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Main question:

How do we take advantage of 
relational structure for better 

prediction?
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Complex domains have a rich relational 
structure, which can be represented as a

relational graph

By explicitly modeling relationships we 
achieve better performance!
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What have we seen?

• Inference
– Belief propagation

– Graph cuts (to be completed)

– Variational inference

– Simulation-based inference
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Outline

The st-mincut problem

What problems can we solve 
using st-mincut?

st-mincut based Move algorithms

Connection between st-mincut 
and energy minimization?
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St-mincut and Energy Minimization

T

S st-mincut

E: {0,1}n → R

Minimizing a Qudratic 
Pseudoboolean 

function E(x) 

Functions of boolean 
variables

Pseudoboolean?

Polynomial time st-mincut algorithms 
require non-negative edge weights

E(y) = ∑ ci yi + ∑ cij yi(1-yj) cij≥0
i,ji
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So how does this work? 

Construct a graph such that:
1.Any st-cut corresponds to an assignment of x

2.The cost of the cut is equal to the energy of x : 
E(x)

Solution
T

S st-mincut

E(y)
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Graph Construction

Sink (1)

Source (0)

a1 a2

E(a1,a2)
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Graph Construction

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2a1

2
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Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1

2

5

Sink (1)

Source (0)
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Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2

2

5

9

4
Sink (1)

Source (0)
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Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2

2

5

9

4
2

Sink (1)

Source (0)
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Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4
2

1

Sink (1)

Source (0)
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Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4
2

1

Sink (1)

Source (0)
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Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

5 4
2

1 a1 = 1  a2 = 1

E (1,1) = 11

Cost of cut = 11

Sink (1)

Source (0)

2 9
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Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4
2

1

Sink (1)

Source (0)

a1 = 1  a2 = 0

E (1,0) = 8

st-mincut cost = 8
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Energy Function Reparameterization

Two functions E1 and E2 are reparameterizations if

E1 (x) = E2 (x)  for all x

For instance:

E1 (a1) = 1+ 2a1 + 3ā1

E2 (a1) = 3 + ā1

a1 ā1 1+ 2a1 + 3ā1 3 + ā1

0 1 4 4

1 0 3 3
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Flow and Reparametrization

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4
2

1

Sink (1)

Source (0)
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Flow and Reparametrization

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4
2

1

Sink (1)

Source (0)

2a1 + 5ā1  

= 2(a1+ā1) + 3ā1 

= 2 + 3ā1 
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Flow and Reparametrization

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2 + 3ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

0

3

9

4
2

1 2a1 + 5ā1  

= 2(a1+ā1) + 3ā1 

= 2 + 3ā1 

27



Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2 + 3ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

0

3

9

4
2

1

Flow and Reparametrization

9a2 + 4ā2  

= 4(a2+ā2) + 5ā2 

= 4 + 5ā2 
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Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2 + 3ā1+ 5a2 + 4 + 2a1ā2 + ā1a2

0

3

5

0
2

1 9a2 + 4ā2  

= 4(a2+ā2) + 5ā2 

= 4 + 5ā2 

Flow and Reparametrization
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Sink (1)

Source (0)

a1 a2

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 + ā1a2

0

3

5

0
2

1

Flow and Reparametrization
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Sink (1)

Source (0)

a1 a2

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 + ā1a2

0

3

5

0
2

1

Flow and Reparametrization
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Sink (1)

Source (0)

a1 a2

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 + ā1a2

0

3

5

0
2

1

Flow and Reparametrization

3ā1+ 5a2 + 2a1ā2 

= 2(ā1+a2+a1ā2) +ā1+3a2

= 2(1+ā1a2) +ā1+3a2

a1 a2 F1 F2
0 0 1 1
0 1 2 2
1 0 1 1
1 1 1 1

F1 = ā1+a2+a1ā2

F2 = 1+ā1a2
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Sink (1)

Source (0)

a1 a2

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

0

1

3

0
0

3

Flow and Reparametrization

3ā1+ 5a2 + 2a1ā2 

= 2(ā1+a2+a1ā2) +ā1+3a2

= 2(1+ā1a2) +ā1+3a2

a1 a2 F1 F2
0 0 1 1
0 1 2 2
1 0 1 1
1 1 1 1

F1 = ā1+a2+a1ā2

F2 = 1+ā1a2
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Sink (1)

Source (0)

a1 a2

0

1

3

0
0

3

Flow and Reparametrization

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

No more 
augmenting paths 

possible
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Sink (1)

Source (0)

a1 a2

0

1

3

0
0

3

Flow and Reparametrization

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

Total Flow

Residual Graph
(positive coefficients)

bound on the 
optimal solution

Inference of the optimal solution becomes 
trivial because the bound is tight  35



Sink (1)

a1 a2

0

1

3

0
0

3

Flow and Reparametrization

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

a1 = 1  a2 = 0

E (1,0) = 8

st-mincut cost = 8
Total Flow

bound on the 
optimal solution

Inference of the optimal solution becomes 
trivial because the bound is tight  

Residual Graph
(positive coefficients)

Source (0)
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Example: Image Segmentation

E(y) = ∑ ci yi + ∑ cij yi(1-yj)
E: {0,1}n → R

0 → fg
1 → bgi i,j

Global Minimum (y*)

y* = arg min E(y)
y

How to minimize 
E(x)?
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How does the code look like?

Sink (1)

Graph *g;

For all pixels p 

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q),  cost);

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

Source (0)
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How does the code look like?

Graph *g;

For all pixels p 

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q),  cost);

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

a1 a2

fgCost(a1)

Sink (1)

Source (0)

fgCost(a2)

bgCost(a1) bgCost(a2)
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Graph *g;

For all pixels p 

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q),  cost(p,q));

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

How does the code look like?

a1 a2

fgCost(a1)

Sink (1)

Source (0)

fgCost(a2)

bgCost(a1) bgCost(a2)

cost(p,q)

40



Graph *g;

For all pixels p 

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q),  cost(p,q));

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

How does the code look like?

a1 a2

fgCost(a1)

Sink (1)

fgCost(a2)

bgCost(a1) bgCost(a2)

cost(p,q)

a1 = bg  a2 = fg

Source (0)
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Outline

The st-mincut problem

What problems can we solve 
using st-mincut?

st-mincut based Move algorithms

Connection between st-mincut 
and energy minimization?
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Minimizing Energy Functions

Space of Function 
Minimization Problems

Submodular
Functions

NP-Hard

• General Energy 
Functions
– NP-hard to minimize
– Only approximate minimization 

possible

• Easy energy functions
– Solvable in polynomial time
– Submodular ~ O(n6) 

MAXCUT

Functions defined on trees

43



Minimizing Submodular Functions

• Minimizing general submodular functions
– O(n5 Q + n6) where Q is function evaluation time

[Orlin, IPCO 2007]

• Symmetric submodular functions
– E (y) = E (1 - y)
– O(n3) [Queyranne 1998]

• Quadratic pseudoboolean
– Can be transformed to st-mincut
– One node per variable  (O(n3) complexity)
– Very low empirical running time
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Submodular Pseudoboolean Functions

• All functions for one boolean variable (f: {0,1} à ℝ) are submodular

• A function of two boolean variables (f: {0,1}2 à ℝ) is submodular if
f(0,1) + f(1,0)  ³ f(0,0) + f(1,1)

• A general pseudoboolean function  f : 2n® ℝ is submodular if all its 
projections fp are submodular i.e.

fp(0,1) + fp(1,0)  ³ fp(0,0) + fp(1,1)

Function defined over boolean vectors y = {y1,y2, .... yn}

Definition

45



E(y) = ∑ θi (yi) + ∑ θij (yi,yj)
i,ji

Quadratic Submodular Pseudoboolean
Functions

θij(0,1) + θij (1,0)  ³ θij (0,0) + θij (1,1)For all ij
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E(y) = ∑ θi (yi) + ∑ θij (yi,yj)
i,ji

Quadratic Submodular Pseudoboolean
Functions

θij(0,1) + θij (1,0)  ³ θij (0,0) + θij (1,1)For all ij

E(y) = ∑ ci yi + ∑ cij yi(1-yj) cij≥0
i,ji

Equivalent (transformable)

i.e. all submodular QPBFs are st-mincut solvable
47



A B

C D

0     1

0

1
yi

yj

=  A +
0 0

C-A C-A

0     1

0

1

0 D-C

0 D-C

0     1

0

1

0 B+C-
A-D

0 0

0     1

0

1
+ +

if yi=1 add C-A if yj = 1 add D-C

B+C-A-D ³ 0 is true from the submodularity of θij

How are they equivalent?

A = θij (0,0)  B = θij(0,1)           C = θij (1,0)          D = θij (1,1)

θij (yi,yj)  = θij(0,0) 
+ (θij(1,0)-θij(0,0)) yi + (θij(1,0)-θij(0,0)) yj

+ (θij(1,0) + θij(0,1) - θij(0,0) - θij(1,1)) (1-yi) yj
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E(y) = ∑ θi (yi) + ∑ θij (yi,yj)
i,ji

Quadratic Submodular Pseudoboolean
Functions

θij(0,1) + θij (1,0)  ³ θij (0,0) + θij (1,1)For all ij

Equivalent (transformable)

T

S
st-mincut

y in {0,1}n
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Recap

• Exact minimization of Submodular QBFs 
using graph cuts

• Obtaining partially optimal solutions of non-
submodular QBFs using graph cuts
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Outline

The st-mincut problem

What problems can we solve 
using st-mincut?

st-mincut based Move algorithms

Connection between st-mincut 
and energy minimization?
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St-mincut based Move algorithms

• Commonly used for solving non-submodular
multi-label problems

• Extremely efficient and produce good 
solutions

• Not Exact: Produce local optima

E(y) = ∑ θi (yi) + ∑ θij (yi,yj)
i,ji

y ϵ Labels L = {l1, l2, … , lk}
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Move Making Algorithms

Solution Space

En
er

gy
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Move Making Algorithms

Search 
Neighbourhood

Current Solution

Optimal Move

Solution Space

En
er

gy
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Move Making Algorithms

Search 
Neighbourhood

Current Solution

Optimal Move

Solution Space

En
er

gy
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Move Making Algorithms

Search 
Neighbourhood

Current Solution

Optimal Move

Solution Space

En
er

gy
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Move Making Algorithms

Search 
Neighbourhood

Current Solution

Optimal Move

Solution Space

En
er

gy
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Move Making Algorithms

Search 
Neighbourhood

Current Solution

Optimal Move

Solution Space

En
er

gy
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Move Making Algorithms

Search 
Neighbourhood

Current Solution

Optimal Move

Solution Space

En
er

gy
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Computing the Optimal Move

Search 
Neighbourhood

Current Solution

Optimal Move

yc
(t) Key Property 

Move Space

Bigger move 
space 

Solution Space

En
er

gy

• Better solutions 
• Finding the optimal move hard
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Moves using Graph Cuts

Expansion and Swap move algorithms
[Boykov Veksler and Zabih, PAMI 2001]

• Makes a series of changes to the solution (moves)
• Each move results in a solution with smaller energy

Space of Solutions (y) : LN

Move Space (t) : 2N

Search 
Neighbourhood

Current Solution

N Number of 
Variables

L Number of  
Labels
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Moves using Graph Cuts

Expansion and Swap move algorithms
[Boykov Veksler and Zabih, PAMI 2001]

• Makes a series of changes to the solution (moves)
• Each move results in a solution with smaller energy

Current Solution

Construct a move 
function

Minimize move function 
to get optimal move

Move to new 
solution

How to 
minimize 

move 
functions?
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General Binary Moves

Minimize over move variables t to get the 
optimal move 

y =  t y1 + (1- t) y2

New 
solution

Current 
Solution

Second 
solution

Em(t) = E(t y1 + (1- t) y2)

Boykov, Veksler and Zabih, PAMI 2001

Move energy is a submodular QPBF 
(Exact Minimization Possible)
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Expansion Move

[Boykov, Veksler, Zabih][Boykov, Veksler, Zabih]

• Variables take label α or retain current label
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Expansion Move

Sky
House

Tree
Ground

Initialize with TreeStatus:

[Boykov, Veksler, Zabih][Boykov, Veksler, Zabih]

• Variables take label α or retain current label
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Expansion Move

Sky
House

Tree
Ground

Status: Expand Ground

[Boykov, Veksler, Zabih][Boykov, Veksler, Zabih]

• Variables take label α or retain current label
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Expansion Move

Sky
House

Tree
Ground

Status: Expand House

[Boykov, Veksler, Zabih][Boykov, Veksler, Zabih]

• Variables take label α or retain current label
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Expansion Move

Sky
House

Tree
Ground

Status: Expand Sky

[Boykov, Veksler, Zabih][Boykov, Veksler, Zabih]

• Variables take label α or retain current label
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Expansion Move

• Move energy is submodular if:
– Unary Potentials: Arbitrary
– Pairwise potentials: Metric

[Boykov, Veksler, Zabih][Boykov, Veksler, Zabih]

Semi metric

• Variables take label α or retain current label

Examples: Potts model, Truncated linear
Cannot solve truncated quadratic 

θij (la,lb)  ≥ 0
θij (la,lb)  = 0   iff   a = b
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Expansion Move

• Move energy is submodular if:
– Unary Potentials: Arbitrary
– Pairwise potentials: Metric

[Boykov, Veksler, Zabih][Boykov, Veksler, Zabih]

θij (la,lb) + θij (lb,lc) ≥ θij (la,lc) Triangle 
Inequality

• Variables take label α or retain current label

Examples: Potts model, Truncated linear
Cannot solve truncated quadratic 
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Exact 
Transformation

(global optimum)

Or Relaxed 
transformation

(partially optimal)

Summary

T

S
st-mincut

Labelling 
Problem

Submodular Quadratic 
Pseudoboolean Function 

Move making algorithms

Sub-problem
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Where do we stand ?

Chain/Tree, 2/multi-label: Use BP

Grid graph -
“submodular”:   Use graph cuts
“metric”:            Use expansion

otherwise:   Use TRW,
dual decomposition,
relaxation
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What have we seen?

• Inference
– Belief propagation

– Graph cuts

– Variational inference

– Simulation-based inference

• Learning

77



• Supervised Learning

• Probabilistic Methods

• Loss-based Methods

Outline
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Image Classification

Which city is this?

Input: d Output: x Î {1,2,…,h}
79



CRF training
• Stereo matching:
• Z: left, right image
• X: disparity map

Z X

f :

argf = parameterized 
by w

Goal of training:
estimate proper w
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CRF training
• Denoising:
• Z: noisy input image
• X: denoised output image

Z X

f :

argf = parameterized 
by w

Goal of training:
estimate proper w
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CRF training (some further notation)

vector valued feature 
functions

82



Learning formulations



Risk minimization

K training samples 
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Regularized Risk minimization
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Regularized Risk minimization

Replace Δ(.) with easier to handle upper bound LG
(e.g., convex w.r.t. w)
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Choice 1: Hinge loss

§ Upper bounds Δ(.)

§ Leads to max-margin learning

87



Max-margin learning
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Max-margin learning

energy of 
ground truth
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Max-margin learning

energy of 
ground truth

any other 
energy 
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Max-margin learning

energy of 
ground truth

any other 
energy 

desired 
margin
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Max-margin learning

energy of 
ground truth

any other 
energy 

desired 
margin

slack
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Max-margin learning

subject to the constraints:

energy of 
ground truth

any other 
energy 

desired 
margin

slack
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Max-margin learning

subject to the constraints:

energy of 
ground truth

any other 
energy 

desired 
margin

slack
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Max-margin learning

subject to the constraints:
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Max-margin learning

subject to the constraints:

or equivalently
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Max-margin learning

subject to the constraints:

or equivalently

CONSTRAINED
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Max-margin learning

subject to the constraints:

or equivalently

CONSTRAINED

UNCONSTRAINED
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Choice 2: logistic loss 

§ Can be shown to lead to maximum likelihood learning

partition function 
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Max-margin vs Maximum-likelihood
max-margin

maximum likelihood
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Max-margin vs Maximum-likelihood
max-margin

maximum likelihood

soft-max

101



Solving the learning 
formulations



Maximum-likelihood learning

§ Differentiable & convex

partition function 

§ Global optimum via gradient descent, for example
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Maximum-likelihood learning

gradient

Recall that:

104



Maximum-likelihood learning

gradient

§ Requires MRF probabilistic inference 

§ NP-hard (exponentially many x): approximation via loopy-BP ?
105



Max-margin learning (UNCONSTRAINED)

§ Convex but non-differentiable

§ Global optimum via subgradient method

106



Max-margin learning (CONSTRAINED)

subject to the constraints:

linear in w

• Quadratic program (great!)
• But exponentially many constraints (not so great)

107



• What if we use only a small number of constraints?

• Resulting QP can be solved

• But solution may be infeasible

Max-margin learning (CONSTRAINED)

• only few constraints active at optimal solution !!
(variables much fewer than constraints)

• Constraint generation to the rescue

• Given the active constraints, rest can be ignored

• Then let us try to find them!
108



What have we seen?

• Inference
– Belief propagation

– Graph cuts

– Variational inference

– Simulation-based inference

• Learning

109
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Images

Text/Speech

Modern deep learning toolbox is designed 
for simple sequences & grids

1/11/2023Slide courtesy: http://cs224w.Stanford.edu 



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 10

Modern 
deep learning toolbox 

is designed for 
sequences & grids

1/11/2023

111
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Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 11

Not everything 
can be represented as 
a sequence or a grid

How can we develop neural 
networks that are much more 

broadly applicable?

New frontiers beyond classic neural 
networks that only learn on images 

and sequences
1/11/2023

112
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Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 13
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Networks are complex.
� Arbitrary size and complex topological 

structure (i.e., no spatial locality like grids)

� No fixed node ordering or reference point
� Often dynamic and have multimodal features

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 14

vs.

Networks Images

Text

1/11/2023



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 16

…
z

Input: Network

Predictions: Node labels, 
New links, Generated 
graphs and subgraphs

1/11/2023
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17Jure Leskovec, Stanford University

Each node defines a computation graph
▪ Each edge in this graph is a 

transformation/aggregation function 

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks. 
116
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18Jure Leskovec, Stanford University

Intuition: Nodes aggregate information from their 
neighbors using neural networks

Neural networks

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.
117Slide courtesy: http://cs224w.Stanford.edu 



(Supervised) Machine Learning Lifecycle: 
This feature, that feature. Every single time!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 20

Raw 
Data

Graph 
Data

Learning 
Algorithm Model

Downstream 
prediction task

Feature 
Engineering

Representation 
Learning --

Automatically 
learn the features

1/11/2023

118
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Map nodes to d-dimensional 
embeddings such that similar nodes in 

the network are embedded close 
together

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 21

representationnode

𝒇: 𝑢 → ℝ𝑑

ℝ𝑑

Feature representation, 
embedding

u
Learn a neural network

1/11/2023

119
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ML for Graph data

• Traditional methods

• Node embeddings

• Graph neural networks

• Applications

120
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Node level

Edge-level

Community 
(subgraph)
level

Graph-level 
prediction,
Graph 
generation



� Node classification: Predict a property of a node
▪ Example: Categorize online users / items

� Link prediction: Predict whether there are missing 
links between two nodes
▪ Example: Knowledge graph completion

� Graph classification: Categorize different graphs
▪ Example: Molecule property prediction

� Clustering: Detect if nodes form a community
▪ Example: Social circle detection

� Other tasks:
▪ Graph generation: Drug discovery
▪ Graph evolution: Physical simulation

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 261/11/2023

122
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� Design features for nodes/links/graphs
� Obtain features for all training data

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

C

A

B

D E

H

F

G

Node features

Graph featuresLink features

∈ ℝ𝐷
∈ ℝ𝐷

∈ ℝ𝐷

123
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� Train an ML model:
▪ Logistic Regression
▪ Random forest
▪ Neural network, etc.

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

𝒙𝑵 𝑦𝑁

� Apply the model:
▪ Given a new 

node/link/graph, obtain 
its features and make a 
prediction

𝒙 𝑦

124
Slide courtesy: http://cs224w.Stanford.edu 
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Goal: Make predictions for a set of objects

Design choices:
� Features: d-dimensional vectors 𝒙
� Objects: Nodes, edges, sets of nodes, 

entire graphs
� Objective function:

▪ What task are we aiming to solve?

101/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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? ?

?
?

?
Machine 
Learning

Node classification

ML needs features.

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Goal: Characterize the structure and position of 
a node in the network:

▪ Node degree
▪ Node centrality
▪ Clustering coefficient
▪ Graphlets

1/12/2023 14Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C
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B

D E

H

F

G

Node feature
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� The task is to predict new links based on the 
existing links.

� At test time, node pairs (with no existing links) 
are ranked, and top 𝐾 node pairs are predicted.

� The key is to design features for a pair of nodes.

1/12/2023 33Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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G

?

?
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Two formulations of the link prediction task:
� 1) Links missing at random:

▪ Remove a random set of links and then 
aim to predict them

� 2) Links over time:
▪ Given 𝐺[𝑡0, 𝑡0′ ] a graph defined by edges 

up to time 𝑡0′ , output a ranked list L
of edges (not in 𝐺[𝑡0, 𝑡0′ ]) that are 
predicted to appear in time 𝐺[𝑡1, 𝑡1′ ]

▪ Evaluation:
▪ n = |Enew|: # new edges that appear during 

the test period [𝑡1, 𝑡1′]
▪ Take top n elements of L and count correct edges

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

𝐺[𝑡0, 𝑡0′ ]
𝐺[𝑡1, 𝑡1′ ]

129
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� Methodology:
▪ For each pair of nodes (x,y) compute score c(x,y)

▪ For example, c(x,y) could be the # of common neighbors 
of x and y

▪ Sort pairs (x,y) by the decreasing score c(x,y)
▪ Predict top n pairs as new links
▪ See which of these links actually

appear in 𝐺[𝑡1, 𝑡1′ ]

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

X
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� Distance-based feature
� Local neighborhood overlap
� Global neighborhood overlap

1/12/2023 36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Link feature



� Distance-based features:
▪ Uses the shortest path length between two nodes 

but does not capture how neighborhood overlaps.
� Local neighborhood overlap:

▪ Captures how many neighboring nodes are shared 
by two nodes.

▪ Becomes zero when no neighbor nodes are shared.
� Global neighborhood overlap:

▪ Uses global graph structure to score two nodes.
▪ Katz index counts #walks of all lengths between two 

nodes.
1/12/2023 45Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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� Goal: We want features that characterize the 
structure of an entire graph.

� For example:

1/12/2023 47Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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� Kernel methods are widely-used for traditional 
ML for graph-level prediction.

� Idea: Design kernels instead of feature vectors.
� A quick introduction to Kernels:

▪ Kernel 𝐾 𝐺,𝐺′ ∈ ℝ measures similarity b/w data
▪ Kernel matrix 𝑲 = 𝐾 𝐺,𝐺′

𝐺,𝐺′
must always be 

positive semidefinite (i.e., has positive eigenvalues)
▪ There exists a feature representation 𝜙(∙) such that
𝐾 𝐺, 𝐺′ = 𝜙 G T𝜙 𝐺′

▪ Once the kernel is defined, off-the-shelf ML model, 
such as kernel SVM, can be used to make predictions.

1/12/2023 48Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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� Graph Kernels: Measure similarity between 
two graphs:
▪ Graphlet Kernel [1]
▪ Weisfeiler-Lehman Kernel [2]
▪ Other kernels are also proposed in the literature 

(beyond the scope of this lecture)
▪ Random-walk kernel
▪ Shortest-path graph kernel
▪ And many more…

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

[1] Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.
[2] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

135
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� Graphlet Kernel
▪ Graph is represented as Bag-of-graphlets
▪ Computationally expensive

� Weisfeiler-Lehman Kernel
▪ Apply 𝐾-step color refinement algorithm to enrich 

node colors
▪ Different colors capture different 𝐾-hop neighborhood 

structures
▪ Graph is represented as Bag-of-colors
▪ Computationally efficient
▪ Closely related to Graph Neural Networks (as we 

will see!)
1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67
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Input 
Graph

Structured 
Features

Learning 
Algorithm  Prediction

Downstream 
prediction task

Feature 
Engineering

Representation Learning --
Automatically

learn the features

Graph Representation Learning alleviates 
the need to do feature engineering every 
single time.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu1/17/2023
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Goal: Efficient task-independent feature 
learning for machine learning with graphs!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

vectornode

𝑓: 𝑢 → ℝ𝑑

ℝ𝑑

Feature representation, 
embedding

𝑢

1/17/2023



� Task: Map nodes into an embedding space
▪ Similarity of embeddings between nodes indicates 

their similarity in the network. For example:
▪ Both nodes are close to each other (connected by an edge)

▪ Encode network information
▪ Potentially used for many downstream predictions

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Vec

ℝ𝑑embeddings

• Node classification
• Link prediction
• Graph classification
• Anomalous node detection
• Clustering
• ….

Tasks

139
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� 2D embedding of nodes of the Zachary’s 
Karate Club network:

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Example

• Zachary’s Karate Network:

18

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014. 140
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� Assume we have a graph G:
▪ V is the vertex set.
▪ A is the adjacency matrix (assume binary).
▪ For simplicity: No node features or extra 

information is used

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 81/17/2023
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� Goal is to encode nodes so that similarity in 
the embedding space (e.g., dot product) 
approximates similarity in the graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 91/17/2023
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Goal:

Need to define!

1/17/2023

in the original network Similarity of the embedding
similarity 𝑢, 𝑣 ≈ 𝐳𝑣Τ𝐳𝑢
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1. Encoder maps from nodes to embeddings
2. Define a node similarity function (i.e., a 

measure of similarity in the original network)
3. Decoder𝐃𝐄𝐂 maps from embeddings to the 

similarity score
4. Optimize the parameters of the encoder so 

that:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 111/17/2023

in the original network Similarity of the embedding

similarity 𝑢, 𝑣 ≈ 𝐳𝑣Τ𝐳𝑢
𝐃𝐄𝐂(𝐳𝑣Τ𝐳𝑢)



� Encoder: maps each node to a low-dimensional 
vector

� Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of 𝑢 and 𝑣 in 
the original network

dot product between node 
embeddings

1/17/2023

Decoder

ENC 𝑣 = 𝐳𝑣

similarity 𝑢, 𝑣 ≈ 𝐳𝑣Τ𝐳𝑢

node in the input graph

d-dimensional 
embedding

145
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Simplest encoding approach: Encoder is just an 
embedding-lookup

Each node is assigned a unique 
embedding vector

(i.e., we directly optimize 
the embedding of each node)

Many methods: DeepWalk, node2vec

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15
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� Encoder + Decoder Framework
▪ Shallow encoder: embedding lookup
▪ Parameters to optimize: 𝐙 which contains node 

embeddings 𝐳𝑢 for all nodes 𝑢 ∈ 𝑉
▪ We will cover deep encoders (GNNs) in Lecture 6

▪ Decoder: based on node similarity.
▪ Objective: maximize 𝐳𝑣Τ𝐳𝑢 for node pairs (𝑢, 𝑣)

that are similar

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

later
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� Key choice of methods is how they define node 
similarity.

� Should two nodes have a similar embedding if 
they…
▪ are linked?
▪ share neighbors?
▪ have similar “structural roles”?

� We will now learn node similarity definition that uses 
random walks, and how to optimize embeddings for 
such a similarity measure.

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

There are also random walk based approaches



� This is unsupervised/self-supervised way of 
learning node embeddings.
▪ We are not utilizing node labels
▪ We are not utilizing node features
▪ The goal is to directly estimate a set of coordinates 

(i.e., the embedding) of a node so that some aspect 
of the network structure (captured by DEC) is 
preserved.

� These embeddings are task independent
▪ They are not trained for a specific task but can be 

used for any task.
1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18
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probability that u
and v co-occur on a 
random walk over 

the graph

1/17/2023



1. Estimate probability of visiting node 𝒗 on a 
random walk starting from node 𝒖 using 
some random walk strategy 𝑹

2. Optimize embeddings to encode these 
random walk statistics:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 231/17/2023

Similarity in embedding space (Here: 
dot product=cos(𝜃)) encodes random walk “similarity”

151
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1. Expressivity: Flexible stochastic definition of 
node similarity that incorporates both local 
and higher-order neighborhood information
Idea: if random walk starting from node 𝑢
visits 𝑣 with high probability, 𝑢 and 𝑣 are 
similar (high-order multi-hop information)

2. Efficiency: Do not need to consider all node 
pairs when training; only need to consider 
pairs that co-occur on random walks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 241/17/2023
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� Intuition: Find embedding of nodes in 
𝑑-dimensional space that preserves similarity

� Idea: Learn node embedding such that nearby
nodes are close together in the network

� Given a node 𝑢, how do we define nearby 
nodes?
▪ 𝑁𝑅 𝑢 … neighbourhood of 𝑢 obtained by some 

random walk strategy 𝑅

25Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu1/17/2023



� Given 𝐺 = (𝑉, 𝐸), 
� Our goal is to learn a mapping 𝑓: 𝑢 → ℝ𝑑:
𝑓 𝑢 = 𝐳𝑢

� Log-likelihood objective: 

▪ 𝑁𝑅(𝑢) is the neighborhood of node 𝑢 by strategy 𝑅

� Given node 𝑢, we want to learn feature 
representations that are predictive of the nodes 
in its random walk neighborhood 𝑁𝑅(𝑢).

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26
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1. Run short fixed-length random walks 
starting from each node 𝑢 in the graph using 
some random walk strategy R.

2. For each node 𝑢 collect 𝑁𝑅(𝑢), the multiset*

of nodes visited on random walks starting 
from 𝑢.

3. Optimize embeddings according to: Given 
node 𝑢, predict its neighbors 𝑁R(𝑢).

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27
*𝑁𝑅(𝑢) can have repeat elements since nodes can be visited multiple times on random walks

1/17/2023

Maximum likelihood objective
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� Core idea: Embed nodes so that distances in 
embedding space reflect node similarities in 
the original network.

� Different notions of node similarity:
▪ Naïve: similar if two nodes are connected
▪ Neighborhood overlap (covered in Lecture 2)
▪ Random walk approaches (covered today)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 481/17/2023


