metric
\[
\begin{gathered}
\theta_{\mathrm{ij}}\left(I_{a}, I_{\mathrm{b}}\right) \geq 0 \\
\theta_{\mathrm{ij}}\left(\mathrm{I}_{\mathrm{a}}, I_{\mathrm{b}}\right)=0 \quad \text { iff } \quad \mathrm{a}=\mathrm{b}
\end{gathered}
\]

Examples: Potts model, Truncated linear
Cannot solve truncated quadratic
[Boykov, Veksler, Zab̄ih]

\section*{Expansion Move}
- Variables take label \(\alpha\) or retain current label
- Move energy is submodular if:
- Unary Potentials: Arbitrary
- Pairwise potentials: Metric
\[
\theta_{\mathrm{ij}}\left(I_{\mathrm{a}}, I_{\mathrm{b}}\right)+\theta_{\mathrm{ij}}\left(I_{\mathrm{b}}, I_{\mathrm{c}}\right) \geq \theta_{\mathrm{ij}}\left(I_{\mathrm{a}}, I_{\mathrm{c}}\right)
\]

Triangle Inequality

\section*{Examples: Potts model, Truncated linear}

Cannot solve truncated quadratic
[Boykov, Veksler, Zabibih

\section*{Summary}


Move making algorithms

\section*{Where do we stand?}

Grid graph -
"submodular": Use graph cuts
"metric": Use expansion
otherwise: Use TRW, dual decomposition, relaxation


Chain/Tree, 2/multi-label: Use BP

\section*{What have we seen?}
- Inference
- Belief propagation
- Graph cuts
- Variational inference
- Simulation-based inference
- Learning

\section*{Outline}
- Supervised Learning
- Probabilistic Methods
- Loss-based Methods

\section*{Image Classification}


Which city is this?
Input: d
Output: \(\mathbf{x} \in\{1,2, \ldots, \mathrm{~h}\}\)

\section*{CRF training}
- Stereo matching:
- Z: left, right image
- X: disparity map

\[
f=\underset{\mathbf{x}}{\operatorname{argmin}} \operatorname{MRF}_{G}(\mathbf{x} ; \mathbf{u}, \mathbf{h})
\]

\section*{CRF training}
- Denoising:
- Z: noisy input image
- X: denoised output image


\section*{CRF training (some further notation)}
\[
\operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{u}^{k}, \mathbf{h}^{k}\right)=\sum_{p} u_{p}^{k}\left(x_{p}\right)+\sum_{c} h_{c}^{k}\left(\mathbf{x}_{c}\right)
\]
\[
u_{p}^{k}\left(x_{p}\right)=\mathbf{w}^{T} g_{p}\left(x_{p}, \mathbf{z}^{k}\right), \quad h_{c}^{k}\left(\mathbf{x}_{c}\right)=\mathbf{w}^{T} g_{c}\left(\mathbf{x}_{c}, \mathbf{z}^{k}\right)
\]
vector valued feature functions
\(\operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)=\mathbf{w}^{T}\left(\sum_{p} g_{p}\left(x_{p}, \mathbf{z}^{k}\right)+\sum_{c} g_{c}\left(\mathbf{x}_{c}, \mathbf{z}^{k}\right)\right)=\mathbf{w}^{T} g\left(\mathbf{x}, \mathbf{z}^{k}\right)\)

\section*{Learning formulations}

\section*{Risk minimization}
\[
\begin{aligned}
& \hat{\uparrow}_{\mathbf{w}}^{\hat{\mathbf{x}}^{k}}=\arg \min _{\mathbf{x}} \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right) \\
& \min ^{K} \Delta\left(\mathbf{x}^{k}, \hat{\mathbf{x}}^{k}\right)
\end{aligned}
\]
\(K\) training samples \(\left\{\left(\mathbf{x}^{k}, \mathbf{z}^{k}\right)\right\}_{k=1}^{K}\)

\section*{Regularized Risk minimization}
\[
\begin{aligned}
& \qquad \hat{\mathbf{x}}^{k}=\arg \min _{\mathbf{x}} \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right) \\
& \min _{\mathbf{w}} R(\mathbf{w})+\sum_{k=1}^{K} \Delta\left(\mathbf{x}^{k}, \hat{\mathbf{x}}^{k}\right) \\
& \downarrow(\mathbf{w})=\|\mathbf{w}\|^{2}, \quad\|\mathbf{w}\|_{1}, \text { etc. }
\end{aligned}
\]

\section*{Regularized Risk minimization}


\section*{Choice 1: Hinge loss}
\[
\min _{\mathbf{w}} R(\mathbf{w})+\sum_{k=1}^{K} L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)
\]
\(L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)=\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)-\min _{\mathbf{x}}\left(\operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)\right)\)
- Upper bounds \(\Delta(\).
- Leads to max-margin learning

\section*{Max-margin learning}
\(\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right) \leq \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)\)

\section*{Max-margin learning}
\(\operatorname{MRF}_{G}\left(\mathrm{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right) \leq \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathrm{x}, \mathrm{x}^{k}\right)\) energy of ground truth

\section*{Max-margin learning}
\(\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right) \leq \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)\)
energy of ground truth
any other
energy

\section*{Max-margin learning}
\(\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right) \leq \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)\)
energy of ground truth
any other energy
desired margin

\section*{Max-margin learning}
\(\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right) \leq \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)+\xi_{k}\)
energy of ground truth
any other energy
desired slack margin

\section*{Max-margin learning}

\author{
min \\ w
}

subject to the constraints:
\(\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right) \leq \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)+\xi_{k}\)
energy of ground truth
any other desired slack energy margin

\section*{Max-margin learning}
\[
\min _{\mathbf{w}} R(\mathbf{w})+\sum_{k} \xi_{k}
\]
subject to the constraints:
\(\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right) \leq \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)+\xi_{k}\)
energy of ground truth
any other desired slack energy margin

\section*{Max-margin learning}

\section*{\(\min _{\mathbf{w}} R(\mathbf{w})+\sum_{k} \xi_{k}\)}
subject to the constraints:
\(\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right) \leq \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)+\xi_{k}\)

\section*{Max-margin learning}

\section*{\(\min _{\mathbf{w}} R(\mathbf{w})+\sum_{k} \xi_{k}\)}

\section*{subject to the constraints:}
\(\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right) \leq \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)+\xi_{k}\)
Tor equivalently
\[
\min _{\mathbf{w}} R(\mathbf{w})+\sum_{k} \xi_{k}
\]
\[
\xi_{k}=\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)-\min _{\mathbf{x}}\left(\operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)\right)
\]

\section*{Max-margin learning}
\[
\begin{array}{|l|}
\hline \text { CONSTRAINED } \\
\hline
\end{array} \min _{\mathbf{w}} R(\mathbf{w})+\sum_{k} \xi_{k}
\]

\section*{subject to the constraints:}
\(\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right) \leq \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)+\xi_{k}\)
Tor equivalently
\[
\min _{\mathbf{w}} R(\mathbf{w})+\sum_{k} \xi_{k}
\]
\[
\xi_{k}=\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)-\min _{\mathbf{x}}\left(\operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)\right)
\]

\section*{Max-margin learning}
\[
\begin{aligned}
& \begin{array}{|c|c|}
\hline \text { CONSTRAINED } & \min _{\mathbf{w}} R(\mathbf{w})+\sum_{k} \xi_{k} \\
\hline & \text { subject to the constraints: } \\
\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right) \leq \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)+\xi_{k} \\
\hline \text { UNCONSTRAINED } & \min _{\mathbf{w}} R(\mathbf{w})+\sum_{k} \xi_{k} \\
\hline \xi_{k}=\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)-\min _{\mathbf{x}}\left(\operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)\right)
\end{array} \\
& \begin{array}{l}
\text { or equivalently }
\end{array} \\
& \\
& \hline
\end{aligned}
\]

\section*{Choice 2: logistic loss}
\[
\min _{\mathbf{w}} R(\mathbf{w})+\sum_{k=1}^{K} L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)
\]
\[
L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)=\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)+\log \underbrace{\sum_{\mathbf{x}} e^{-\mathrm{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)}}_{\text {partition function }}
\]
- Can be shown to lead to maximum likelihood learning

\section*{Max-margin vs Maximum-likelihood}


\section*{Max-margin vs Maximum-likelihood}


\section*{Solving the learning formulations}

\section*{Maximum-likelihood learning}
\[
\begin{gathered}
\min _{\mathbf{w}} \frac{\mu}{2}\|\mathbf{w}\|^{2}+\sum_{k=1}^{K} L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right) \\
L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)=\operatorname{MRF}_{G}\left(\mathrm{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)+\log \underbrace{\sum_{\mathbf{x}} e^{-\mathrm{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)}}_{\text {partition function }}
\end{gathered}
\]
- Differentiable \& convex
- Global optimum via gradient descent, for example

\section*{Maximum-likelihood learning}
\[
\begin{gathered}
\min _{\mathbf{w}} \frac{\mu}{2}\|\mathbf{w}\|^{2}+\sum_{k=1}^{K} L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right) \\
L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)=\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)+\log \sum_{\mathbf{x}} e^{-\mathrm{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)} \\
\text { gradient } \longrightarrow \nabla_{\mathbf{w}}=\mathbf{w}+\sum_{k}\left(g\left(\mathbf{x}^{k}, \mathbf{z}^{k}\right)-\sum_{\mathbf{x}} p\left(\mathbf{x} \mid w, \mathbf{z}^{k}\right) g\left(\mathbf{x}, \mathbf{z}^{k}\right)\right) \\
\text { Recall that: } \operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)=\mathbf{w}^{T} g\left(\mathbf{x}, \mathbf{z}^{k}\right)
\end{gathered}
\]

\section*{Maximum-likelihood learning}
\[
\begin{gathered}
\min _{\mathbf{w}} \frac{\mu}{2}\|\mathbf{w}\|^{2}+\sum_{k=1}^{K} L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right) \\
L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)=\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)+\log \sum_{\mathbf{x}} e^{-\mathrm{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)} \\
\text { gradient } \longrightarrow \nabla_{\mathbf{w}}=\mathbf{w}+\sum_{k}(g\left(\mathbf{x}^{k}, \mathbf{z}^{k}\right)-\underbrace{\left.\sum_{\mathbf{x}} p\left(\mathbf{x} \mid w, \mathbf{z}^{k}\right) g\left(\mathbf{x}, \mathbf{z}^{k}\right)\right)}_{\mathbf{x}}
\end{gathered}
\]
- Requires MRF probabilistic inference
- NP-hard (exponentially many \(\mathbf{x}\) ): approximation via loopy-BP ?

\section*{Max-margin learning (UNCONSTRAINED)}
\[
\begin{gathered}
\min _{\mathbf{w}} R(\mathbf{w})+\sum_{k=1}^{K} L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right) \\
L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)=\operatorname{MRF}_{G}\left(\mathbf{x}^{k} ; \mathbf{w}, \mathbf{z}^{k}\right)-\min _{\mathbf{x}}\left(\operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{w}, \mathbf{z}^{k}\right)-\Delta\left(\mathbf{x}, \mathbf{x}^{k}\right)\right)
\end{gathered}
\]
- Convex but non-differentiable
- Global optimum via subgradient method

\section*{Max-margin learning (CONSTRAINED)}
\[
\min _{\mathbf{w}} \frac{\mu}{2}\|\mathbf{w}\|^{2}+\sum_{k} \xi_{k}
\]
subject to the constraints:

- Quadratic program (great!)
- But exponentially many constraints (not so great)

\section*{Max-margin learning (CONstrained)}
- What if we use only a small number of constraints?
- Resulting QP can be solved
- But solution may be infeasible
- Constraint generation to the rescue
- only few constraints active at optimal solution !! (variables much fewer than constraints)
- Given the active constraints, rest can be ignored
- Then let us try to find them!

\section*{What have we seen?}
- Inference
- Belief propagation
- Graph cuts
- Variational inference
- Simulation-based inference
- Learning

\section*{Today: Modern ML Toolbox}


Text/Speech




Modern deep learning toolbox is designed for simple sequences \& grids


Audio signals


Images

\section*{Modern \\ deep learning toolbox \\ is designed for sequences \& grids}

Not everything can be represented as a sequence or a grid

\section*{How can we develop neural networks that are much more broadly applicable?}

New frontiers beyond classic neural networks that only learn on images and sequences

\section*{Hot subfield in ML}


\section*{Why is Graph Deep Learning Hard?}

Networks are complex.
- Arbitrary size and complex topological structure (i.e., no spatial locality like grids)


Networks


Images
- No fixed node ordering or reference point
- Often dynamic and have multimodal features

\section*{ML withGraphs}



Input: Network

Regularization,


Predictions: Node labels, New links, Generated graphs and subgraphs

Graph convolutions

Activation
function


\section*{Graph Neural Networks}


Each node defines a computation graph
- Each edge in this graph is a transformation/aggregation function

\section*{Graph Neural Networks}


INPUT GRAPH


Neural networks

Intuition: Nodes aggregate information from their neighbors using neural networks

\section*{Representation Learning}

\section*{(Supervised) Machine Learning Lifecycle:} This feature, that feature. Every single time!


\section*{Representation Learning}

Map nodes to d-dimensional embeddings such that similar nodes in the network are embedded close together

representation
\(\mathbb{R}^{d}\)
Feature representation, embedding

\section*{ML for Graph data}
- Traditional methods
- Node embeddings
- Graph neural networks
- Applications

\section*{Different Types of Tasks}

Graph-level prediction, Graph generation


Node level

Community (subgraph) level

Edge-level

\section*{Classic Graph ML Tasks}
- Node classification: Predict a property of a node
- Example: Categorize online users / items
- Link prediction: Predict whether there are missing links between two nodes
- Example: Knowledge graph completion
- Graph classification: Categorize different graphs
- Example: Molecule property prediction
- Clustering: Detect if nodes form a community
- Example: Social circle detection
- Other tasks:
- Graph generation: Drug discovery
- Graph evolution: Physical simulation

\section*{Traditional ML Pipeline}
- Design features for nodes/links/graphs
- Obtain features for all training data


\section*{Traditional ML Pipeline}
- Train an ML model: - Apply the model:
- Logistic Regression
- Random forest
- Neural network, etc.
- Given a new node/link/graph, obtain its features and make a prediction


\section*{Machine Learning in Graphs}

Goal: Make predictions for a set of objects

Design choices:
- Features: \(d\)-dimensional vectors \(\boldsymbol{x}\)
- Objects: Nodes, edges, sets of nodes, entire graphs
- Objective function:
- What task are we aiming to solve?

\section*{Node-Level Tasks}


Node classification
ML needs features.

\section*{Node-Level Features: Overview}

Goal: Characterize the structure and position of a node in the network:
- Node degree
- Node centrality
- Clustering coefficient

Node feature
- Graphlets


\section*{Link-Level Prediction Task: Recap}
- The task is to predict new links based on the existing links.
- At test time, node pairs (with no existing links) are ranked, and top \(K\) node pairs are predicted.
- The key is to design features for a pair of nodes.


\section*{Link Prediction as a Task}

\section*{Two formulations of the link prediction task:}
- 1) Links missing at random:
- Remove a random set of links and then aim to predict them
- 2) Links over time:
- Given \(G\left[t_{0}, t_{0}^{\prime}\right]\) a graph defined by edges up to time \(t_{0}^{\prime}\), output a ranked list \(L\) of edges (not in \(G\left[t_{0}, t_{0}^{\prime}\right]\) ) that are predicted to appear in time \(G\left[t_{1}, t_{1}^{\prime}\right]\)
- Evaluation:

\(G\left[t_{0}, t_{0}^{\prime}\right]\)
\(G\left[t_{1}, t_{1}^{\prime}\right]\)
- \(n=\left|E_{\text {new }}\right|\) : \# new edges that appear during the test period [ \(t_{1}, t_{1}^{\prime}\) ]
- Take top \(n\) elements of \(L\) and count correct edges

\section*{Link Prediction via Proximity}
- Methodology:
- For each pair of nodes ( \(x, y\) ) compute score \(c(x, y)\)
- For example, \(c(x, y)\) could be the \# of common neighbors of \(x\) and \(y\)
- Sort pairs \((x, y)\) by the decreasing score \(c(x, y)\)
- Predict top \(n\) pairs as new links
- See which of these links actually appear in \(G\left[t_{1}, t_{1}^{\prime}\right]\)


\section*{Link-Level Features: Overview}
- Distance-based feature
- Local neighborhood overlap
- Global neighborhood overlap


\section*{Link-Level Features: Summary}
- Distance-based features:
- Uses the shortest path length between two nodes but does not capture how neighborhood overlaps.
- Local neighborhood overlap:
- Captures how many neighboring nodes are shared by two nodes.
- Becomes zero when no neighbor nodes are shared.
- Global neighborhood overlap:
- Uses global graph structure to score two nodes.
- Katz index counts \#walks of all lengths between two nodes.

\section*{Graph-Level Features}
- Goal: We want features that characterize the structure of an entire graph.
- For example:


\section*{Background: Kernel Methods}
- Kernel methods are widely-used for traditional ML for graph-level prediction.
- Idea: Design kernels instead of feature vectors.
- A quick introduction to Kernels:
- Kernel \(K\left(G, G^{\prime}\right) \in \mathbb{R}\) measures similarity \(\mathrm{b} / \mathrm{w}\) data
- Kernel matrix \(\boldsymbol{K}=\left(K\left(G, G^{\prime}\right)\right)_{G, G^{\prime}}\) must always be positive semidefinite (i.e., has positive eigenvalues)
- There exists a feature representation \(\phi(\cdot)\) such that \(K\left(G, G^{\prime}\right)=\phi(\mathrm{G})^{\mathrm{T}} \phi\left(G^{\prime}\right)\)
- Once the kernel is defined, off-the-shelf ML model, such as kernel SVM, can be used to make predictions.

\section*{Graph-Level Features: Overview}
- Graph Kernels: Measure similarity between two graphs:
- Graphlet Kernel [1]
- Weisfeiler-Lehman Kernel [2]
- Other kernels are also proposed in the literature (beyond the scope of this lecture)
- Random-walk kernel
- Shortest-path graph kernel
- And many more...
[2] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

\section*{Graph-Level Features: Summary}
- Graphlet Kernel
- Graph is represented as Bag-of-graphlets
- Computationally expensive
- Weisfeiler-Lehman Kernel
- Apply \(K\)-step color refinement algorithm to enrich node colors
- Different colors capture different \(K\)-hop neighborhood structures
- Graph is represented as Bag-of-colors
- Computationally efficient
- Closely related to Graph Neural Networks (as we will see!)

\section*{Graph Representation Learning}

\section*{Graph Representation Learning alleviates the need to do feature engineering every single time.}


\section*{Graph Representation Learning}

Goal: Efficient task-independent feature learning for machine learning with graphs!


\section*{Why Embedding?}
- Task: Map nodes into an embedding space
- Similarity of embeddings between nodes indicates their similarity in the network. For example:
- Both nodes are close to each other (connected by an edge)
- Encode network information
- Potentially used for many downstream predictions

Vec

embeddings \(\mathbb{R}^{d}\)

Tasks
- Node classification
- Link prediction
- Graph classification
- Anomalous node detection
- Clustering
- ....

\section*{Example Node Embedding}
- 2D embedding of nodes of the Zachary's Karate Club network:


\section*{Setup}

Assume we have a graph G:
- V is the vertex set.
- A is the adjacency matrix (assume binary).
- For simplicity: No node features or extra information is used

\[
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
\]

\section*{Embedding Nodes}
- Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the graph


\section*{Embedding Nodes}

Goal: \(\operatorname{similarity}(u, v) \approx \mathbf{z}_{v}^{\mathrm{T}} \mathbf{z}_{u}\) in the original network

Similarity of the embedding
Need to define!
original network
embedding space

\section*{Learning Node Embeddings}
1. Encoder maps from nodes to embeddings
2. Define a node similarity function (i.e., a measure of similarity in the original network)
3. Decoder DEC maps from embeddings to the similarity score
4. Optimize the parameters of the encoder so that:
\[
\operatorname{DEC}\left(\mathbf{z}_{v}^{\mathrm{T}} \mathbf{z}_{u}\right)
\]
\[
\underset{\text { in the original network }}{\operatorname{similarity}(u, v)} \underset{\text { Similarity of the embedding }}{ } \mathbf{z}_{v}^{\mathrm{T}} \mathbf{z}_{u}
\]

\section*{Two Key Components}
- Encoder: maps each node to a low-dimensional vector \(d\)-dimensional
\(\operatorname{ENC}(v)=\mathbf{z}_{v} \quad\) embedding node in the input graph
- Similarity function: specifies how the relationships in vector space map to the relationships in the original network \(\operatorname{similarity}(u, v) \approx \mathbf{z}_{v}^{\mathrm{T}} \mathbf{z}_{u} \quad\) Decoder
Similarity of \(u\) and \(v\) in the original network
dot product between node embeddings

\section*{"Shallow" Encoding}

Simplest encoding approach: Encoder is just an embedding-lookup

\section*{Each node is assigned a unique embedding vector}
(i.e., we directly optimize the embedding of each node)

Many methods: DeepWalk, node2vec

\section*{Framework Summary}
- Encoder + Decoder Framework
- Shallow encoder: embedding lookup
- Parameters to optimize: \(\mathbf{Z}\) which contains node embeddings \(\mathbf{z}_{u}\) for all nodes \(u \in V\)
- We will cover deep encoders (GNNs) later
- Decoder: based on node similarity.
- Objective: maximize \(\mathbf{z}_{v}^{\mathrm{T}} \mathbf{z}_{u}\) for node pairs \((u, v)\) that are similar

\section*{How to Define Node Similarity?}
- Key choice of methods is how they define node similarity.
- Should two nodes have a similar embedding if they...
- are linked?
- share neighbors?
- have similar "structural roles"?
- There are also random walk based approaches

\section*{Note on Node Embeddings}
- This is unsupervised/self-supervised way of learning node embeddings.
- We are not utilizing node labels
- We are not utilizing node features
- The goal is to directly estimate a set of coordinates (i.e., the embedding) of a node so that some aspect of the network structure (captured by DEC) is preserved.
- These embeddings are task independent
- They are not trained for a specific task but can be used for any task.

\section*{Random-Walk Embeddings}

\section*{probability that \(u\) \(\mathbf{z}_{u}^{\mathrm{T}} \mathbf{z}_{v} \approx\) and \(v\) co-occur on a random walk over the graph}

\section*{Random-Walk Embeddings}
1. Estimate probability of visiting node \(\boldsymbol{v}\) on a random walk starting from node \(u\) using some random walk strategy \(R\)

2. Optimize embeddings to encode these random walk statistics:

Similarity in embedding space (Here: dot product \(=\cos (\theta)\) ) encodes random walk "similarity"


\section*{Why Random Walks?}
1. Expressivity: Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information Idea: if random walk starting from node \(u\) visits \(v\) with high probability, \(u\) and \(v\) are similar (high-order multi-hop information)
2. Efficiency: Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks

\section*{Unsupervised Feature Learning}
- Intuition: Find embedding of nodes in \(d\)-dimensional space that preserves similarity
- Idea: Learn node embedding such that nearby nodes are close together in the network
- Given a node \(u\), how do we define nearby nodes?
- \(N_{R}(u)\)... neighbourhood of \(u\) obtained by some random walk strategy \(R\)

\section*{Feature Learning as Optimization}
- Given \(G=(V, E)\),
- Our goal is to learn a mapping \(f: u \rightarrow \mathbb{R}^{d}\) : \(f(u)=\mathbf{z}_{u}\)
- Log-likelihood objective:
\[
\max _{f} \sum_{u \in V} \log \mathrm{P}\left(N_{\mathrm{R}}(u) \mid \mathbf{z}_{u}\right)
\]
- \(N_{R}(u)\) is the neighborhood of node \(u\) by strategy \(R\)
- Given node \(u\), we want to learn feature representations that are predictive of the nodes in its random walk neighborhood \(N_{R}(u)\).

\section*{Random Walk Optimization}
1. Run short fixed-length random walks starting from each node \(u\) in the graph using some random walk strategy \(R\).
2. For each node \(u\) collect \(N_{R}(u)\), the multiset \({ }^{*}\) of nodes visited on random walks starting from \(u\).
3. Optimize embeddings according to: Given node \(u\), predict its neighbors \(N_{\mathrm{R}}(u)\).
\(\max _{f} \sum_{u \in V} \log\) \(\log \mathrm{P}\left(N_{\mathrm{R}}(u) \mid \mathbf{Z}_{u}\right) \longmapsto\) Maximum likelihood objective

\section*{Summary so far}
- Core idea: Embed nodes so that distances in embedding space reflect node similarities in the original network.
- Different notions of node similarity:
- Naïve: similar if two nodes are connected
- Neighborhood overlap
- Random walk approaches```

