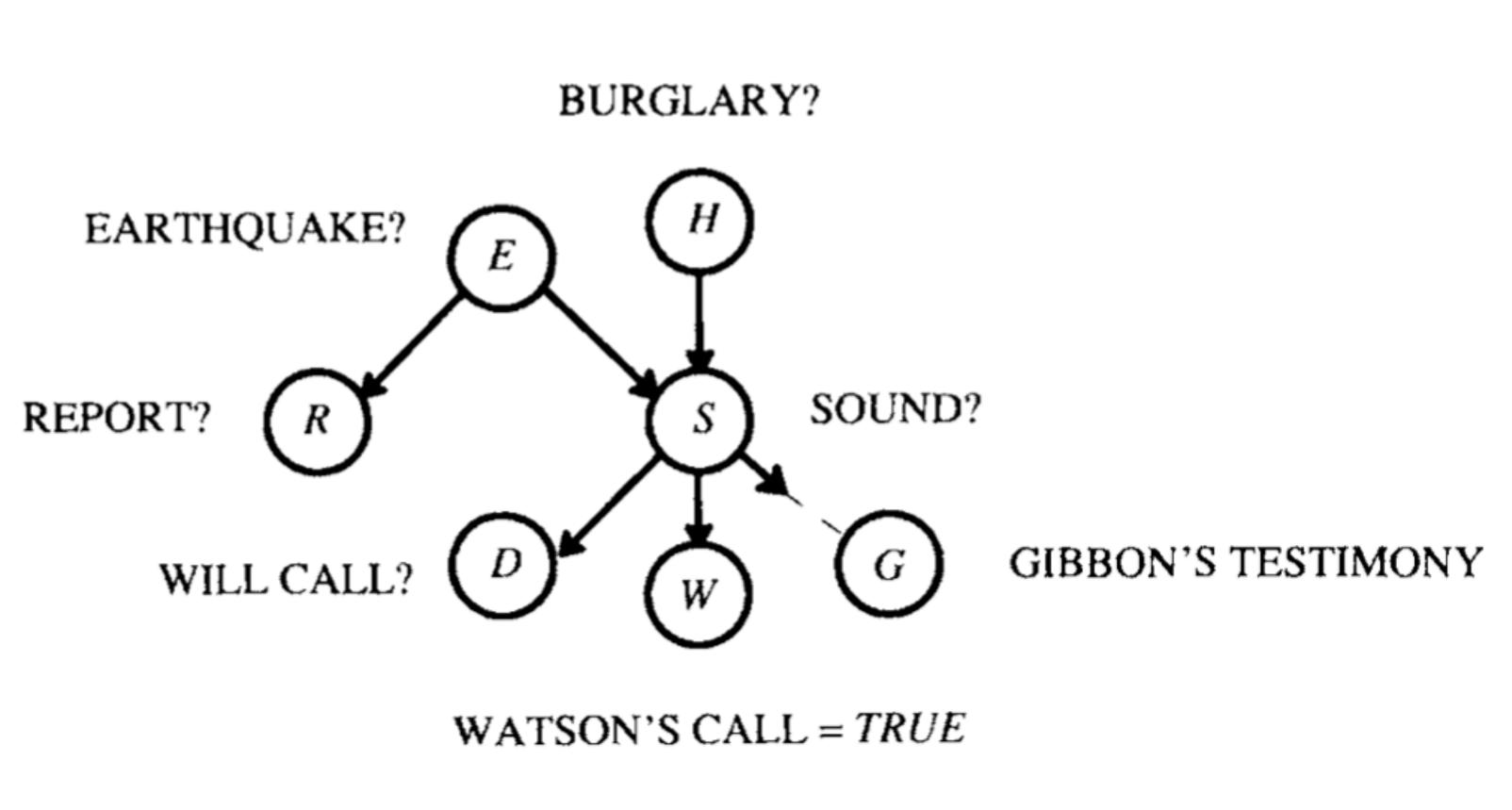
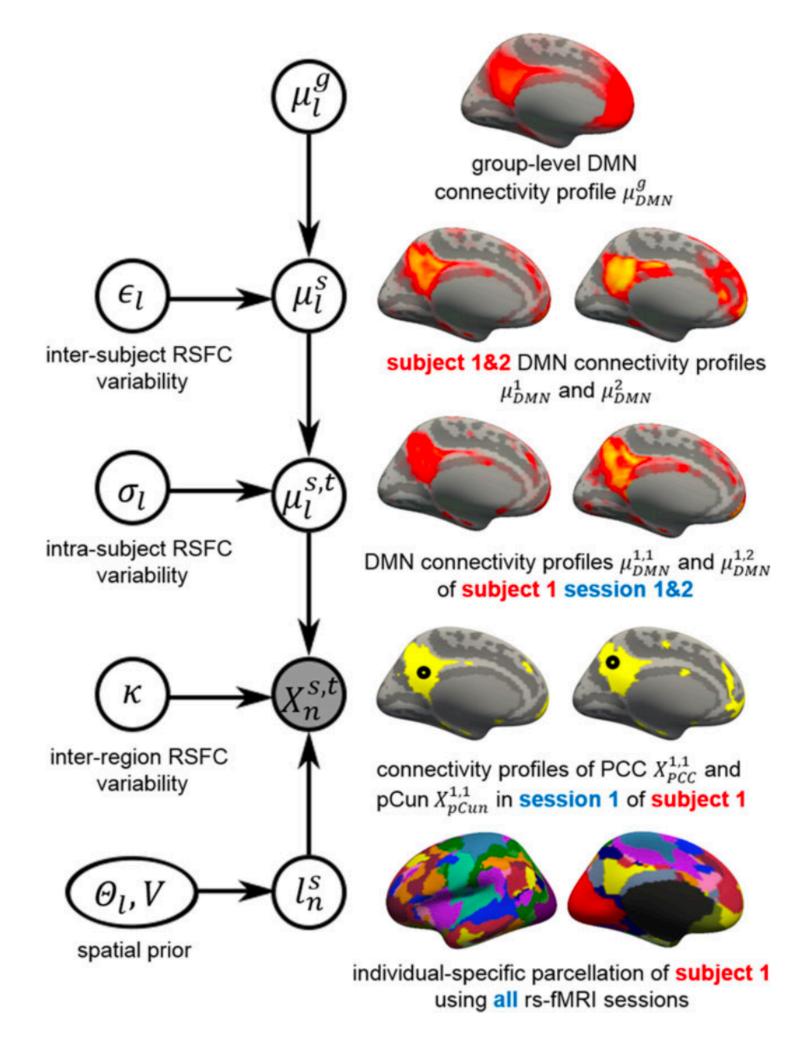
Graphical Models and Simulation-Based Inference

Graphical Models: Discrete Inference and Learning

Introduction to DAG and their relationship with Probability Functions (Pearl)

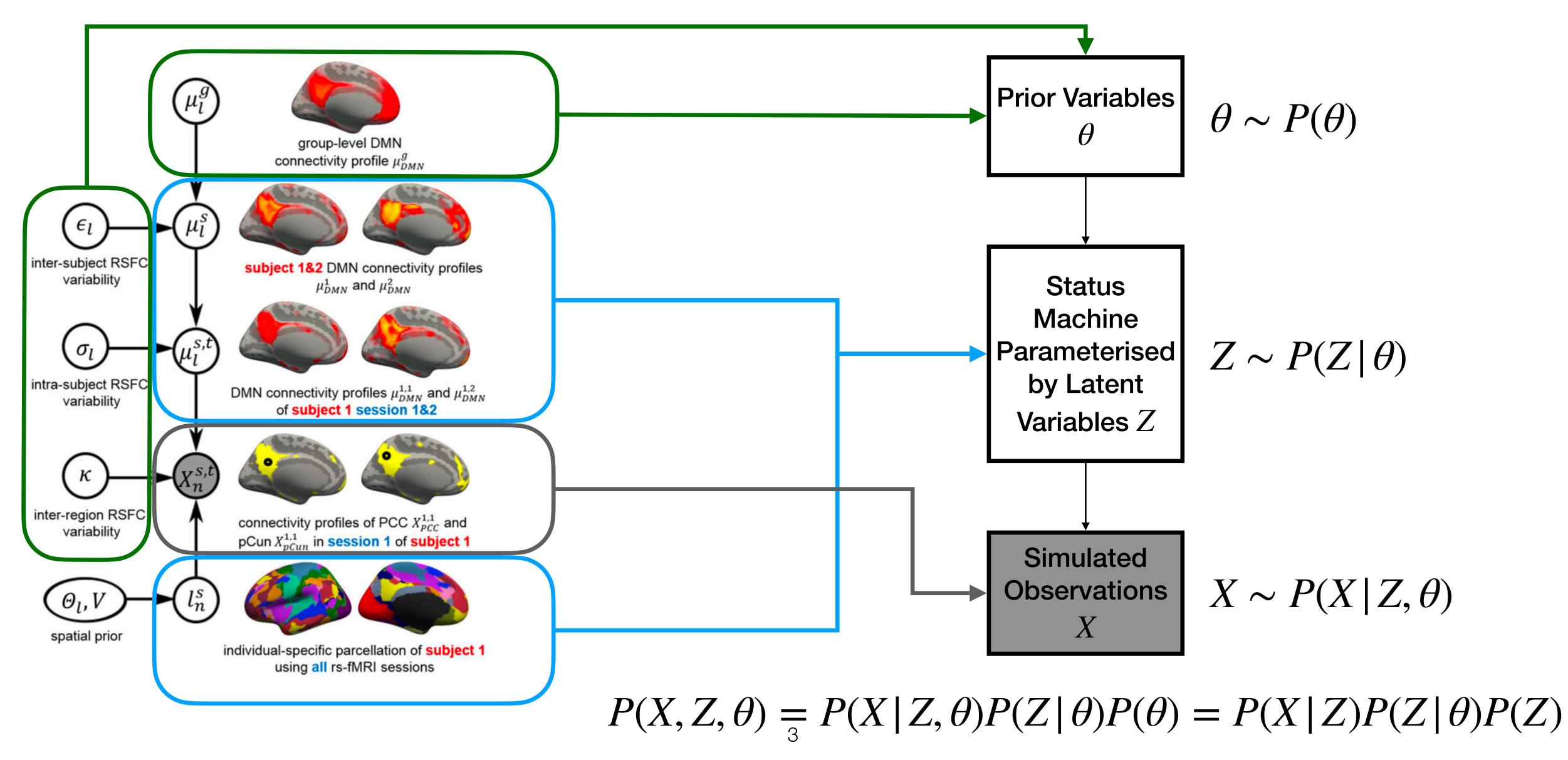


[Pearl 1987]



[Kong et al 2019]

Graphical Models and Simulation Systems



General Inference Notation

Likelihood Prior

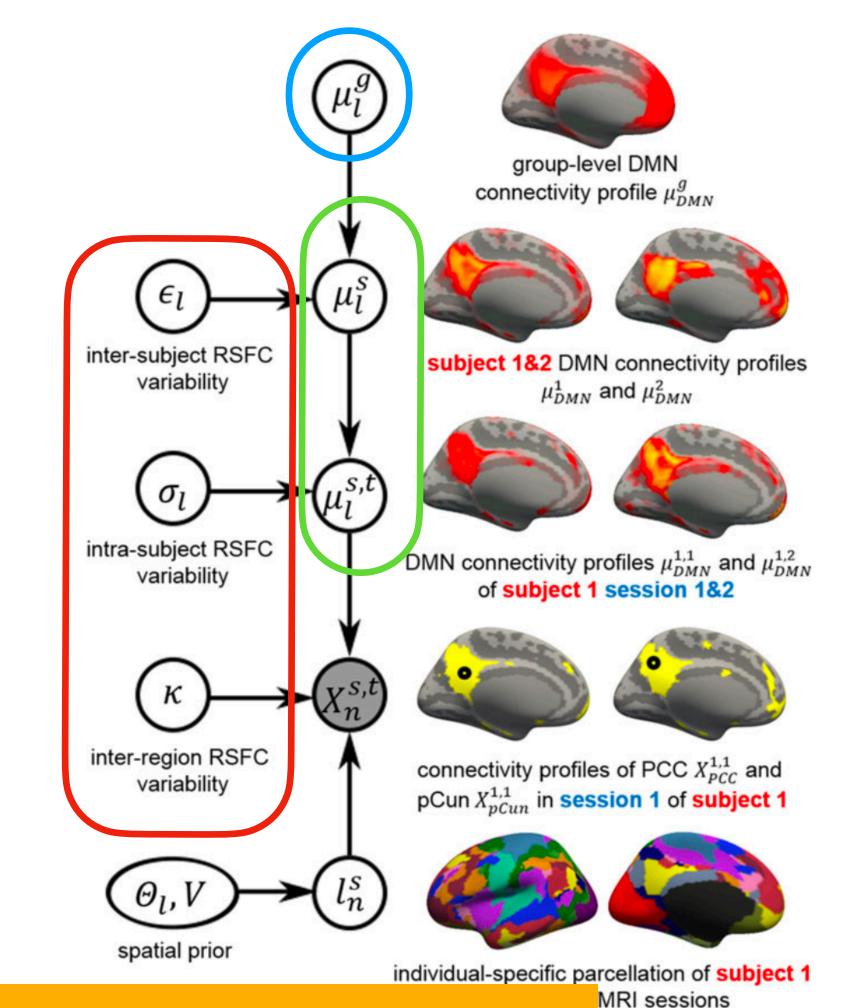
$$heta$$
: parameters X: observations $P(X \mid \theta) P(\theta)$ $P(\theta \mid X) = \frac{P(X \mid \theta) P(\theta)}{P(X)}$

Evidence

Z: latent random variables

$$P(\theta | X) = \frac{\mathbb{E}_{Z}[P(X | Z, \theta)]P(\theta)}{P(X)}$$

 $P(\theta \mid X) = \frac{\mathbb{E}_{\eta}[P(X \mid \theta, \eta)]P(\theta)}{P(X)}$



Intractable in general:

full likelihood impossible to evaluated or computation cost is extremely high

Likelihood computation is hard: Enter Mechanistic, Example Models Galton Board

 θ : parameters X: observations $P(X | \theta)P(\theta)$

$$P(\theta | X) = \frac{1}{P(X)}$$

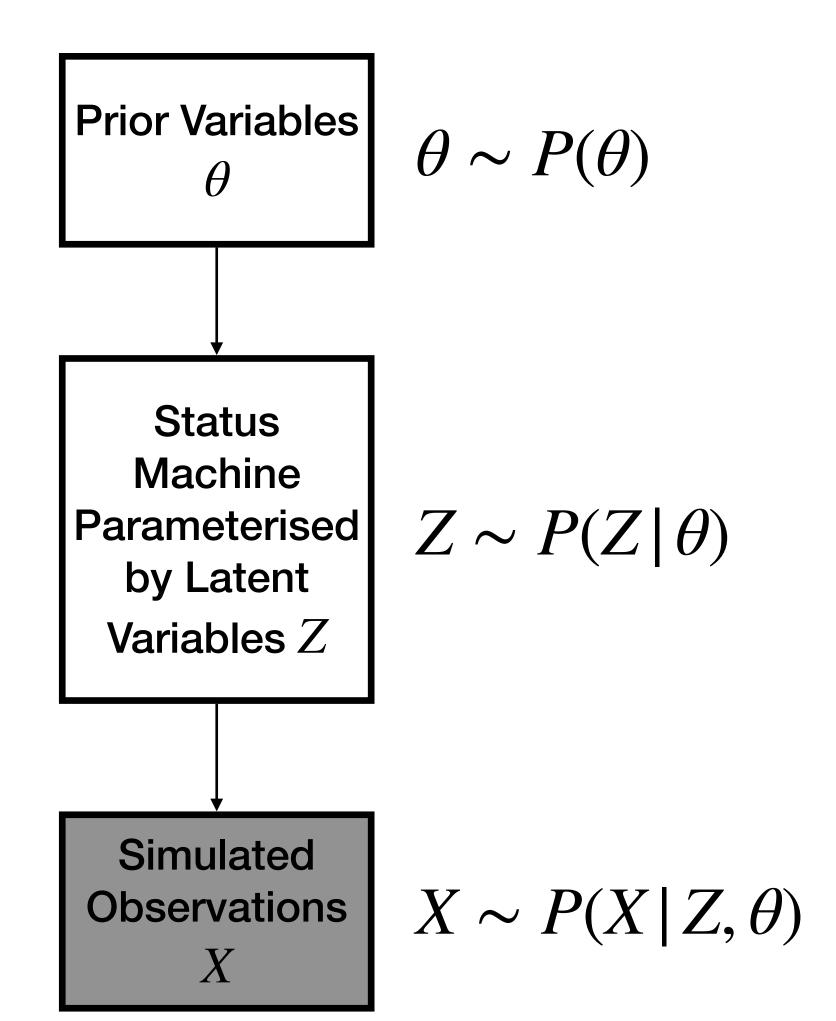
Evidence

Z: latent random variables

$$P(\theta \mid X) = \frac{\mathbb{E}_{Z}[P(X \mid Z, \theta)]P(\theta)}{P(X)}$$

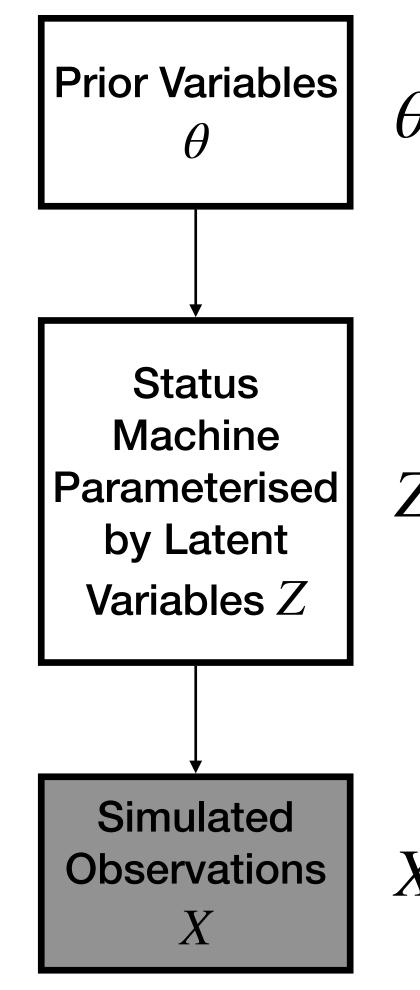
$$P(\theta \mid X) = \frac{\mathbb{E}_{\eta}[P(X \mid \theta, \eta)]P(\theta)}{P(X)}$$

Simulation-Based Inference

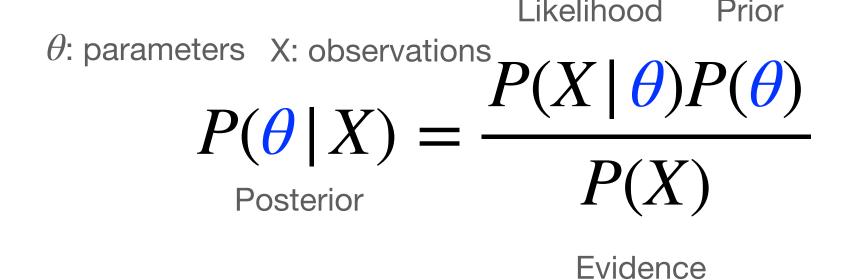


- Inference is defined as finding the θ that could be at the origin of an observation X. Specifically computing $P(\theta \,|\, X) = \mathbb{E}_Z[P(\theta,Z\,|\, X)]$
- For this, we use Bayes $P(\theta,Z|X) = \frac{P(X|Z,\theta)P(Z,\theta)}{P(X)}, \text{ nonetheless the }$ likelihood $P(X|Z,\theta)$ is often unknown or intractable.
- Hence simulation-based inference either approximates or eliminates the need for an explicit likelihood by simulating observations.

Simulation-Based Inference: Neural Network Approximations



 $\theta \sim P(\theta)$



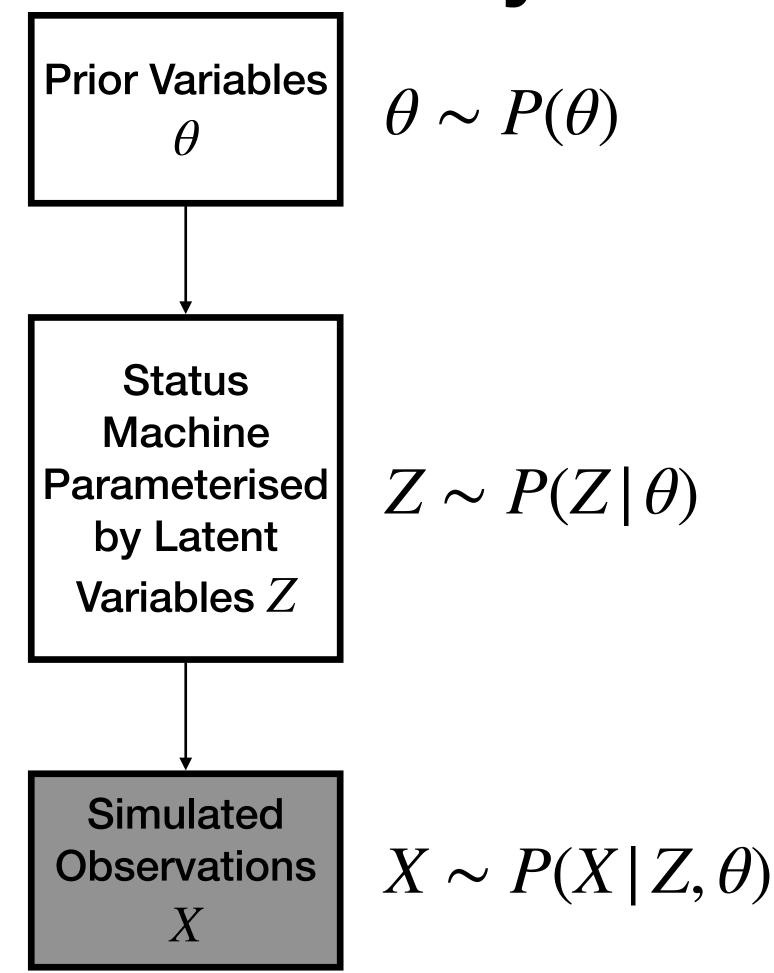
 $Z \sim P(Z \mid \theta)$

- $P(\theta \mid X)$ approximated through "Neural Posterior" estimators
- $P(X | \theta)$ approximated through "Neural Likelihood" estimators

 $X \sim P(X | Z, \theta)$

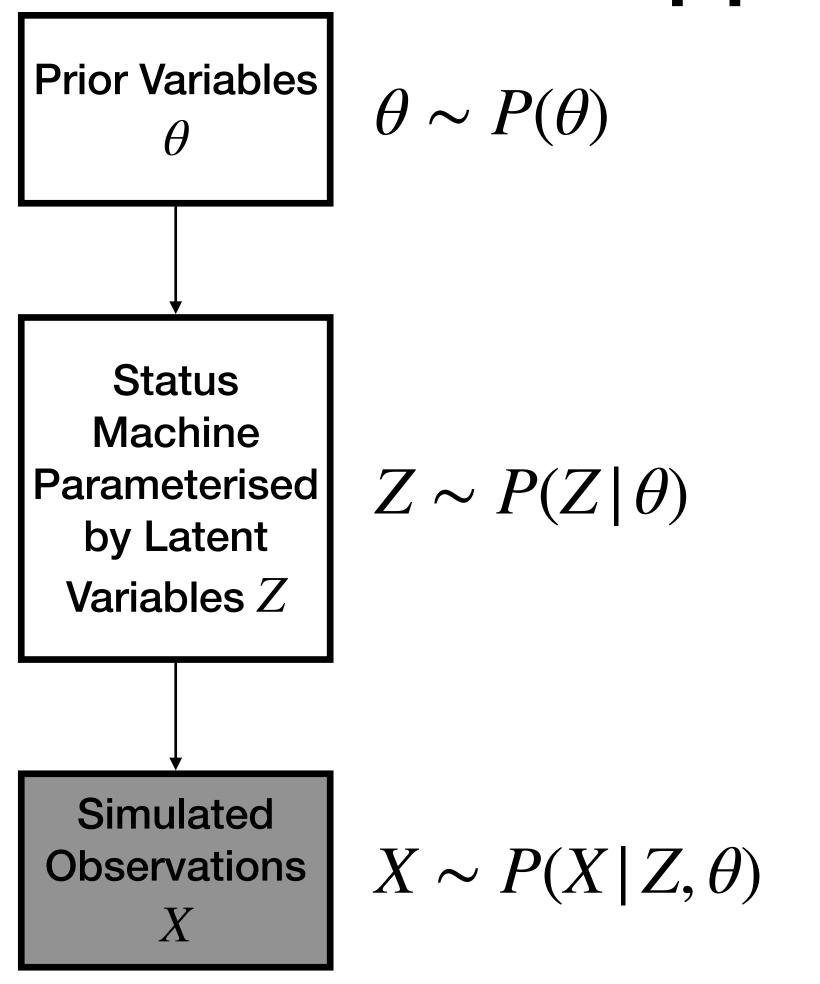
• $\frac{P(X \mid \theta)}{P(X)}$ approximated through the "Neural ratio" estimators

Simulation-Based Inference: Why now it works (Cranmer et al 2019)

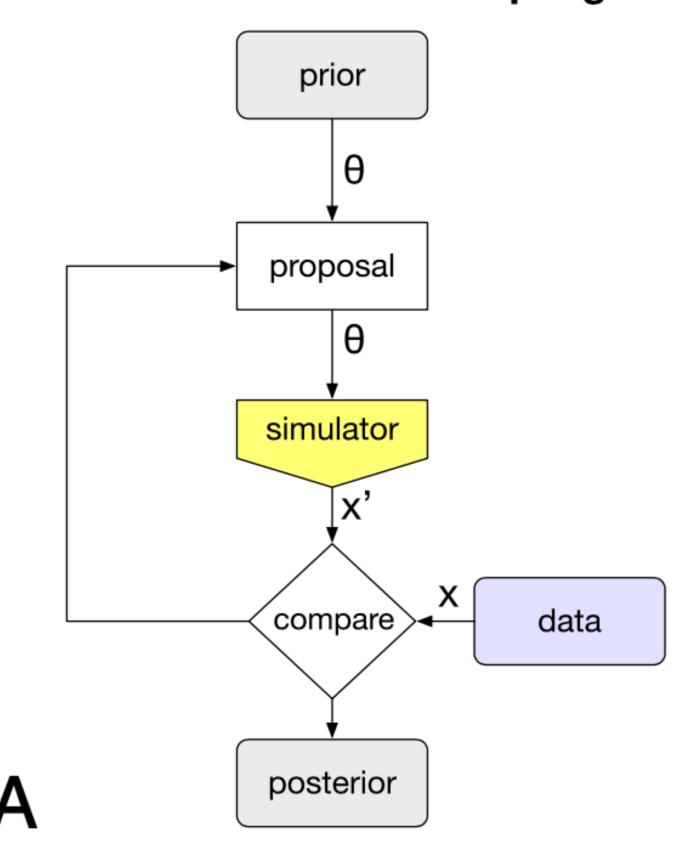


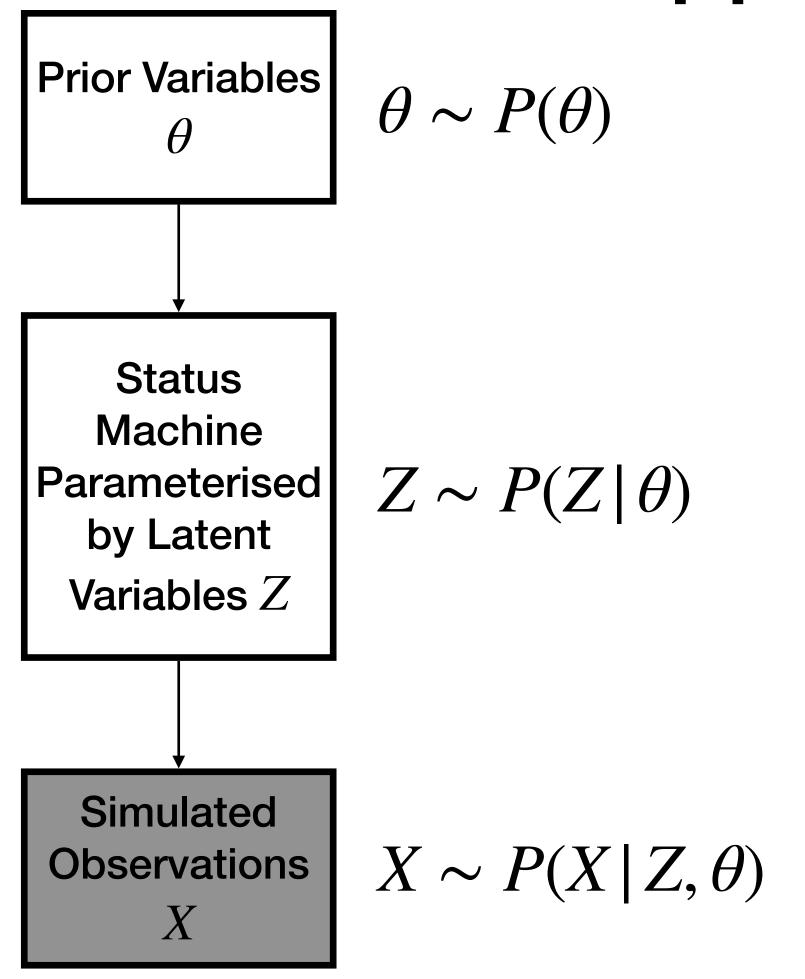
$$heta$$
: parameters X: observations $P(X \mid \theta)P(\theta)$ $P(\theta \mid X) = \frac{P(X \mid \theta)P(\theta)}{P(X)}$ Posterior Evidence

- Novel ML-based approaches allow us to massively generate simulated observations
- Autodifferentiation and neural network approaches are great non-linear function estimators
- Active learning can help improving sampling efficiency much better than Markov Chains

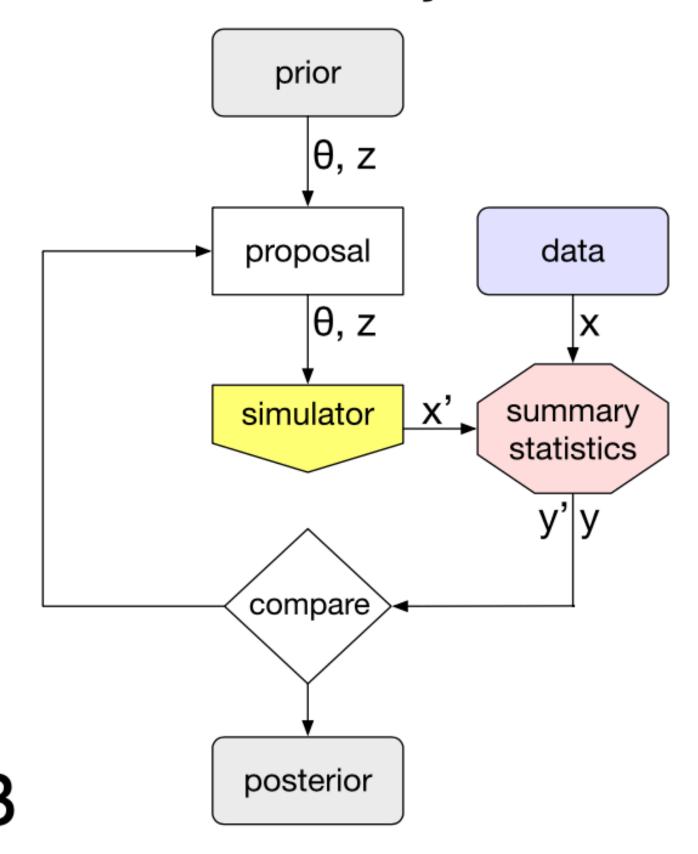


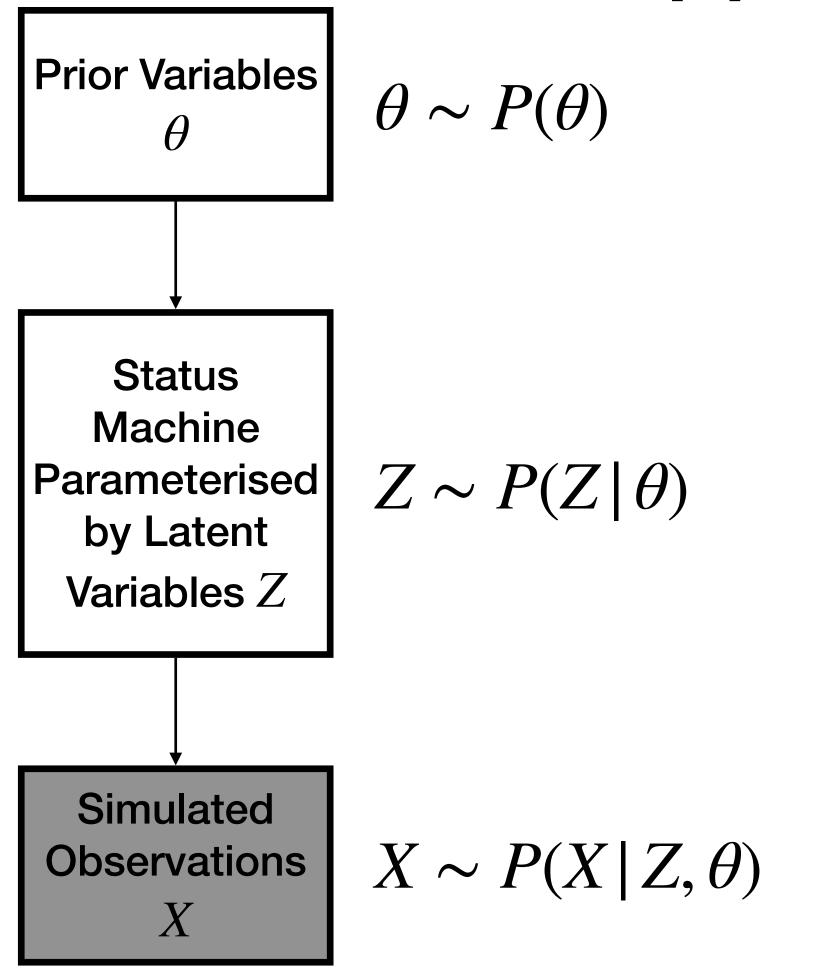
Approximate Bayesian Computation with Monte Carlo sampling



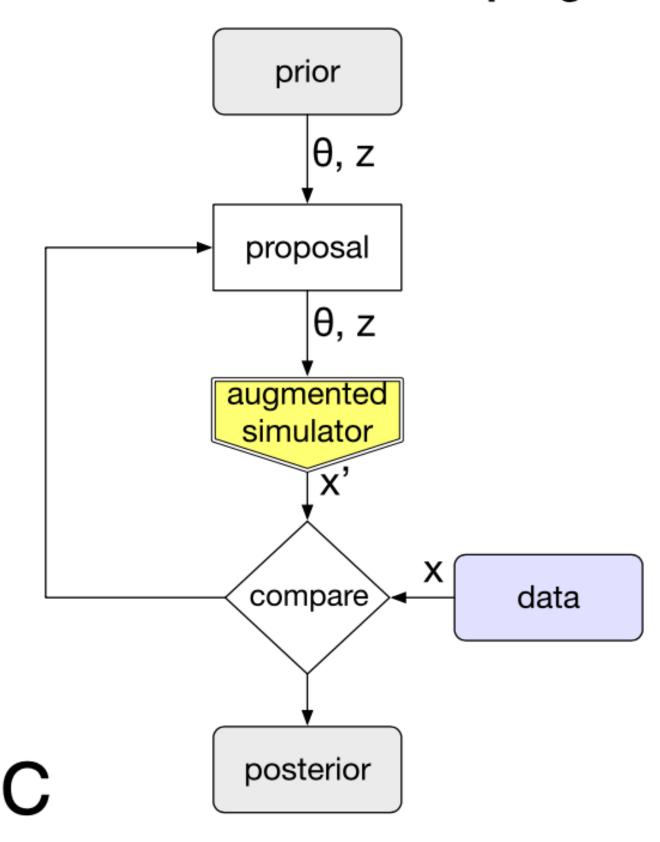


Approximate Bayesian Computation with learned summary statistics

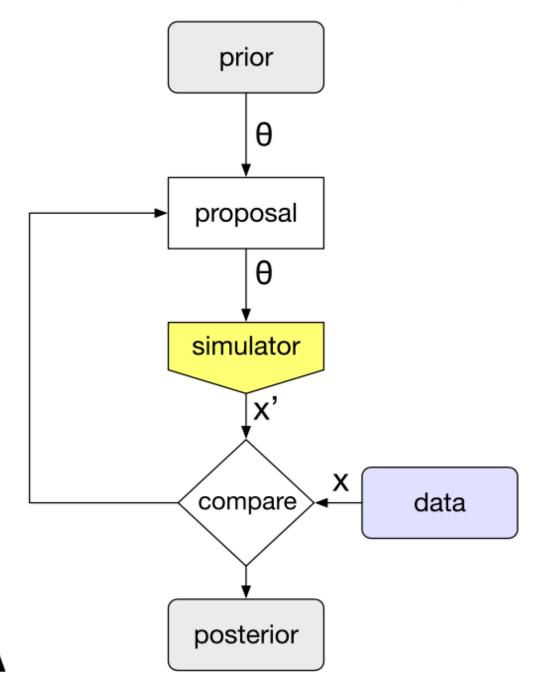




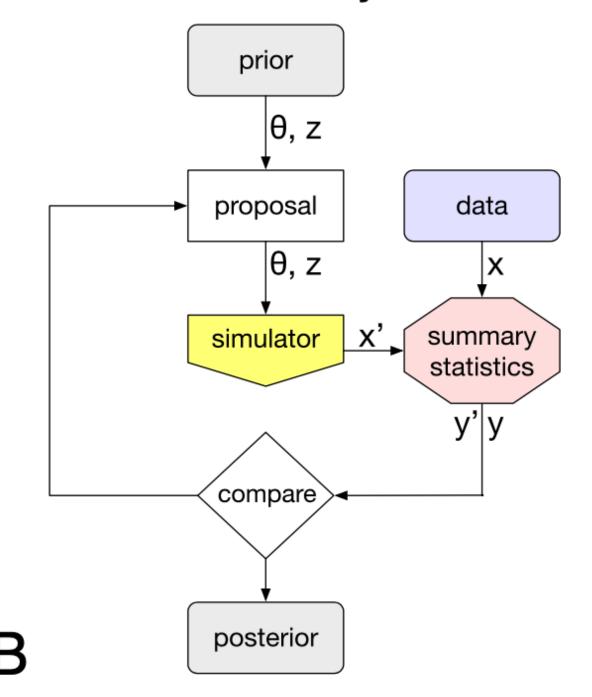
Probabilistic Programming with Monte Carlo sampling



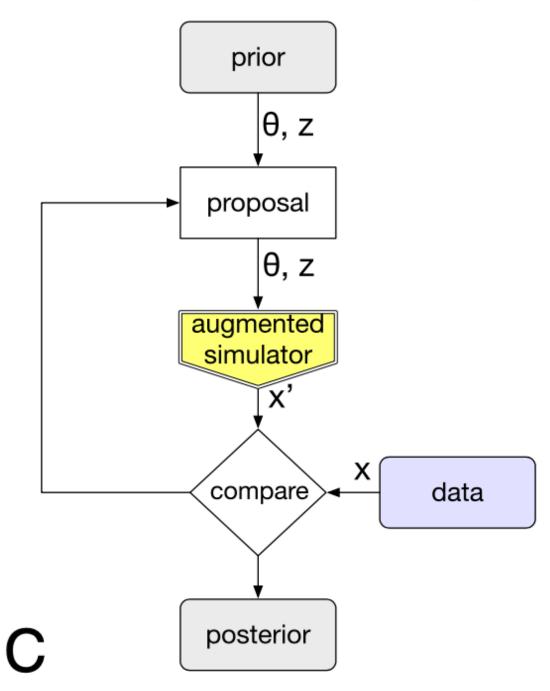
Approximate Bayesian Computation with Monte Carlo sampling



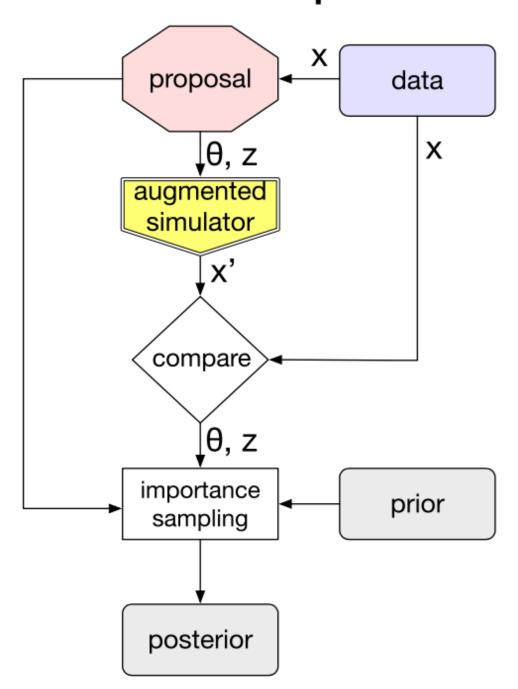
Approximate Bayesian Computation with learned summary statistics



Probabilistic Programming with Monte Carlo sampling

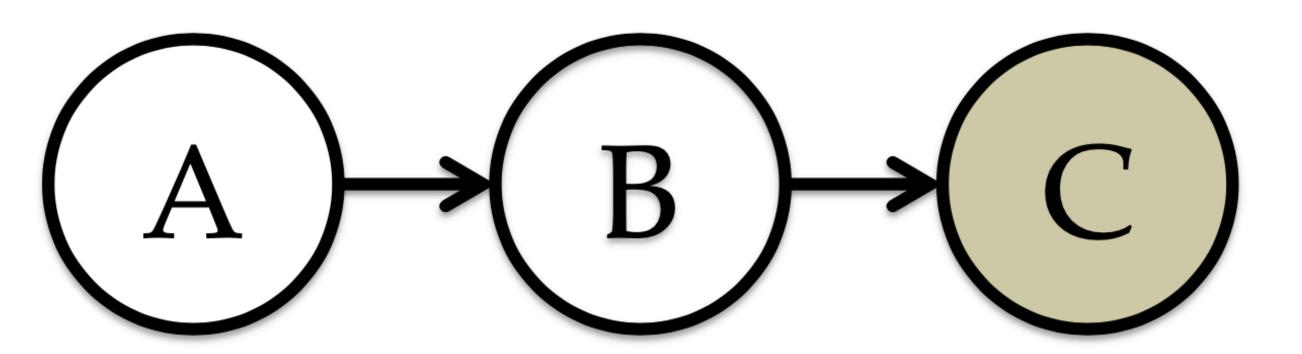


Probabilistic Programming with Inference Compilation



Simulation-Based Inference: Amortization

Population Sample Observation

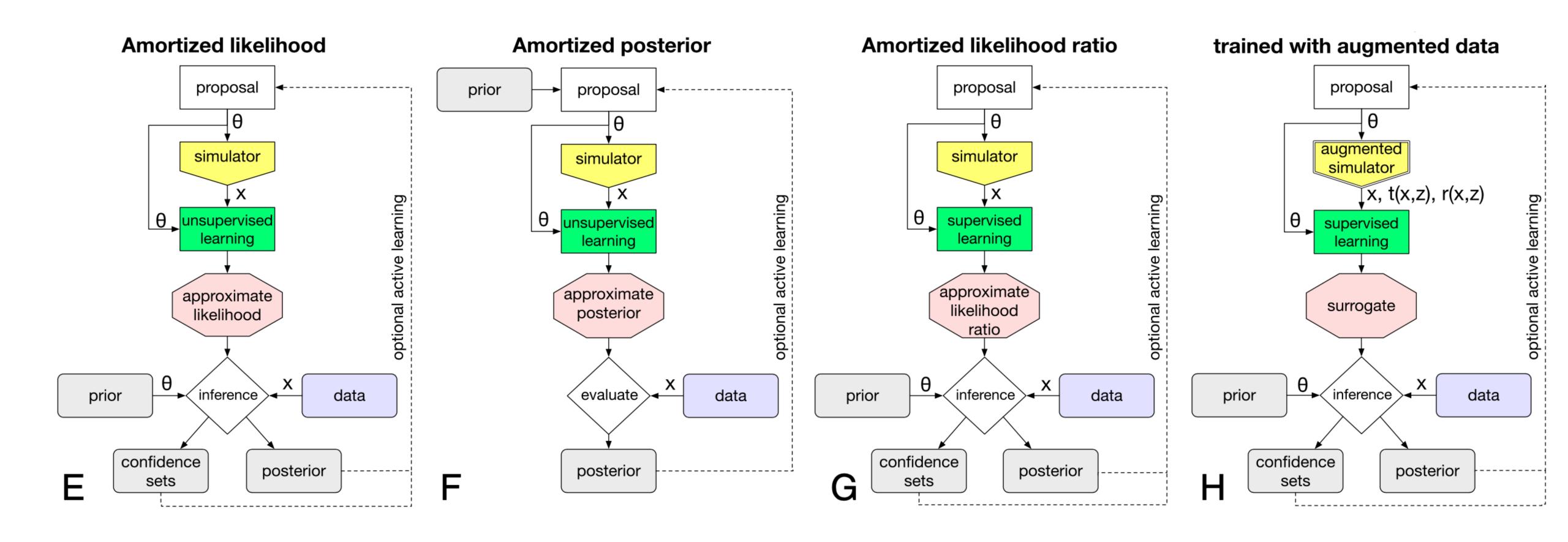


Query 1: P(B|C) = P(C|B)P(B)/P(C)

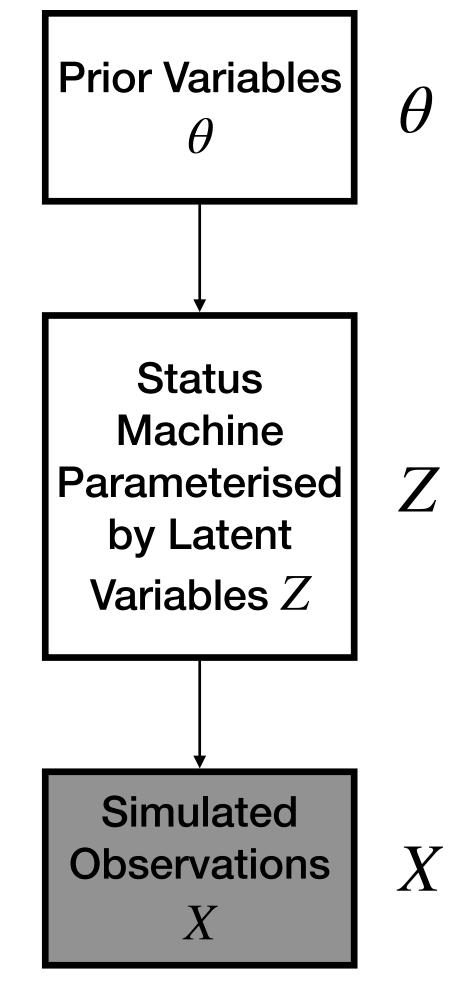
Query 2:
$$P(A|C) = \sum_{B} P(A|B)P(B|C)$$

(Gershman et al 2014

Simulation-Based Inference: Amortisation Techniques



Simulation-Based Inference: Neural Network Approximations



 $\theta \sim P(\theta)$

 θ : parameters X: observations $P(\theta \mid X) = \frac{P(X \mid \theta)P(\theta)}{P(X)}$ Posterior

 $Z \sim P(Z \mid \theta)$

• $P(\theta \mid X)$ approximated through "Neural Posterior" estimators

Evidence

• $P(X | \theta)$ approximated through "Neural Likelihood" estimators

 $X \sim P(X | Z, \theta)$

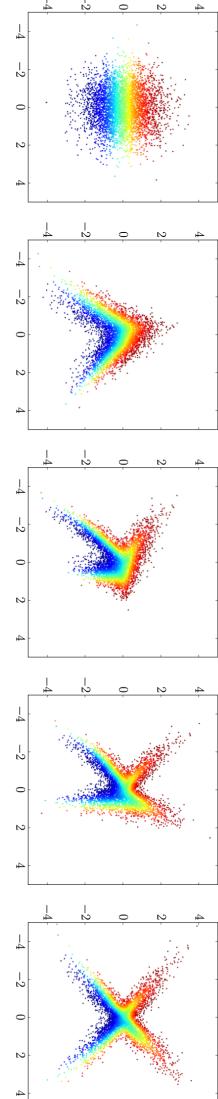
• $\frac{P(X \mid \theta)}{P(X)}$ approximated through the "Neural ratio" estimators

Simulation-Based Inference:

Neural Network Approximations Through Stochastic Flows

$$P(\theta \mid X) = \frac{P(X \mid \theta)P(\theta)}{P(X)} \qquad f(X,\theta) = N_{\mu,\Sigma}(\phi(X,\theta)) \mid J_{\phi}(X,\theta) \mid f(X,\theta) = N_{\mu,\Sigma}(\phi(X,\theta)) \mid f(X,\theta) \mid f(X,\theta) = N_{\mu,\Sigma}(\phi(X,\theta)) \mid f(X,\theta) \mid f(X,\theta) = N_{\mu,\Sigma}(\phi(X,\theta)) \mid f(X,\theta) \mid f(X,\theta)$$

- $P(\theta|X)$ approximated through "Neural Posterior" estimators
- $P(X | \theta)$ approximated through "Neural Likelihood" estimators
- $\frac{P(X \mid \theta)}{P(X)}$ approximated through the "Neural ratio" estimators



Simulation-Based Inference: Automatic Posterior Transformation (Greenberg et al 2019)

$$heta$$
: parameters X: observations $P(X \mid \theta) P(\theta)$ $P(X \mid \theta) P(\theta)$ Posterior $P(X \mid \theta) P(X \mid \theta)$ Evidence

- $P(\theta \mid X)$ approximated through "Neural posterior" by a flow $Q_{F(x_0,\phi)}(\theta)$
- Loss function:

$$\tilde{q}_{x,\phi}(\theta) = q_{F(x,\phi)}(\theta) \frac{\tilde{p}(\theta)}{p(\theta)} \frac{1}{Z(x,\phi)}, \tag{2}$$

Where a proposal posterior is

$$\tilde{p}(\theta|x) = p(\theta|x) \frac{\tilde{p}(\theta) p(x)}{p(\theta) \tilde{p}(x)}$$

Algorithm 1 APT with per-round proposal updates

Input: simulator with (implicit) density $p(x|\theta)$, data x_o , prior $p(\theta)$, density family q_{ψ} , neural network $F(x,\phi)$, simulations per round N, number of rounds R.

$$\begin{split} \tilde{p}_1(\theta) &:= p(\theta) \\ \textbf{for } r = 1 \textbf{ to } R \textbf{ do} \\ \textbf{for } j = 1 \textbf{ to } N \textbf{ do} \\ \textbf{Sample } \theta_{r,j} &\sim \tilde{p}_r(\theta) \\ \textbf{Simulate } x_{r,j} &\sim p(x|\theta_{r,j}) \\ \textbf{end for} \\ \phi &\leftarrow \underset{\phi}{\operatorname{argmin}} \sum_{i=1}^r \sum_{j=1}^N -\log \tilde{q}_{x_{i,j},\phi}(\theta_{i,j}) \qquad \text{using (2)} \\ \tilde{p}_{r+1}(\theta) &:= q_{F(x_o,\phi)}(\theta) \\ \textbf{end for} \\ \textbf{return } q_{F(x_o,\phi)}(\theta) \end{split}$$

Simulation-Based Inference: Sequential Neural Likelihood (Papamakarios et al 2019)

$$heta$$
: parameters X: observations $P(X \mid \theta) P(\theta)$ $P(X \mid \theta) P(\theta)$ Posterior $P(X \mid \theta) P(X \mid \theta)$ Evidence

• $P(X | \theta)$ approximated through "Neural likelihood" by a flow $Q_{\phi}(X | \theta)$

```
Algorithm 1: Sequential Neural Likelihood (SNL)
Input : observed data \mathbf{x}_o, estimator q_{\phi}(\mathbf{x} \mid \boldsymbol{\theta}),
                     number of rounds R, simulations per
                     round N
Output: approximate posterior \hat{p}(\boldsymbol{\theta} \mid \mathbf{x}_o)
set \hat{p}_0(\boldsymbol{\theta} | \mathbf{x}_o) = p(\boldsymbol{\theta}) and \mathcal{D} = \{\}
for r = 1 : R  do
       for n = 1 : N  do
               sample \boldsymbol{\theta}_n \sim \hat{p}_{r-1}(\boldsymbol{\theta} \mid \mathbf{x}_o) with MCMC
              simulate \mathbf{x}_n \sim p(\mathbf{x} \mid \boldsymbol{\theta}_n)
            add (\boldsymbol{\theta}_n, \mathbf{x}_n) into \mathcal{D}
       (re-)train q_{\phi}(\mathbf{x} \mid \boldsymbol{\theta}) on \mathcal{D} and set
      \hat{p}_r(oldsymbol{	heta} \,|\, \mathbf{x}_o) \propto q_{oldsymbol{\phi}}(\mathbf{x}_o \,|\, oldsymbol{	heta}) \, p(oldsymbol{	heta})
return \hat{p}_R(\boldsymbol{\theta} \mid \mathbf{x}_o)
```

Simulation-Based Inference: Neural Ratio (Hermans et al 2020)

Likelihood

Prior

$$\theta$$
: parameters X: observations

$$P(\theta \mid X) = \frac{P(X \mid \theta)P(\theta)}{P(X)}$$
Posterior

Evidence

• $P(X \mid \theta)/P(X)$ approximated through "Neural ratio" by a flow $d_{\phi}(X \mid \theta)$

Algorithm 1 Optimization of $\mathbf{d}_{\phi}(\mathbf{x}, \boldsymbol{\theta})$.

Criterion ℓ (e.g., BCE) Inputs:

Implicit generative model $p(\mathbf{x} \mid \boldsymbol{\theta})$

Prior $p(\boldsymbol{\theta})$

Parameterized classifier $\mathbf{d}_{\phi}(\mathbf{x}, \boldsymbol{\theta})$ Outputs:

Batch-size M Hyperparameters:

1: while not converged do

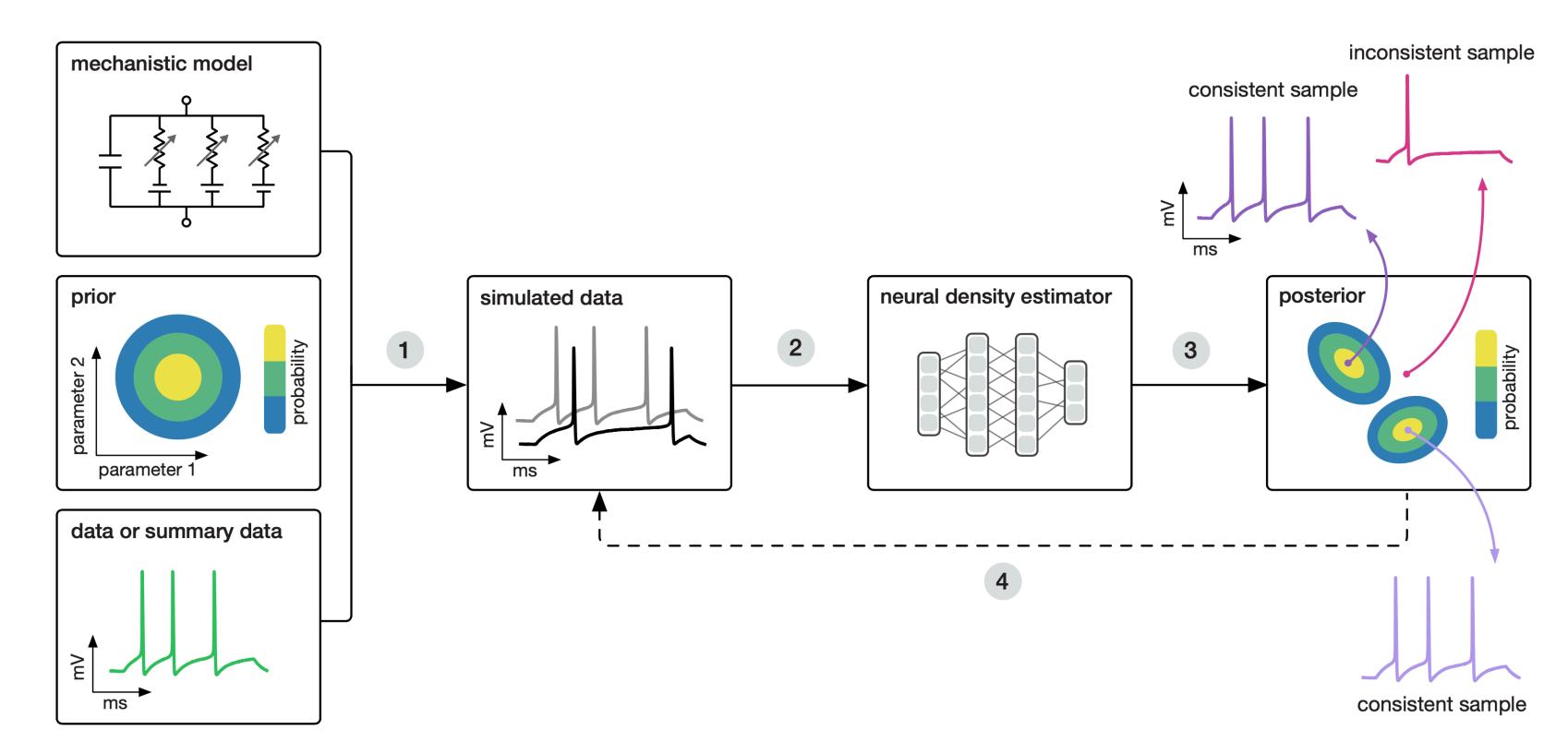
- Sample $\boldsymbol{\theta} \leftarrow \{\boldsymbol{\theta}_m \sim p(\boldsymbol{\theta})\}_{m=1}^{M}$ Sample $\boldsymbol{\theta}' \leftarrow \{\boldsymbol{\theta}_m' \sim p(\boldsymbol{\theta})\}_{m=1}^{M}$ 3:
- Simulate $\mathbf{x} \leftarrow \{\mathbf{x}_m \sim p(\mathbf{x} \mid \boldsymbol{\theta}_m)\}_{m=1}^M$ 4:
- $\mathcal{L} \leftarrow \ell(\mathbf{d}_{\phi}(\mathbf{x}, \boldsymbol{\theta}), 1) + \ell(\mathbf{d}_{\phi}(\mathbf{x}, \boldsymbol{\theta}'), 0)$ **5:**
- $\phi \leftarrow \text{OPTIMIZER}(\phi, \nabla_{\phi}\mathcal{L})$ **6:**

7: end while

8: return \mathbf{d}_{ϕ}

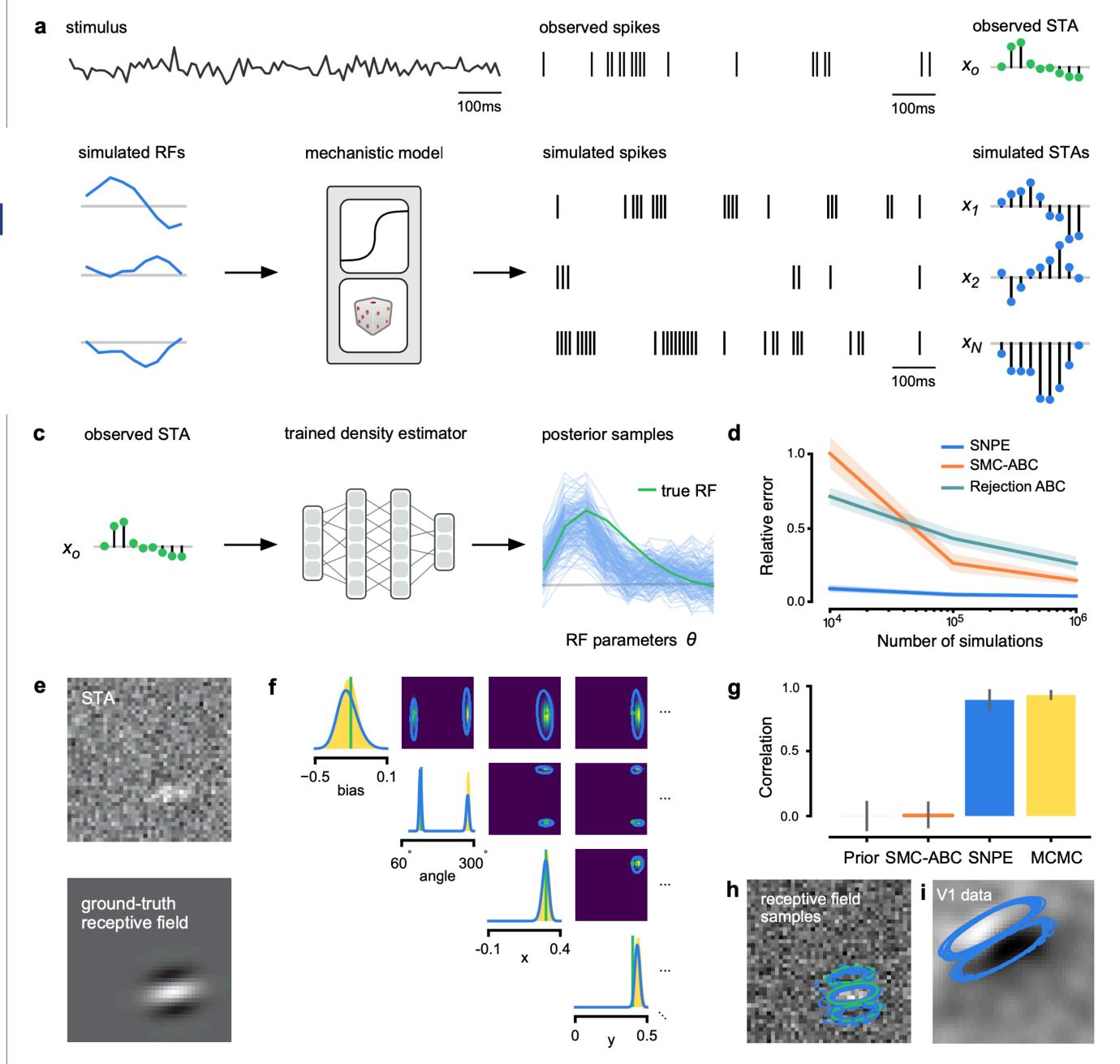
Training deep neural density estimators to identify mechanistic models of neural dynamics

Pedro J Gonçalves^{1,2†*}, Jan-Matthis Lueckmann^{1,2†*}, Michael Deistler^{1,3†*}, Marcel Nonnenmacher^{1,2,4}, Kaan Öcal^{2,5}, Giacomo Bassetto^{1,2}, Chaitanya Chintaluri^{6,7}, William F Podlaski⁶, Sara A Haddad⁸, Tim P Vogels^{6,7}, David S Greenberg^{1,4}, Jakob H Macke^{1,2,3,9*}



Training deep neural density estimators to identify mechanistic models of neural dynamics

Pedro J Gonçalves^{1,2†*}, Jan-Matthis Lueckmann^{1,2†*}, Michael Deistler^{1,3†*}, Marcel Nonnenmacher^{1,2,4}, Kaan Öcal^{2,5}, Giacomo Bassetto^{1,2}, Chaitanya Chintaluri^{6,7}, William F Podlaski⁶, Sara A Haddad⁸, Tim P Vogels^{6,7}, David S Greenberg^{1,4}, Jakob H Macke^{1,2,3,9*}



SIMULATION-BASED BAYESIAN INFERENCE FOR MULTI-FINGERED ROBOTIC GRASPING

Norman Marlier

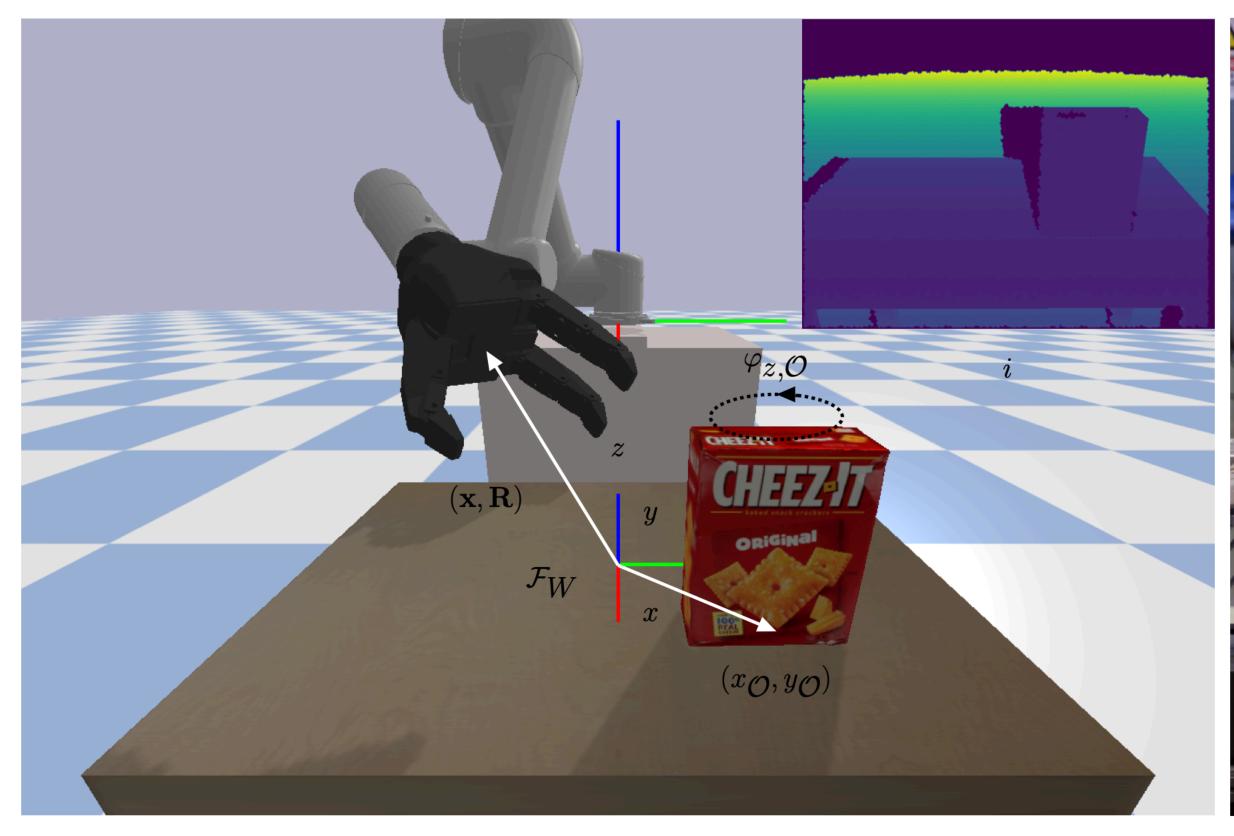
University of Liège norman.marlier@uliege.be

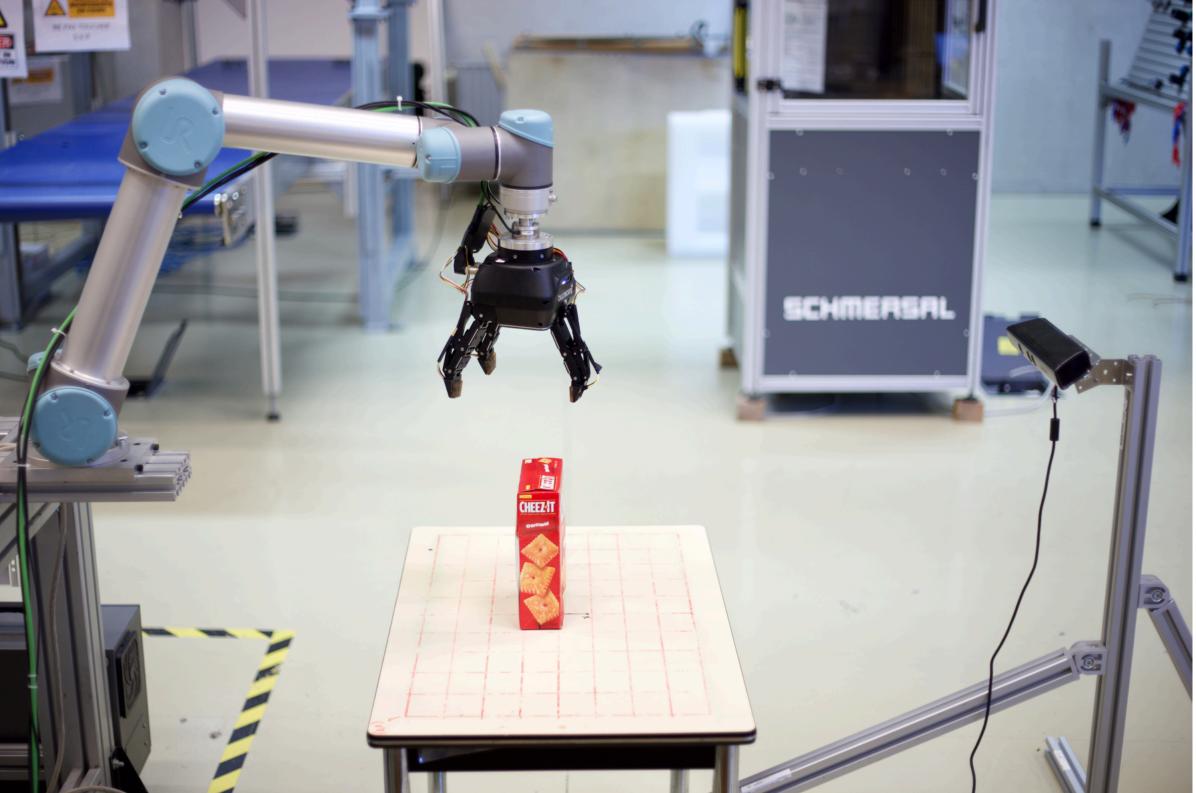
Olivier Brüls

University of Liège o.bruls@uliege.be

Gilles Louppe

University of Liège g.louppe@uliege.be





SIMULATION-BASED BAYESIAN INFERENCE FOR MULTI-FINGERED ROBOTIC GRASPING

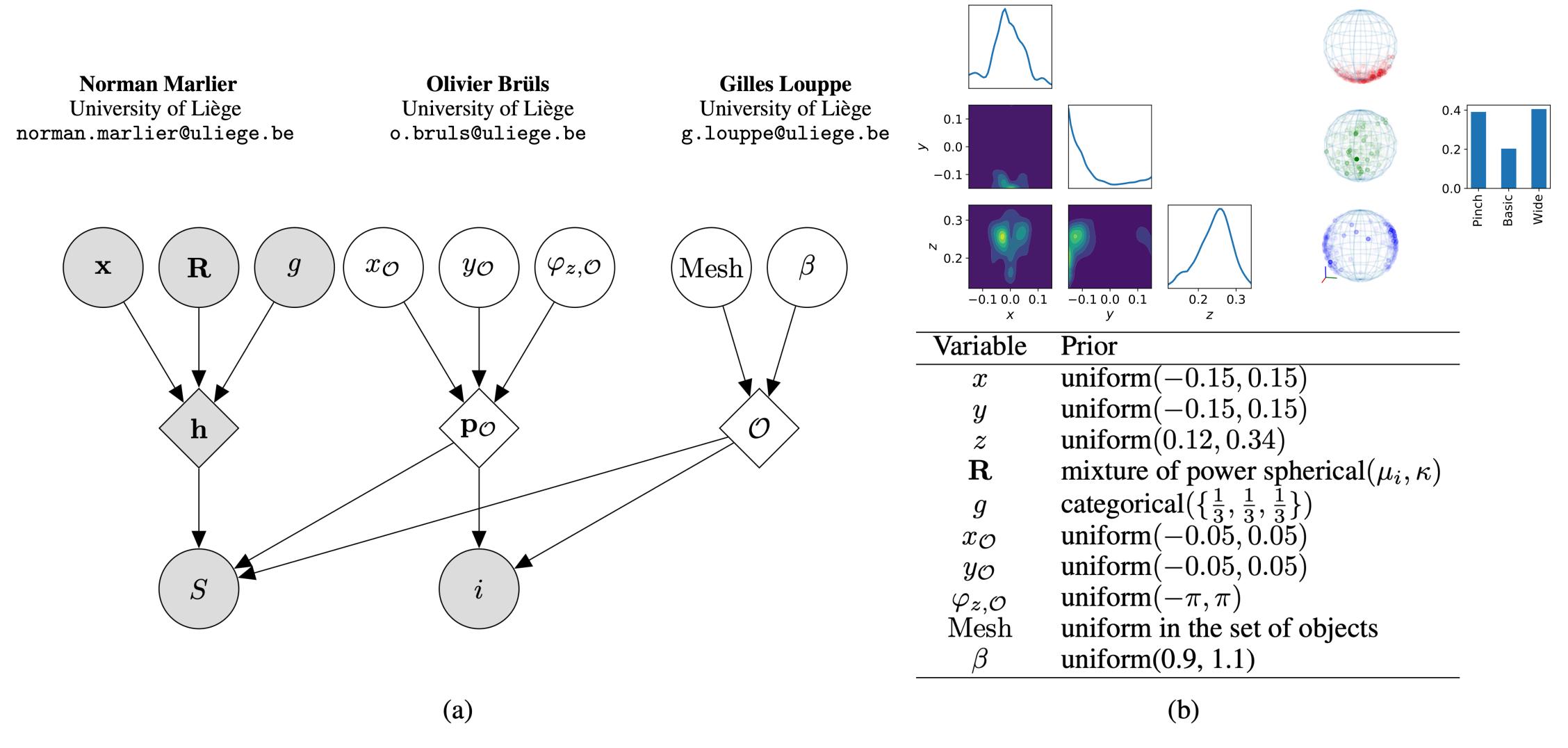


Figure 2: (a) Probabilistic graphical model of the environment. Gray nodes correspond to observed variables and white nodes to unobserved variables. (b) Prior distributions.

SIMULATION-BASED BAYESIAN INFERENCE FOR MULTI-FINGERED ROBOTIC GRASPING

Norman Marlier

University of Liège norman.marlier@uliege.be

Olivier Brüls

University of Liège o.bruls@uliege.be

Gilles Louppe

University of Liège g.louppe@uliege.be

