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Outline	

•  Previous	classes	
– Graph	cuts,	Belief	propagation	and	variants	
–  (Inference)	

•  Today	
– Quick	recap	of	the	course	
– Learning	parameters	



Before	moving	on…	



Project	suggestions	
(also	sent	by	email)	

•  Implement	BP	on	trees,	then	graph,	extend	to	TRW,	compare	
•  Implement	graph	cut	+	extension	(Ishikawa,	other	multi-label)	or	

variation	of	implementation	+	small	application	
•  Complex	application	of	graph	cut,	requiring	modelling	(e.g.,	

sequence	of	images)	
•  Geometric	scene	labelling	with	graph	cuts	
•  Joint	modelling	of	two	labelling	problems	(e.g.,	segmentation	+	

detection)	
•  Implement	fast	primal-dual	algorithm	+	evaluate	
•  Implement	deformable	parts	model	for	object	detection	
•  …	
	
•  Or	your	own	(but	check	with	us	first)	
•  Select	projects	before	25th	January	and	email	us	

(karteek.alahari@inria.fr,	guillaume.charpiat@inria.fr)	



Projects	

•  Choose	projects	before	25/1	(Monday!)	

•  Presentations	on	31/3	
–  In	English	or	French	
– 15min,	including	questions	

•  Report	due	on	30/3	



Recap	

•  What	inference	algorithm	would	you	use	for	
– a	graph	with	only	chains	
•  2-label	problem	?	
•  Multi-label	problem	?	

– Tree	structured	graph	
•  2	label	problem	?	
•  Multi-label	problem	?	



Recap	
•  Basics:	problem	formulation	
– Energy	Function	
– MAP	Estimation	
– Computing	min-marginals	
– Reparameterization	

	
•  Solutions	
– Belief	Propagation	and	related	methods	[Lecture	3]	
– Graph	cuts	[Lecture	2]	



Outline	

•  Recap	of	the	course	

•  Learning	parameters	



Conditional	Random	Fields	(CRFs)	
•  Ubiquitous	in	computer	vision	
•  segmentation 	stereo	matching	
optical	flow 	image	restoration	
image	completion	 	object	detection/localization	
...	

•  and	beyond	
•  medical	imaging,	computer	graphics,	digital	
communications,	physics…	

	•  Really	powerful	formulation	



Conditional	Random	Fields	(CRFs)	

•  Extensive	research	for	more	than	20	years	

•  Key	task:	inference/optimization	for	CRFs/MRFs	

•  Lots	of	progress	

•  Graph-cut	based	algorithms	
•  Message-passing	methods	
•  LP	relaxations	
•  Dual	Decomposition	
•  ….	

•  Many	state-of-the-art	methods:	



MAP	inference	for	CRFs/MRFs	

•  Hypergraph		
– Nodes		
– Hyperedges/cliques	

•  High-order	MRF	energy	minimization	problem	

high-order	potential	
(one	per	clique)	

unary	potential	
(one	per	node)	

hyperedges	

nodes	



CRF	training	
•  But	how	do	we	choose	the	CRF	potentials?	

•  Through	training	
•  Parameterize	potentials	by	w	

•  Use	training	data	to	learn	correct	w		

•  Characteristic	example	of	structured	output	
learning	[Taskar],	[Tsochantaridis,	Joachims]	

•  Equally,	if	not	more,	important	than	MAP	inference	
•  Better	optimize	correct	energy	(even	approximately)	
•  Than	optimize	wrong	energy	exactly	



•  Supervised	Learning	

•  Probabilistic	Methods	

•  Loss-based	Methods	

•  Results	

Outline	



Image	Classification	

Is	this	an	urban	or	rural	area?	

Input:	d	 Output:	x	∈	{-1,+1}	



Image	Classification	

Is	this	scan	healthy	or	unhealthy?	

Input:	d	 Output:	x	∈	{-1,+1}	



Image	Classification	

X	

d	

Labeling	X	=	x	 Label	set	L	=	{-1,+1}	



Image	Classification	

Which	city	is	this?	

Input:	d	 Output:	x	∈	{1,2,…,h}	



Image	Classification	

What	type	of	tumor	does	this	scan	contain?	

Input:	d	 Output:	x	∈	{1,2,…,h}	



Object	Detection	

Where	is	the	object	in	the	image?	

Input:	d	 Output:	x	∈	{Pixels}	



Object	Detection	

Where	is	the	rupture	in	the	scan?	

Input:	d	 Output:	x	∈	{Pixels}	



Object	Detection	

X	

d	

Labeling	X	=	x	 Label	set	L	=	{1,	2,	…,	h}	



Segmentation	

What	is	the	semantic	class	of	each	pixel?	

Input:	d	 Output:	x	∈	{1,2,…,h}|Pixels|	

car	

road	
grass	

tree	sky	

sky	



Segmentation	

What	is	the	muscle	group	of	each	pixel?	

Input:	d	 Output:	x	∈	{1,2,…,h}|Pixels|	



Segmentation	

X1	

d1	

X2	

d2	

X3	

d3	

X4	

d4	

X5	

d5	

X6	

d6	

X7	

d7	

X8	

d8	

X9	

d9	

Labeling	X	=	x	 Label	set	L	=	{1,	2,	…,	h}	



Segmentation	

X1	

d1	

X2	

d2	

X3	

d3	

X4	

d4	

X5	

d5	

X6	

d6	

X7	

d7	

X8	

d8	

X9	

d9	

Labeling	X	=	x	 Label	set	L	=	{1,	2,	…,	h}	



CRF	training	
•  Stereo	matching:	
•  Z:	left,	right	image	
•  X:	disparity	map	

Z	 X	

f :	

argf = parameterized	
by	w	

Goal	of	training:	
estimate	proper	

w	



CRF	training	
•  Denoising:	
•  Z:	noisy	input	image	
•  X:	denoised	output	image	

Z	 X	

f :	

argf = parameterized	
by	w	

Goal	of	training:	
estimate	proper	

w	



CRF	training	
•  Object	detection:	
•  Z:	input	image	
•  X:	position	of	object	parts	

Z	 X	

f :	

argf = parameterized	
by	w	

Goal	of	training:	
estimate	proper	

w	



CRF	training	(some	further	notation)	

vector	valued	feature	
functions	



Learning	formulations	



Risk	minimization	

K	training	samples		



Regularized	Risk	minimization	



Regularized	Risk	minimization	

Replace	Δ(.)	with	easier	to	handle	upper	bound	LG	
(e.g.,	convex	w.r.t.	w)	



Choice	1:	Hinge	loss	

§  Upper	bounds	Δ(.)	

§  Leads	to	max-margin	learning	



Max-margin	learning	

energy	of	
ground	truth	

any	other	
energy		

desired	
margin	

slack	



Max-margin	learning	

subject	to	the	constraints:	

energy	of	
ground	truth	

any	other	
energy		

desired	
margin	

slack	



Max-margin	learning	

subject	to	the	constraints:	

energy	of	
ground	truth	

any	other	
energy		

desired	
margin	

slack	



Max-margin	learning	

subject	to	the	constraints:	

or	equivalently	

CONSTRAINED	

UNCONSTRAINED	



Choice	2:	logistic	loss		

§  Can	be	shown	to	lead	to	maximum	likelihood	learning	
	

partition	function		



Max-margin	vs	Maximum-likelihood	
max-margin	

maximum	likelihood	



Max-margin	vs	Maximum-likelihood	
max-margin	

maximum	likelihood	

soft-max	



Solving	the	learning	
formulations	



Maximum-likelihood	learning	

§  Differentiable	&	convex	
	

partition	function		

§  Global	optimum	via	gradient	descent,	for	example	
	



Maximum-likelihood	learning	

gradient	

Recall	that:	



Maximum-likelihood	learning	

gradient	

§  Requires	MRF	probabilistic	inference		
	
§  NP-hard	(exponentially	many	x):	approximation	via	loopy-BP	?	
	



Max-margin	learning	(UNCONSTRAINED)	

§  Convex	but	non-differentiable	
	
§  Global	optimum	via	subgradient	method	



Subgradient	

x2	

subgradient	at	x1	

g(x2)+h2·(x-x2)	

subgradient	at	x2	=	gradient	at	x2	



Subgradient	



Subgradient	

x 



Subgradient	

subgradient	of	LG =		



Max-margin	learning	(UNCONSTRAINED)	

total	subgr.	 =		

Repeat		
	1.	compute	global	minimizers								at	current	w 
	2.	compute	total	subgradient	at	current	w	
	3.	update	w by	taking	a	step	in	the	negative	total	subgradient		
	 	direction	

until	convergence	

Subgradient	algorithm	



Max-margin	learning	(UNCONSTRAINED)	

partial	subgradient		=		

Repeat		
	1.	pick	k	at	random	
	2.	compute	global	minimizer							at	current	w 
	3.	compute	partial	subgradient	at	current	w	
	4.	update	w by	taking	a	step	in	the	negative	partial	subgradient	
	 	direction	

until	convergence	

Stochastic	subgradient	algorithm	

MRF-MAP	estimation	per	iteration	
	(unfortunately	NP-hard)		



Max-margin	learning	(CONSTRAINED)	

subject	to	the	constraints:	



Max-margin	learning	(CONSTRAINED)	

subject	to	the	constraints:	

linear	in	w 

•  Quadratic	program	(great!)	
•  But	exponentially	many	constraints	(not	so	great)	



•  What	if	we	use	only	a	small	number	of	constraints?	

•  Resulting	QP	can	be	solved	
•  But	solution	may	be	infeasible	

Max-margin	learning	(CONSTRAINED)	

•  only	few	constraints	active	at	optimal	
solution	!!	
(variables	much	fewer	than	constraints)	

•  Constraint	generation	to	the	rescue	

•  Given	the	active	constraints,	rest	can	be	ignored	
•  Then	let	us	try	to	find	them!	



1.	Start	with	some	constraints	

Constraint	generation	

2.	Solve	QP		

3.	Check	if	solution	is	feasible	w.r.t.	to	all	constraints	

4.	If	yes,	we	are	done!	

5.	If	not,	pick	a	violated	constraint	and	add	it	to	the	
current	set	of	constraints.	Repeat	from	step	2.	
	(optionally,	we	can	also	remove	inactive	constraints)	



•  Key	issue:	we	must	always	be	able	to	find	a	violated	
constraint	if	one	exists	

Constraint	generation	

•  Recall	the	constraints	for	max-margin	learning	

•  To	find	violated	constraint,	we	therefore	need	to	
compute:	

(just	like	subgradient	method!)	



1.	Initialize	set	of	constraints	C to	empty		

Constraint	generation	

2.	Solve	QP	using	current	constraints	C and	
obtain	new	(w,ξ)		

4.	For	each	k,	if	the	following	constraint	is	violated	
then	add	it	to	set	C:		

5.	If	no	new	constraint	was	added	then	terminate.	
Otherwise	go	to	step	2.	

3.	Compute	global	minimizers								at	current	w	

MRF-MAP	estimation	per	sample		
(unfortunately	NP-hard)		



Max-margin	learning	(CONSTRAINED)	

subject	to	the	constraints:	

•  Alternatively,	we	can	solve	above	QP	in	the	dual	
domain	

•  dual	variables	↔	primal	constraints	
•  Too	many	variables,	but	most	of	them	zero	at	
optimal	solution	

•  Use	a	working-set	method		
(essentially	dual	to	constraint	generation)	


